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Development of quantum engineering put forward new theoretical problems. Behavior of a
single mesoscopic cell (device) we may usually describe by equations of quantum mechan-
ics. However if experimentators gather hundreds of thousands of similar cells there arises
some artificial medium that one already needs to describe by means of electromagnetic
equations. In the present work it is demonstrated that the inherent primacy of vector po-
tential in quantum systems leads to a generalization of the equations of electromagnetism
by introducing in them toroid polarizations. We mention some of their applications.
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This report is devoted to Prof. Jean-Pierre Vigier who has made very valuable
contributions in the development of Quantum Mechanics and Electrodynamics. It is
well-known that these two disciplines overlap within the scope of atomic physics. Elec-
trodynamics of continuous media concerns much more intricate problems in both field
and matter aspects. We show that usual equations of electromagnetic media are incom-
plete even in their fundamental representation and correct this oversight. It should be
emphasized that we are not dealing with innovations based on additional (even plausible)
hypotheses but with an inevitable modification imperatively following merely from the
facts of our three-dimensional life. Our report consists of two parts. The first one can
be considered as some formal deductions. Its starting point is the demonstration of ex-
istence of the third family of multipole moments – the toroid one in multipole expansion
of electromagnetic current (for their first strict introduction see ref. [1]). It was just the
cause that made it necessary to modify the equations of electrodynamics of continuous
media. Simply speaking, in addition to electrical polarization P and magnetization M
one has to introduce toroid polarization T in the (vector!) equations. The impact of this
operation is not trivial at all. The matter is that the toroid moments are the multipole
sources of free–field potentials [2, 3], that are responsible in particular for effects like the
Aharonov–Bohm one. In fact, we know that only quantum particles can serve as a de-
tector of this potential. Thus, there arises a series of principle questions. For example,
questions relating to the transition from quantum mechanical description of electromag-
netic phenomena to the description with the help of classical equations. This concerns
the profound physical problems that will not be discussed here (see, e.g. [4]). Now we
will give a high-light of the history of the discovery of toroid moments and how they were
associated with experiments to study the Aharonov–Bohm effect. Recently A. Tonomura
and others [5] have observed the interference of electrons on a shielded ferromagnetic
ring of mesoscopic size. Distribution of vector-potential created by the source mentioned
needed computation. The most detailed calculation of this distribution was done by G.
Afanas’ev [6]. Shortly after that it was noticed that the toroid dipole moment plays the
role of a point–like source of this kind of distribution [2]. Let us explain what this moment
is? From the geometrical point of view its model is the poloidal current on a torus [Fig.
1]. Macroscopically, its model is created by the usual toroid coil with an even number of
windings. There is a hydrodynamical analog of this construction – Hill’s vortex [Fig. 2].

It is easy to demonstrate how in the system of three particles one can emphasize all
three dipole moments [7]. Suppose that a steady system consists of the sun (S), the earth
(E) and the moon (M). Suppose the earth and the moon are oppositely charged and the
sun is neutral [Fig. 3a]. Then, in each given instant it may be convenient to describe the
subsystem E–M by an electric dipole moment d. If the intrinsic angular velocity Ωd in
the E-M subsystem is high in comparison with its external rotation around S, Ωm << Ωd,
we may observe the magnetic dipole m [Fig. 3b]. If Ωm increases, we have to take into
account the toroid properties of the system, i.e., the toroid dipole τ . Remark: As far
as in the atoms and nuclei their magnetic fluxes are mainly confined inside these many–
body systems, they can possess great toroid moments. Moreover, it is not difficult to
show that [Lz, τ̂ z] = 0 and, for example, in the external nonuniform and/or alternating
fields we may observe the effect of atomic spectral line splitting additional to the Stark’s
and Zeeman’s ones [1]. How does the dipole moment τ arise in electromagnetic current
distribution? From the formal point of view 4-currents possess 4 scalar components and
each of them can be expanded in multipole series. Implying one constrain, the current
conservation condition, we should obtain three families of moments and in each of them
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will have its proper dipole. (Their definitions are given in Table – 1). A renowned soviet
physicist Ya. B. Zeldovich [8] was the first to notice that the toroid coil was impossible
to identify with any multipole moments, starting with quite different considerations. He
assumed that as the third dipole one could take the classical analog of P-odd form-factor
of spin 1/2 particle, named the anapole. However, further it was proved that this kind of
assumption was not completely correct. For example, the anapole cannot radiate at all
while the toroid coil can. The matter is that the anapole is some composition of electric
dipole and actual toroid dipole giving destructive interference of their radiation. Creation
of a complete theory of multipole expansion appeared to be a very intricate problem. The
first correct and vast article [1] on this topic was published only in 1974 and ref. [9] can be
considered as the last one. In the theory of continuous media, there appear possibilities
of introducing more families of multipole moments [9], e.g. for electric–dipole medium τ e

[10]. Four dipole moments d,m, τ and τ e manifest all possible combinations of properties
at inversions of space and time and form a complete vector basis of order parameters
for describing crystalline substances [11]. By this time, possibilities and demands of
physicists and technologists have been also increased. For example, now-a-days system of
thousands of mesoscopic ferrite rings is being produced, studied and applied. However,
the appropriate experimental and theoretical results in consideration don’t coincide yet
[12, 13]. What kind of equations can describe the properties and response of such magnetic
medium? Magnetic field in this medium is confined inside the rings unlike outside of it
there is only the distribution of free–field vector-potential. The first order equations for
E and B, which are called the Maxwellian, are not obviously sufficient for this purpose.
We offer a new two potential formulation (see also [14]).
1. Static dipole moment of toroid coil and a free-field potential
created by it We begin with a static problem. Let us first find the distribution of
the vector potential A produced by a ”point–like” poloidal current I. The toroid dipole
moment of the toroidal coil is τ = IV , where V is the volume of the coil (torus). In the
(quasi)static case, the basic equation (with the gauge condition divA = 0, valid outside
the source) has the form

curl curlA = curl curl τ δ(r). (1)

Its solution is a convolution of two distributions, the Green function and the δ- function,
and is to be determined on a suitable test vector function. Thus we may get [2]

A = curl curl τ r−1 = τ4(1/r) + τ · ∇∇(1/r) =

=
3rr · τ − r2τ

r5
+ τ δ(r). (2)

We see that the toroid dipole moment τ produces the potential distribution A, just like
d produces the electric field E and m the magnetic induction B. Therefore, for media

D = E + P and B = H + M. (3)

What about A and τ?
2. Generalized equations of electromagnetism Let us note that as early
as 1977, V. Dubovik with his collaborators showed that the crystal media in general
can hardly be described without introducing polar and axial toroid polarizations [10].
Even then, the question of generalizing the fundamental equations of electrodynamics of
continuous media came to the light. First, they were presented at the seminar of LTPh,
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JINR in January 1991 and published in 1994 [14]. In this paper, we will present the
inductive and deductive foundations of these equations and some of their consequences.
Let us write the magnetostatic equations in their two equivalent forms (see for example
[15])

curlH = j, (4a)

divH = − divM, M = M(H), (4b)

curlH + curlM = curlB = jfree + curlM, (4c)

divB = 0, M = M(B). (4d)

It is easy to see that without introducing the vector-potential we cannot describe an
arbitrary magnetic medium, e.g., consisting of closed chains of magnet, i.e., dipoles (e.g.,
in the form of a ring [Table 2]). Really, in this case the macroscopic pattern of such a
medium has M ≡ 0 and in the absence of free currents we obtain B ≡ H. Then, the
magnetostatic equations are trivialized:

curlB = 0, divB = 0,

curlH = 0, divH = 0, (4)

from where it seems that we should conclude, according to the Helmholtz theorem, that
B ≡ 0 and H ≡ 0 all over the space. But it is not correct. The fact here is that M ≡ 0
is taken on average, but each physical volume, occupied by a closed chain, becomes
topologically non-trivial one! So we rewrite the magnetostatic equation (4c) through a
(an analog of H) at the same time adding the contribution of toroid polarization to the
left- as well as right-hand sides, like in the transition from (4a) to (4c):

curl curl a + curl curlT = jfree + curlM + curl curlT, (5)

and at all points of space we introduce

α := a + T. (6)

In the absence of free charges, we may put for α (an analog of B) that div α = 0.
Consequently, the fundamental equations of toroidomagnetostatics can be written as

curl curl α = jfree + curlM + curl curlT, (7)

div α = 0, (8)

with the relation (6), that holds all over the space. The latter system is the analog of the
equations for B. The inverse reduction of this system may be considered as an analog of
equations (4a) and (4b) for H, naturally appears as (4a) and (4b)

curl curl a = jfree + curlM, (9)

div a = −divT. (10)

Employing the Helmholtz theorem, we obtain the solution to the latest system in the
form:

a(r) =
∫ jfree(r′)

|r− r′|
d3r′ + +

∫ curlM(r′)

|r− r′|
d3r′ + ∇

∫ divT(r′)

|r− r′|
d3r′. (11)
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The first two terms give the contribution, which is usually denoted as magnetic vector
potential A(r); in our notation, the total vector-potential is α = a + T. Obviously, the
definition of the magnetic field is also changed due to toroid polarization (which can be
nonhomogeneous for the given concrete medium, at least in the form of the surface effect
[11]) as follows

β := curl α = curl
∫ jfree(r′)

|r− r′|
d3r′ + curl

∫ curlM(r′)

|r− r′|
d3r′ + curlT(r). (12)

As one can see, the first two terms gives the usual definition of magnetic field (according
to the old terminology, the magnetic induction) in a medium, where as the magnetic field
in the much of crystals, (e.g., without inversion center of a cell [3]) or on the surface of
a crystal, studied by the experimentallists (e.g. by means of magneto–optical devices),
will be also contributed by the third term. Remark, naturally, the toroidomagnetostatic
equation turns into the wave equation if one adds to curl curl α the term α̈

2 α = curlM + curl curlG. (13)

Immediate generalization of equations of electromagnetism may be schematically made as
follows. If in a given medium there are no free charges and currents, it can be described
by the usual transverse equation:

curlD + Ḃ = curlP, divD = 0, (14)

curlB− Ḋ = curlM, divB = 0. (15)

We may now transit to the 2–potential formulation through αm and αe and introduce
electric and magnetic toroid polarizations Te and Tm through substitution [14]:

D =⇒ −α̇m + curl αe, curlP =⇒ curlP + curl curlTe, (16)

B =⇒ α̇e + curl αm, curlM =⇒ curlM + curl curlTm. (17)

Then, we obtain
α̈e + curl curl αe = curlP + curl curlTe, (18)

α̈m + curl curl αm = curlM + curl curlTm. (19)

If we choose a gauge condition div αe,m = 0, we may again obtain the form (13).
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conclusion

”· · · it is impossible to introduce
electrodynamics of ”matter in general”

- from the book by Russian academician E. A. Turov (1983)

It should be noticed that we do not consider contributions of high multipole moments
in the Maxwell equations. Here, we develop only the macroscopic description of electro-
magnetotoroidic dipole media. There arose a large field of activity to model the material
equations of concrete media. We did not consider here the problem of alignment of micro-
scopic toroid moments by crystalline fields. Ideal static toroid moments do not interact
with each other at all. However, toroidization can appear due to dynamical effects (see
e.g. [16]). Among the latest machinery we point out the articles [17, 18] that directly
precede applications of toroid moments in the area of high technologies.
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Table 1. The models and the definitions of three kinds of current dipole moments: a
bit of the linear current, a ring with the circular current, the toroidal coil.
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Table 2. Basic properties of the dipole moments under the spatial and temporal
inversions and their interactions with external fields.

P(r →
−r)

T (t → −t)

d − + d · E

m + − m ·B

τ e and τm − − τ · Ḋ or τ curlB

τ e − − τ e · Ḃ or τ ecurlE
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Figure 1. Poloidal current on the torus determines the toroid dipole moment. The
simplest model of this is an ordinary toroidal coil with even number of winding.

Figure 2. Poloidal lines of currents in a simply connected volume, the sphere
(θ = const., where θ is the polar angle of spherical coordinate system). It is a model of

the Hill’s vortex.

Figure 3a. Microscopically we see two separate charges and at each instant the electric
dipole moment d = q rq.

Figure 3b. If Ωm → 0 we ”see” the magnetic dipole (average on the motion of the moon)
|m| = π Id r2

d, where Id = −q Ωd/2π.

Figure 3c. If Ωd � Ωm we ”see” global macroscopic the toroid dipole moment (average
on the motion both of the moon and the earth) of total system equals |τ | = |m|rm.

Figure 4. Geometrical illustration of polar Tm = 1
2

∑
i [r

(i) ×m(i)] and axial
Te = 1

2

∑
i [r

(i) × d(i)] toroid vectors in magnetic and electric dipole media.
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