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Summary

Self-consistent solutions to nonlinear spinor field equations in General Relativity are studied for
the case of Bianchi type-I space-time. It should be emphasized the absence of initial singularity
for some types of solutions and also the isotropic mode of space-time expansion in some special
cases.

? ? ? ? ?

The aim of the paper is to find some exact self-consistent solutions to the spinor field equations
with nonlinear terms being arbitrary functions of the invariant S = ψ̄ψ, for Bianchi type-I
space-time. Equations with power nonlinearity in spinor field Lagrangian LN = λSn, where λ
is the coupling constant , have been thoroughly studied. In this case it is shown that indicated
equations for n > 2 possess solutions both regular and singular at the initial moment of time.
Singularity remains absent for the case of field system with broken dominant energy condition.
It is also shown that if in the spinor field equation the massive parameter m 6= 0 and n ≥ 2 then
at t → ∞ isotropization of Bianchi type-I space-time expansion takes place, while for m = 0
the expansion is anisotropic. Properties of solutions to the spinor field equation for 1 < n < 2
and 0 < n < 1 we also studied. It was found that in these cases there does not exist solution,
which is regular at initial moment of time. At t → ∞ the isotropization process of Bianchi
type-I space-time expansion takes place both for m 6= 0 and for m = 0.

The Lagrangian for the self-consistent system of spinor and gravitation fields can be written
as

L =
R

2κ
+
i

2

[
ψ̄γµ∇µψ −∇µψ̄γ

µψ
]
−mψ̄ψ + LN (1)

with R- being the scalar curvature, κ- being the Einstein’s gravitational constant, LN = F (S),
being an arbitrary function of S = ψ̄ψ,. Bianchi type-I space-time metric can be chosen in the
form [1]

ds2 = dt2 − a2(t)dx2 − b2(t)dy2 − c2(t)dz2, (2)

From Lagrangian (1) we will get Einstein equations, spinor field equations and components
of energy-momentum tensor for the spinor field.

We will use Einstein equations for a(t), b(t) and c(t) in the form [1]:
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where point means differentiation with respect to t, and T = T µ
µ . Nonlinear spinor field equa-

tions and components of its energy-momentum tensor can be written as follows:

iγµ∇µψ −mψ + L′
Nψ = 0, L′

Nψ :=
dLN

dψ̄
(7)

T ρ
µ =

i

4
gρν

(
ψ̄γµ∇νψ + ψ̄γν∇µψ −∇µψ̄γνψ −∇νψ̄γµψ

)
− δρ

µL (8)

while L on account of spinor field equations takes the form:[
1

2

(
ψ̄
∂LN

∂ψ̄
+
∂LN

∂ψ
ψ

)
− LN

]
.

In (7) and (9) ∇µ denotes the covariant derivative of spinor, having the form [2]:

∇µψ =
∂ψ

∂xµ
− Γµψ, (9)

where Γµ(x) are spinor affine connection matrices. γµ(x) matrices are defined for the metric
(2) as follows. Using the equality

gµν(x) = ea
µ(x)eb

ν(x)ηab, γµ(x) = ea
µ(x)γ̄a,

where ηab = diag(1,−1,−1,−1), γ̄a being flat space-time Dirac matrices, ea
µ denoting a set

of tetrad 4-vectors, we will get

γ0 = γ̄0, γ1 = γ̄1/a(t), γ2 = γ̄2/b(t), γ3 = γ̄3/c(t).

Γµ(x) matrices are defined by the equality

Γµ(x) =
1

4
gρσ(x)

(
∂µe

b
δe

ρ
b − Γρ

µδ

)
γσγδ,

which gives

Γ0 = 0, Γ1 =
1

2
ȧ(t)γ̄1γ̄0, Γ2 =

1

2
ḃ(t)γ̄2γ̄0, Γ3 =

1

2
ċ(t)γ̄3γ̄0, (10)

Flat space-time matrices we will choose in the form, given in [3].
We will study the space-independent solutions to spinor field equation (7) so that ψ = V (t).

In this case equation (7) together with (9) and (10) can be written as:

iγ̄0
(
∂

∂t
+

τ̇

2τ

)
V − (m− L′

N)V = 0, τ(t) = a(t)b(t)c(t). (11)

For the components ψρ = Vρ(t), ρ = 1, 2, 3, 4, from (11) one deduces the following system of
equations:

V̇r +
τ̇

2τ
Vr + i(m− F1)Vr = 0, r = 1, 2;

V̇l +
τ̇

2τ
Vl − i(m− F1)Vl = 0, l = 3, 4. (12)
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where F1 := dF/dS. From (12) we will find the equation for invariant function

S = ψ̄ψ = V ∗
1 V1 + V ∗

2 V2 − V ∗
3 V3 − V ∗

4 V4 :

Ṡ +
τ̇

τ
S = 0, (13)

which leads to

S =
C0

τ
, C0 = const. (14)

As in the considered case F depends only on S, from (14) it follows that F (S) and F1(S)
are functions of τ = abc. Taking this fact into account, integration of the system of equations
(12) leads to the expressions

Vr(t) =
Cr√
τ
exp

[
−i(mt−

∫
F1dt)

]
, r = 1, 2;

Vl(t) =
Cl√
τ
exp

[
i(mt−

∫
F1dt)

]
, l = 3, 4. (15)

where Cr and Cl are integration constants. Putting (15) into (8), we will get the following
expressions for the components of the energy-momentum tensor for the spinor field:

T 0
0 =

i

2
N +R, T 1

1 = T 2
2 = T 3

3 = R, T = Tα
α =

i

2
N + 4R, (16)

where

N = −2i

τ
(C2

1 + C2
2 − C2

3 − C2
4)(m− F1), R = F1(S)S − F (S),

C2
1 + C2

2 − C2
3 − C2

4C = C0.

Summation of Einstein equations (3),(4) and (5) leads to the equation

τ̈

τ
= −κ(T 1

1 + T 2
2 + T 3

3 −
3

2
T ) = 3κ(

i

4
N +R) (17)

As the right hand side of the equation (17) is the function of S or τ(t) = abc, this equation
takes the form

τ̈ + Φ(τ) = 0 (18)

Equation (18) possesses exact solutions for arbitrary function Φ(τ) [4]. Giving the explicit
form of LN = F (S), from (18) one can find concrete function τ(t) = abc. Putting the obtained
function in (15), one can get expressions for components Vα(t), α = 1, 2, 3, 4.

Let us express a, b, c through τ . For this we notice that subtraction of Einstein equations
(3)-(4) leads to the equation

ä
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b

)(
ȧ
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Equation (19) possesses the solution

a

b
= D1exp

(
X1

∫ dt

τ

)
, D1 = const., X1 = const. (20)

Subtracting equations (3)-(5) and (4)-(5) one finds the equations similar to (19), having solu-
tions

a

c
= D2exp

(
X2

∫ dt

τ

)
,

b

c
= D3exp

(
X3

∫ dt

τ

)
, (21)
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where D2, D3, X2, X3 are integration constants. There is a functional dependence between the
constants D1, D2, D3, X1, X2, X3:

D2 = D1D3, X2 = X1 + X3.

Using the equations (19),(20) and (21), we rewrite a(t), b(t), c(t) in the explicit form:

a(t) = (D2
1D3)

1
3 τ

1
3 exp

[
2X1 +X3

3

t∫
t0

τ−1dt′
]

b(t) = (D−1
1 D3)

1
3 τ

1
3 exp

[
−X1 −X3

3

t∫
t0

τ−1dt′
]

c(t) = (D1D
2
3)

− 1
3 τ

1
3 exp

[
−X1 + 2X3

3

t∫
t0

τ−1dt′
]

(22)

where t0 is the initial time.
Thus the previous system of Einstein equations and nonlinear spinor field ones is completely

integrated. In this process of integration only first three of the complete system of Einstein
equations have been used. General solutions to these three second order equations have been
obtained. The solutions contain six arbitrary constants: D1, D3, X1, X3 and two others, that
were obtained while solving equation (18). Equation (6) is the consequence of first three of
Einstein equations. To verify the correctness of obtained solutions, it is necessary to put a, b, c
in (6). It should lead either to identity or to some additional constraint between the constants.
Putting a, b, c from (22) in (6) one can get the following equality:

1

3τ

[
3τ̈ − 2

τ̇ 2

τ
+

2

3τ

(
X2

1 +X1X3 +X2
3

)]
= −κ

(
T 0

0 −
1

2
T

)
, (23)

that guaranties the correctness of obtained solutions.
Let us consider the concrete type of nonlinear spinor field equation, when LN = F (S) =

λSn, λ - being the coupling constant, n > 1. In this case we will get the following expressions
for the energy-momentum tensor components of the spinor field:

N = −2iS
[
m− λnSn−1

]
, R = λ(n− 1)Sn,

T 0
0 =

i

2
N +R = mS − λSn, T 1

1 = T 2
2 = T 3

3 = R = λ(n− 1)Sn,

T = Tα
α = mS + (3n− 4)λSn, T 0

0 −
1

2
T =

1

2
mS +

2− 3n

2
λSn, (24)

T 1
1 −

1

2
T = T 2

2 −
1

2
T = T 3

3 −
1

2
T = −1

2
mS − n− 2

2
λSn. (25)

Putting (25) in (17) one can get the equation for τ = abc = C0

S
:

τ̈ =
3

2
κC0

[
m+ λ(n− 2)

Cn−1
0

τn−1

]
. (26)

We will first study the solution to the equation (26) when λ = 0, i.e. when the spinor field
nonlinearity remains absent: LN = 0. The reason to get the solution to the self-consistent system
of equations for the linear spinor and gravitational fields is the necessity of comparing this
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solution with that for the system of equations for the nonlinear spinor and gravitational fields
that permits to clarify the role of nonlinear spinor terms in the evolution of the cosmological
model in question. In this case the solution to the equation (26) takes form:

τ(t) =
1

2
Mt2 + y1t+ y0 (27)

where M = 3
2
κmC0, C0 > 0, y1, y0 = const. Putting τ(t) from (27) into (15) and (22), we

can get explicit expressions for the components of spinor field functions and metric functions
a, b, c:

Vr(t) =
Cre

−imt

1
2
Mt2 + y1t+ y0

, Vl(t) =
Cle

imt

1
2
Mt2 + y1t+ y0

(28)

a(t) = (D2
1D3)

1
3 (

1

2
Mt2 + y1t+ y0)

1
3Z2(2X1+X3)/3B

b(t) = (D−1
1 D3)

1
3 (

1

2
Mt2 + y1t+ y0)

1
3Z−2(X1−X3)/3B

c(t) = (D1D
2
3)

− 1
3 (

1

2
Mt2 + y1t+ y0)

1
3Z−2(X1+2X3)/3B (29)

where

Z =
(t− t1)

(t− t2)
, B = M(t1 − t2),

and t1,2 = −y1/M±
√

(y1/M)2 − 2y0/M are the roots of the quadratic equation Mt2+

2y1t+ 2y0 = 0. Substituting τ(t) from (27) into (23), one can get the following equality:

y2
1 − 2My0 =

X2
1 +X1X3 +X2

3

3
(30)

which leads to y2
1 − 2My0 > 0. This means that the quadratic trinomial in (27) possesses real

roots, i.e. τ(t) in (27) turns into zero at t = t1,2 and the solution obtained is the singular one.
Let us now study the solutions (27)-(29) at t→∞. In this case we shall have

τ(t) ≈ 3

4
κmC0t

2, a(t) ≈ b(t) ≈ c(t) ≈ t2/3,

that leads to the conclusion about the asymptotical isotropization of the expansion process for
the initially anisotropic Bianchi type-I space. Thus the solution to the self-consistent system
of equations for the linear spinor and gravitational fields is the singular one at the initial time.
In the initial state of evolution of the field system the expansion process of space is anisotropic,
but at t→∞ there happens isotropization of the expansion process.

The first integral of equation (26) takes form:

τ̇ 2 = 3κC0

[
mτ − λ

Cn−1
0

τn−2
+ y2

]
, y2 = const. (31)

Substituting (26) and (31) into (23) one can get the following relation between integrating
constants:

y2 =
X2

1 +X1X3 +X2
3

3
(32)

which leads to y2 > 0. Then (31) can be rewritten as:

τ̇ 2 = 3κC0

[
mτ − λ

Cn−1
0

τn−2
+ g2

]
, (33)
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where g2 = y2. The sign C0 is determined by the positivity of the energy-density T 0
0 of linear

spinor field:

T 0
0 =

mC0

abc
> 0. (34)

It is obvious from (34) that C0 > 0. From (33) one can get the solution to the equation (26) in
quadratures: ∫ τ (n−2)/2dτ√

mτn−1 + g2τn−2 − λCn−1
0

=
√

3κC0t (35)

The constant of integration in (35) has been taken zero, as it only gives the shift of the initial
time. Let us study the properties of solution to equation (26) for n > 2, on the base of (35).
As t→∞, from (33) one can get

τ(t) ≈ 3

4
κmC0t

2 (36)

which coincides with the solution to the linear spinor field equation (27) at t → ∞. It leads
to the conclusion about isotropization of the expansion process of the Bianchi type-I space. It
should be remarked that the isotropization takes place only if the spinor field equation contains
the massive term [cf. the parameter m in (30)]. If m=0 the isotropization does not take place.
In this case at t→∞ from (35) we get

τ(t) ≈
√

3κC0g2t. (37)

Substituting (37) into (22) one comes to the conclusion that the functions a(t), b(t) and c(t) are
different. Let us consider the properties of solutions to equation (26) when t → 0. For λ < 0
from (35) we get

τ(t) =
[
3

4
n2κλCn

0

]1/n

t2/n → 0, (38)

i.e. solutions are singular. For λ > 0, from (35) it follows that τ = 0 can be reached for no
value of t as in this case the denominator of the integrand in (35) becomes imaginary. It means
that for λ > 0 there exist regular solutions to the previous system of equations. The absence
of the initial singularity in the considered cosmological solution appears to be consistent with
the violation for λ > 0, of the dominant energy condition in the Hawking-Penrose theorem [1].

Let us consider the Heisenberg-Ivanenko equation when in (26) n=2 [5]. In this case the
equation for τ(t) does not contain the nonlinear term and its solution coincides with that of
the linear equation, having the form (27). With such n chosen the metric functions a, b, c are
given by the equality (29), and the spinor field functions are written as follows:

Vr =
Cr√
τ
e−imtZ4iλC0/B, Vl =

Cl√
τ
eimtZ−4iλC0/B

where

τ(t) = (1/2)Mt2 + y1t+ y0, Z =
t− t1
t− t2

, B = M(t1 − t2),

and Cr, Cl are constants of integration. As in the linear case, the obtained solution is singular
at initial time and asymptotically isotropic as t→∞.

We will now study the properties of solutions to equation (26) for 1 < n < 2. In this case it
is convenient to present the solution (35) in the form:∫ dτ√

mτ − λτ 2−nCn−1
0 + g2

=
√

3κC0t (39)
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As t→∞, from (39) we will get the equality (36), leading to the isotropization of the expansion

process. If m = 0 and λ > 0, τ(t) lives on the interval 0 ≤ τ(t) ≤
(
g2/λCn−1

0

)1/(2−n)

. If m=0

and λ < 0, the relation (39) at t→∞ leads to the equality:

τ(t) ≈
[
3

4
n2κλCn

0

]1/n

t2/n. (40)

Substituting (40) into (22) and taking into account that at t→∞
∫ dt

τ
≈ n(3κλn2Cn

0 )1/n

(n− 2)22/n
t−2/n+1 → 0

due to −2/n+ 1 < 0, we shall obtain

a(t) ∼ b(t) ∼ c(t) ∼ [τ(t)]1/3 ∼ t2/3n →∞. (41)

It means that the obtained solution at t → ∞ tends to the isotropic one. In this case the
isotropization is provided not by the massive parameter, but by the degree n in the term
LN = λSn. As t→ 0, (39) implies

τ(t) ≈
√

3κC0g2t, (42)

whence τ(0) = 0, that is the obtained solution is singular at the initial time. Thus, for 1 < n < 2
there exist only singular solutions at initial time. At t→∞ the isotropization of the expansion
process of Bianchi type-I space takes place both for m 6= 0 and for m = 0.

Let us finally study the properties of the solution to the equation (26) for 0 < n < 1. In
this case we will use the solution in the form (39). As now 2− n > 1, then with the increasing
of τ(t) in the denominator of the integrand in (39) the second term λτ 2−nCn−1

0 increases faster
than the first one. Therefore the solution describing the space expansion can be possible only
for λ < 0. In this case at t → ∞, for m = 0 as well as for m 6= 0, one can get the asymptotic
representation (40) of the solution. This solution, as for the choice 1 < n < 2, provides
asymptotically isotropic expansion of the Bianchi type-I space. For t→ 0 in this case we shall
get only singular solution of the form (42).
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