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METASTABLE STATES OF A COMPOSITE SYSTEM TUNNELING

THROUGH REPULSIVE BARRIERS
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We consider a method for solving the problem of quantum tunneling through repulsive potential barriers

for a composite system consisting of several identical particles coupled via pair oscillator-type potentials in

the oscillator symmetrized-coordinate representation. We confirm the efficiency of the proposed approach

by calculating complex energy values and analyzing metastable states of composite systems of three, four,

and five identical particles on a line, which leads to the effect of quantum transparency of the repulsive

barriers.
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1. Introduction

The study of resonance states in reactions with light nuclei is based on the quantum scattering theory
for few-particle systems [1], [2]. The more complex problem of studying resonance states arising in the
process of scattering light nuclei by heavy target nuclei [3] can be considered in the first approximation as
a problem of a composite system tunneling through repulsive barriers. The mechanism of barrier quantum
transparency for the tunneling of a coupled pair of particles or ions was interpreted in [4] as a manifestation
of metastable states of the composite system “coupled pair of particles + barrier.”

We note that the imaginary part of the metastable state energy (or the width of the resonance of
the pair transmission probability) is described analytically only in the exceptional case of a rigid molecule
model [5]. Therefore, applying both analytic and numerical methods is required for exploring such a
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class of problems [6], [7]. The analysis of the quantum transparency mechanism in a system of n identical
particles is interesting both for nuclear and molecular physics and for the physics of semiconductor composite
nanostructures [8].

Here, we formulate a mathematical model for the tunneling of a system of n identical particles coupled
by pair oscillator-type interactions in the field of repulsive barrier potentials in the form of a boundary-value
problem for an elliptic-type equation and present efficient methods for analyzing its solutions. We assume
that the spin part of the wave function is known and therefore consider only the coordinate part of the
wave function, which must be symmetric or antisymmetric under a permutation of n identical particles in a
d-dimensional Euclidean space [9]. We consider the initial problem in the (n×d)-dimensional configuration
space in the symmetrized coordinates, where the center-of-mass motion for the system of n identical particles
is separated as in Jacobi coordinates while the relative coordinates are related to the Jacobi coordinates by
an orthogonal transformation [10].

We note that the idea of introducing symmetrized coordinates for a system of four particles was
proposed as long as half a century ago [11], but the general case of a system of n identical particles has
not been considered in the literature [12]. We recall that the main advantage of introducing symmetrized
coordinates compared with traditional Jacobi coordinates or cluster coordinates [13] consists in providing the
invariance of the problem under permutations of n identical particles. This property, in comparison with the
known cumbersome procedures in Jacobi coordinates (see, e.g., [14]), allows a sufficiently simple construction
of not only the basis functions, symmetric or antisymmetric under permutation of n−1 relative (internal)
coordinates, but also the basis functions, symmetric or antisymmetric under permutation of n Cartesian
coordinates [15]. The decomposition of the sought solution in such a basis is called the symmetrized-
coordinate representation [10].

For clarity of the presentation, we restrict ourself to the case of a one-dimensional Euclidean space
(d = 1). The solution of the boundary-value problem for the composite system of n identical particles
is sought in the form of an expansion over the cluster (n−1)-dimensional oscillator basis functions [12],
symmetric or antisymmetric under permutation of n identical particles in the representation of relative
symmetrized coordinates [10], [16], [17]. In this representation, the initial problem reduces to the boundary-
value problem for a system of ordinary second-order differential equations for the functions depending on the
center-of-mass variable with homogeneous boundary conditions of the third kind. We use the finite-element
method implemented in the software package KANTBP 3.0 [18] to calculate the matrices of transmission and
reflection amplitudes and the eigenfunctions of the scattering problem with respect to the center-of-mass
variable with fixed real values of the energy in the continuous spectrum.

We demonstrate the efficiency of the approach by analyzing the solutions of the problem of quantum
tunneling of clusters, consisting of a few identical particles on a line, through high and narrow Gaussian
repulsive barriers, comparable to the mean size of the incident cluster. Example calculations for different
parameters of the Gaussian repulsive barrier, as well as of the long-range repulsive barrier, including the
channeling problem, were considered in [7], [10], [19]. The quantum transparency effect, i.e., resonance
tunneling through repulsive barriers with the transmission coefficient close to unity, was analyzed for a
cluster of a few identical particles. The effect is due to the presence of barrier metastable states merged
in the continuous spectrum, localized in the vicinity of the potential energy minimums of the composite
system.

To calculate metastable states with unknown complex energy eigenvalues, the boundary-value problem
for the system of equations mentioned above is formulated on a finite interval with homogeneous boundary
conditions of the third kind, depending on the unknown energy eigenvalue, and the appropriate symmet-
ric quadratic functional required for a finite-element discrete formulation of the problem is constructed.
In contrast to the scattering problem, the asymptotic solutions for metastable states contain only the
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outgoing waves, which are considered on a sufficiently large but finite interval of the spatial variable varia-
tion [2], [20], [21]. The complex energy eigenvalues and corresponding eigenfunctions are calculated using
the iteration Newton-type method [6] implemented in the program KANTBP 4.0. To calculate the energy
level positions of the metastable states and to classify them (depending on their number and symmetry
type), we use the algorithm of solving the boundary-value problem in the n-dimensional domain of a spe-
cial type based on expanding the solution over the n-dimensional oscillator basis in the initial Cartesian
coordinates.

The proposed approach is oriented toward analyzing quantum transparency mechanisms for potential
barriers in the processes of quantum diffusion of molecules, channeling and tunneling of clusters and ions in
crystals, semiconductor composite nanostructures and also toward studying and classifying the metastable
states of rare-earth nuclei with tetrahedral and octahedral symmetry [22].

This paper is structured as follows. In Sec. 2, we consider the formulation of the problem and its
reduction in the symmetrized coordinates. In Sec. 3, we construct the oscillator representation in the
relative symmetrized coordinates. In Sec. 4, we present the equations of the coupled-channel method for
functions depending on the center-of-mass coordinate and give the formulation of variational functionals
necessary for calculating the transmission and reflection amplitude matrices and the complex eigenvalues
and eigenfunctions of metastable states. In Sec. 5, we present the classification of metastable states and
the analysis of the quantum transparency effect.

2. Symmetrized coordinates

We consider a system of n identical quantum particles with the mass m and the set of Cartesian
coordinates x̃i ∈ R

d in the d-dimensional Euclidean space forming the vector x̃ = (x̃1, . . . , x̃n) ∈ R
n×d

in the (n×d)-dimensional configuration space. We assume that the particles interact via pair potentials
˜V pair(x̃ij) depending on the relative coordinates x̃ij = x̃i − x̃j similar to the harmonic oscillator potential

˜V hosc(x̃ij) =
mω2

2
(x̃ij)2

with the frequency ω. These particles form a composite system (cluster) that tunnels through the repulsive
potential barriers ˜V (x̃i). We use the dimensionless coordinates xi = x̃i/xosc, xij = x̃ij/xosc = xi − xj ,
energy E = Ẽ/Eosc, barrier potentials V (xi) = ˜V (xixosc)/Eosc, and harmonic oscillator potentials

V hosc(xij) =
˜V hosc(xijxosc)

Eosc
=

x2
ij

n
,

defined in the oscillator units xosc =
√

�/(mω
√

n) and Eosc = �ω
√

n/2. We can then write the Schrödinger
equation as

[

− ∂2

∂x2
+

n
∑

j=2

j−1
∑

i=1

(xij)2

n
+ U(x) − E

]

Ψ(x) = 0,

U(x) =
n
∑

j=2

j−1
∑

i=1

Upair(xij) +
n
∑

i=1

V (xi),

(1)

where U(x) is the multidimensional potential barrier, Upair(xij) = V pair(xij)−V hosc(xij) is the nonoscillator
part of the pair interaction potential such that if V pair(xij) = V hosc(xij), then Upair(xij) = 0, and x =
(x1, . . . , xn) ∈ R

n×d.
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Below, we use one of the possible definitions of symmetrized coordinates via an orthogonal and sym-
metric matrix [16]:

⎛
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⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

ξ0

ξ1

ξ2

...
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⎞
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⎟

⎟

⎟

⎟

⎟

⎟

⎠
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1√
n
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⎜

⎜
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⎟

⎟

⎟

⎟

⎟

⎟

⎟
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⎜

⎜

⎜

⎝

x1

x2

x3

...

xn

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (2)

where a0 = 1/(1 −
√

n ), a1 = a0 +
√

n, ξ0 ∈ R
d is the center-of-mass coordinate of the system, and

ξ = (ξ1, . . . , ξn−1) ∈ R
(n−1)×d are the relative coordinates. Taking the relations a1 − a0 =

√
n and

a0 − 1 = a0
√

n into account, we can express the relative coordinate xij ≡ xi − xj of a pair of particles i

and j using only n−1 relative symmetrized coordinates:

xij ≡ xi − xj = ξi−1 − ξj−1 ≡ ξi−1,j−1, (3)

xi1 ≡ xi − x1 = ξi−1 + a0

n−1
∑

i′=1

ξi′ , i, j = 2, . . . , n. (4)

In the symmetrized coordinates, Eq. (1) becomes

[

− ∂2

∂ξ2
0

+
n−1
∑

i=1

(

− ∂2

∂ξ2
i

+ ξ2
i

)

+ U(ξ0, ξ) − E

]

Ψ(ξ0, ξ; E) = 0,

U(ξ0, ξ) =
n
∑

j=2

j−1
∑

i=1

Upair(xij(ξ)) +
n
∑

i=1

V (xi(ξ0, ξ)).

(5)

This equation is invariant under the permutations ξi ↔ ξj , i, j = 1, . . . , n− 1, i.e., the invariance of Eq. (1)
under the permutations xi ↔ xj , i, j = 1, . . . , n, is preserved, which significantly simplifies the construction
of states symmetric (or antisymmetric) with respect to the operations of permutation of n particles in
comparison with the Jacobi coordinates in the center-of-mass reference frame [10], [11], [14], [15]. But the
invariance of Eq. (5) under the permutations ξi ↔ ξj does not yield the invariance of Eq. (1) under the
permutations xi ↔ xj , which is the essence of the problem of constructing translation-invariant models of
light nuclei [23].

In the case of the one-dimensional Euclidean space considered below (d = 1),

ξ0 ∈ B = [ξmin
0 , ξmax

0 ] ⊂ R
1, ξ ∈ R

n−1,

the solutions Ψ(ξ0, ξ; E) ∈ W 2
2 (Ω) of Eq. (5) in the domain Ω = B ⊗ R

n−1 satisfy the boundary conditions

lim
|ξ|→∞

Ψ(ξ0, ξ; E) = 0, ξ0 ∈ [ξmin
0 , ξmax

0 ],

μt
∂Ψ(ξ0, ξ; E)

∂ξ0
− λt Ψ(ξ0, ξ; E) = 0, ξ0 = ξt

0, ξ ∈ R
n−1,

(6)

where the subscript t = min, max, μt are real-valued constants, and λt ≡ λt(ξt
0) are real-valued functions

depending on ξt
0 under the condition μ2

t + λ2
t �= 0.
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3. Oscillator representation

We restrict ourself to considering only the pair interactions given by harmonic oscillator potentials
V pair(xij) = V hosc(xij) in the case of the one-dimensional Euclidean space (d = 1). We define the set of
cluster functions

〈ξ|j〉S(A) ≡ ΦS(A)
j (ξ) ∈ L2(Rn−1),

symmetric (S) or antisymmetric (A) under permutations of n identical particles, and the corresponding
energy values ε

S(A)
j as solutions of the eigenvalue problem

(

− ∂2

∂ξ2 + ξ2 − ε
S(A)
j

)

ΦS(A)
j (ξ) = 0. (7)

We seek solutions ΦS(A)
j (ξ) in the form of linear combinations of known functions of the (n−1)-dimensional

harmonic oscillator Φosc
[i1,...,in−1]

(ξ) ∈ L2(Rn−1)

ΦS(A)
j (ξ) =

∑

{i1,...,in−1}∈Δj

α
S(A)
j[i1,...,in−1]

Φosc
[i1,...,in−1](ξ),

Φosc
[i1,...,in−1]

(ξ) =
n−1
∏

k=1

e−ξ2
k/2Hik

(ξk)
4
√

π
√

2ik

√

ik!
.

(8)

Here, Hik
(ξk) are the Hermite polynomials [24], and the set of subscripts Δj ≡ {i1, . . . , in−1} taking natural

number values is defined by the condition

Δj =
{

i1, . . . , in−1

∣

∣

∣

∣

2
n−1
∑

k=1

ik + n − 1 = ε
S(A)
j

}

, (9)

which determines their belonging to the set of eigenfunctions Φosc
[i1,...,in−1]

(ξ) corresponding to the eigenvalue

εosc[i1,...,in−1]
≡ εoscf = 2f +n−1, f =

∑n−1
k=1 ik, of the (n−1)-dimensional oscillator, which has the degeneracy

multiplicity [25]

p =
(n + f − 2)!
f !(n − 2)!

.

This eigenvalue is chosen equal to the sought energy eigenvalue ε
S(A)
j = εosc[i1,...,in−1]

.

The unknown coefficients α
S(A)
j[i1,...,in−1]

of expansion (8) for the orthonormalized functions ΦS(A)
j (ξ), the

corresponding eigenvalues ε
S(A)
j , and the multiplicity pS(A) � p of their degeneracy were calculated using a

two-step algorithm and the program in [16] as follows:

1. The eigenfunctions symmetric or antisymmetric under the permutations ξi ↔ ξj , j = 1, . . . , n−1 (see
relations (3)) were generated using the standard method [9]. These functions are also symmetric or
antisymmetric under the permutations xi ↔ xj , i, j = 2, . . . , n but are not symmetric or antisymmetric
under the permutations x1 ↔ xj , j = 2, . . . , n.

2. Using the eigenfunctions obtained in the preceding step, we construct a set of linearly independent
functions, symmetric (or antisymmetric) under the permutation x2 ↔ x1 (see relations (4)), from
which we construct the sought orthonormalized basis (8) using the Gram–Schmidt procedure.
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In the case where n = 3 and d = 1, the functions ΦS(A)
k,m (ρ, ϕ, n) ∈ L2(R1

+ × S1) are expressed in the
hyperspherical (polar) coordinates ξ1 = ρ cosϕ, ξ2 = ρ sinϕ in the analytic form

ΦS(A)
k,m (ρ, ϕ, n)

∣

∣

n=3
= Rkm(ρ)Y S(A)

m

(

3m(ϕ + π/12)
)

,

Rkm(ρ) =

√

2k!
(k + 3m)!

(ρ2)3m/2 e−ρ2/2L3m
k (ρ2),

where k = 0, 1, . . . , L3m
k (ρ2) are the generalized Laguerre polynomials [24], and the functions of the hyper-

angular variable ϕ for S states

Y S
m(ϕ) =

cosϕ
√

(1 + δm0)π
, m = 0, 1, . . . ,

and for A states
Y A

m (ϕ) =
sin ϕ√

π
, m = 1, 2, . . . ,

are classified with respect to the irreducible representations of the symmetry group D3m. The corresponding
energy eigenvalues

ε
S(A)
k,m = 2(2k + 3m + 1)

have the multiplicity pS(A) = K + 1, where the value of K is determined by the condition of equal energies
ε
S(A)
k,m − ε

S(A)
ground = 12K + K ′ for one of the values K ′ = 0, 4, 6, 8, 10, 14, εSground = 2, εAground = 8.

In the case where n = 4 and d = 1, the energy eigenvalues

ε
S(A)
i1,i2,i3

= 2
(

i1 + i2 + i3 +
3
2

)

have the multiplicity pS(A) = 3K2+(3+K ′)K +K ′+δ0K′ , where the values of K and K ′ are determined by
the condition of equal energies ε

S(A)
i1,i2,i3

−ε
S(A)
ground = 4(6K+K ′)+K ′′ for one of the values of K ′ = 0, 1, 2, 3, 4, 5

and K ′′ = 0, 6, εSground = 3, εAground = 15. Here, i1, i2, and i3 take the values

i1 = 0, 1, . . . , i2 = i1, i1 + 2, . . . , i3 = i2, i2 + 2, . . .

for S states and

i1 = 0, 1, . . . , i2 = i1 + 2, i1 + 4, . . . , i3 = i2 + 2, i2 + 4, . . .

for A states. The S states with even quantum numbers i1, i2, and i3 and the A states with odd quantum
numbers have octahedral symmetry, while the A states with even values of the quantum numbers i1, i2,
and i3 and S states with odd quantum numbers have tetrahedral symmetry [26].

4. Coupled channels equations

We restrict ourself to considering the one-dimensional Euclidean space. The asymptotic solution
ΨS(A)(ξ0, ξ) = {ΨS(A)

io
(ξ0, ξ)}No

io=1 of Eq. (5), describing the incident and the outgoing wave as ξ+
0 → +∞

and ξ−0 → −∞, in the oscillator basis ΦS(A)(ξ) = {ΦS(A)
j (ξ)}jmax

j=1 can be written in the matrix form
ΨS(A) = (ΦS(A))TF, where the superscript T denotes matrix transposition.
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The matrix solutions Fv(ξ0) = F(ξ0) describe the transmission and reflection of a particle incident on
the barrier and have the asymptotic form “incident plane wave + outgoing waves”

Fv(ξ0)
∣

∣

ξ0→±∞ =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

⎧

⎨

⎩

X(+)(ξ0)Tv, ξ0 > 0,

X(+)(ξ0) + X(−)(ξ0)Rv, ξ0 < 0,
v =→,

⎧

⎨

⎩

X(−)(ξ0) + X(+)(ξ0)Rv, ξ0 > 0,

X(−)(ξ0)Tv, ξ0 < 0,
v =←,

(10)

where Rv and Tv are the No×No transmission and reflection amplitude matrices, No is the number of open
channels for a fixed energy E > ε

S(A)
io

(io = 1, . . . , No), and the subscript v takes the values → or ← and
denotes the initial direction of the particle incidence on the barrier from the respective left or right side.
The leading terms of the asymptotic form of the rectangular matrix function X(±)(z) in the presence of a
long-range repulsive Coulomb potential barrier are

X
(±)
jio

(ξ0) → p
−1/2
io

exp
{

±ı

(

pioξ0 −
Zio

pio

log(2pio |ξ0|)
)}

δjio ,

pio =
√

2E − ε
S(A)
io

, j = 1, . . . , jmax, io = 1, . . . , No,

(11)

where Zio = Z+
io

for ξ0 > 0 and Zio = Z−
io

for ξ0 < 0, i.e., when the effective charges are located to the
left or right of the repulsive long-range Coulomb potential barrier. The corresponding calculations for the
problem of ion pair (n = 2) tunneling through a long-range repulsive Coulomb barrier for Z±

io
�= 0 were

presented in [7]. Taking the limited volume of this paper taken into account, we restrict ourself in the
calculations presented below to considering only tunneling through short-range potential barriers, Z±

io
= 0.

The solution matrix Fv(ξ0, E) is normalized by the condition

∫ ∞

−∞
F†

v′(ξ0, E
′)Fv(ξ0, E) dξ0 = 2πδ(E′ − E)δv′vIoo, (12)

where Ioo is the No×No unit matrix.
As ξ±0 → ±∞, we can write Eq. (10) in the matrix form as

(

F→(ξ+
0 ) F←(ξ+

0 )

F→(ξ−0 ) F←(ξ−0 )

)

=

(

0 X(−)(ξ+
0 )

X(+)(ξ−0 ) 0

)

+

(

0 X(+)(ξ+
0 )

X(−)(ξ−0 ) 0

)

S, (13)

where S is the unitary and symmetric scattering matrix

S =

(

R→ T←

T→ R←

)

, S†S = SS† = I, (14)

consisting of the amplitudes of reflected and transmitted waves Rv = Rv(E) and Tv = Tv(E), the No×No

matrices, for which the required relations follow from the property of Wronskian preservation on the solu-
tions, ensuring that the matrix S is unitary and symmetric:

T†
→T→ + R†

→R→ = Ioo = T†
←T← + R†

←R←,

T†
→R← + R†

→T← = 0 = R†
←T→ + T†

←R→,

TT
→ = T←, RT

→ = R→, RT
← = R←.

(15)
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The matrix solutions ̂Fv(ξ0) = ̂F(ξ0) describing the time-reversed tunneling process have the asymp-
totic form “ingoing waves + outgoing plane wave”

̂Fv(ξ0)
∣

∣

ξ0→±∞ =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

⎧

⎨

⎩

X(+)(ξ0) + X(−)(ξ0)̂R†
v ξ0 > 0,

X(+)(ξ0)̂T†
v, ξ0 < 0,

v =→,

⎧

⎨

⎩

X(−)(ξ0)̂T†
v, ξ0 > 0,

X(−)(ξ0) + X(+)(ξ0)̂R†
v, ξ0 < 0,

v =← .

(16)

We note that from the equality of the solutions ̂F∗
�(z) = ̂F�(z) normalized by condition (12), relations

between the amplitudes necessarily follow,

̂R→ = R←, ̂R← = R→, ̂Tv = Tv,

which were obtained in (15) from the Wronskian preservation condition. Therefore, we consider only the
solutions Fv(z) below.

The solution of problem (5) in symmetrized coordinates (2) is sought in the form of the expansion

ΨS(A)
io

(ξ0, ξ) =
jmax
∑

j=1

ΦS(A)
j (ξ)χS(A)

jio
(ξ0), (17)

where χ
S(A)
jio

(ξ0) are the elements of the sought matrix function of size jmax × No and ΦS(A)
j (ξ) are cluster

basis functions (8). In oscillator representation (8), the set of coupled ordinary differential equations for
functions depending on the center-of-mass variable has the form

jmax
∑

j=1

[(

− d2

dξ2
0

− (E − ε
S(A)
i )

)

δij + V
S(A)
ij (ξ0)

]

χ
S(A)
jio

(ξ0) = 0, (18)

where V
S(A)
ij (ξ0) = V

S(A)
ji (ξ0) are the elements of the symmetric matrix VS(A)(ξ0) of effective potentials of

size jmax × jmax expressed as the integrals

V
S(A)
ij (ξ0) =

∫

ΦS(A)
i (ξ)

( n
∑

k=1

V (xk(ξ0, ξ))
)

ΦS(A)
j (ξ) dξ. (19)

For Gaussian potentials V (xi) = (α/
√

2πσ) exp(−x2
i /σ2), the integrals can be calculated analytically and

are Vij(ξ0)/α, shown in Fig. 1.
Averaging boundary conditions (6) in orthonormalized basis (8)

∫

ΦS(A)
i (ξ)

(

μ
(io)
t

∂Ψio(ξ0, ξ)
∂ξ0

− λ
(io)
t Ψio(ξ0, ξ)

)

dξ = 0, ξ0 = ξt
0, (20)

we obtain the homogeneous boundary conditions of the third kind for solutions (18),

μ
(io)
t I

d

dξ0
χ(io)(ξ0) − λ

(io)
t χ(io)(ξ0) = 0, ξ0 = ξt

0, (21)

where t = min, max.
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a b

c d

Fig. 1. Diagonal elements Vjj (solid lines) and nondiagonal elements Vj1 (dashed lines) of the effective

potential matrix for (a,b) S states and (c,d) A states for (a,c) n = 3 and (b,d) n = 4 particles at

σ = 0.1.

For the scattering problem, according to [27], conditions (21) can be transformed into the boundary
conditions for ξ0 = ξt

0:
dF(ξ0)

dξ0

∣

∣

∣

∣

ξ0=ξt
0

= R(ξt
0)F(ξt

0). (22)

Here, R(ξ) is the unknown matrix function of size jmax × jmax, and

F(ξ0) = {χ(io)(ξ0)}No
io=1 = {{χjio(ξ0)}jmax

j=1 }No
io=1

is the desired matrix solution of boundary-value problem (18)–(22) with asymptotic behavior (13), (14) and
the size jmax × No, jmax ≥ No.

We solve the scattering problem with a fixed energy E for the set of Eqs. (18) with boundary condi-
tions (22) independently in two cases. The wave is incident from the left v =→, ξ0 < 0 in the first case and
from the right v =←, ξ0 > 0 in the second case. We use the fact that because of Eq. (13) for ξ0 = ξmax

0 > 0,
v =→ or ξ0 = ξmin

0 < 0, v =←, the matrices R(ξ0) are expressed in terms of the known set of linearly
independent asymptotic solutions ˜Fv(ξ0) of Eqs. (18):

R(ξ0) =
d˜Fv(ξ0)

dξ0
(˜Fv(ξ0))−1. (23)

For open channels ε
S(A)
io

< E, the set consists of linearly independent asymptotic solutions ˜Fv(ξ0) =
{χ(io)(ξ0)}jmax

io=1 with the components

χ(io)(ξ0) = (χ̃1io(ξ0), . . . , χ̃jmaxio(ξ0))T
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for ξ0 > 0, v =→ or ξ0 < 0, v =←:

˜F→(ξ0) = ˜X(+)(ξ0), ξ0 > 0, ˜F←(ξ0) = ˜X(−)(ξ0), ξ0 < 0,

˜X
(±)
iio

(ξ0) = X
(±)
iio

(ξ0), i = 1, . . . , jmax, io = 1, . . . , No,
(24)

where X
(±)
iio

(ξ0) are given by expression (11). If for a fixed energy value E, there are closed channels

ε
S(A)
io

> E with the numbers io = No + 1, . . . , jmax, then set (24) includes additional linearly independent
asymptotic functions ˜X(+)

iio
(ξ0) for ξ0 > 0 or ˜X(−)

iio
(ξ0) for ξ0 < 0, which in the presence of a long-range

repulsive Coulomb potential barrier have the form

˜X
(±)
iio

(ξ0) → q
−1/2
io

exp
{

∓
(

qioξ0 +
Z±

j

qio

log(2qio |z|)
)}

δiio ,

qio =
√

ε
S(A)
io

− E, i = 1, . . . , jmax, io = No + 1, . . . , jmax.

(25)

Boundary-value problem (18)–(22) was solved using the finite-element method with the symmetric
quadratic functional [27]–[29]

Ξ(F, E, ξmin
0 , ξmax

0 ) =
∫ ξmax

0

ξmin
0

[

dFT(ξ0)
dξ0

dF(ξ0)
dξ0

+ FT(ξ0)V (ξ0)F(ξ0) − EFT(ξ0)F(ξ0)
]

dξ0 −

− FT(ξmax
0 )R(ξmax

0 )F(ξmax
0 ) + FT(ξmin

0 )R(ξmin
0 )F(ξmin

0 ). (26)

The solution sought in the class of functions W 1
2 (B) was discretized and boundary-value problem (18)–

(22) was reduced to an algebraic problem on the finite-element grid Ωh = (ξmin
0 (Nel)ξmax

0 ) with the step
h = (ξmax

0 − ξmin
0 )/Nel, where Nel is the number of Lagrange elements of the order k in the interval

(ξmin
0 , ξmax

0 ), ensuring the required accuracies of the orders O(hk+1) for the approximate eigenfunction
solution and O(h2k) for the eigenvalue [30].

For the scattering problem with a fixed real energy value E, the eigenfunctions F(E, ξ0) satisfy bound-
ary conditions (22) of the third kind, and the function FT(E, ξ0) in functional (26) is replaced with the
Hermitian conjugate function F†(E, ξ0) corresponding to the definition of scalar product (12). The asymp-
totic solutions of the scattering problem for |ξmax

0 | ≤ |ξ0| < ∞ contain the incident wave and the unknown
matrices T(E) and R(E) of transmitted and reflected wave amplitudes (13) and (14), which are calculated
together with the approximate numerical solution Fh on the grid Ωh and the matrices of its logarith-
mic derivatives R(ξmin

0 ) = R←(ξmin
0 ) or R(ξmax

0 ) = R→(ξmax
0 ) at the boundary points of the interval

(ξmin
0 , ξmax

0 ). The matrix R(ξmax
0 ) = R←(ξmax

0 ) or R(ξmin
0 ) = R→(ξmin

0 ) is calculated from Eq. (23) and
substituted in functional (26).

The solutions of the boundary-value problem were discretized on the finite-element grid

Ωh = (−10.5(800)10.5) for n = 3,

Ωh = (−12.8(976)12.8) for n = 4,

Ωh = (−14.0(1080)14.0) for n = 5

with the Lagrange elements of the fourth order (k = 4). The boundary points of the interval ξt
0 were chosen

corresponding to the required accuracy of the approximate solution

max
i,j=1,...,jmax

∣

∣

∣

∣

Vij(ξt
0)

α

∣

∣

∣

∣

< 10−8.
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a b

Fig. 2. The dependence of the total probability |T |211 of transmission through a repulsive Gaussian

barrier on the energy E (in oscillator units) at σ = 0, 1 and α = 20 for the system of (a) three (n = 3)

and (b) four (n = 4) identical particles initially in the in the ground symmetric (solid lines) and

antisymmetric (dashed lines) states.

The number jmax of the cluster basis functions in expansion (17) and, correspondingly, the number of
equations in set (18) at n = 3, 4, 5 was chosen equal to jmax = 21, 39, 37 for S states and at n = 3, 4 was
chosen equal to jmax = 16, 15 for A states. The convergence of the results with respect to the number jmax

necessary for achieving the required accuracy was studied previously [17]. The results of the calculations at
n = 3 and n = 4 are shown in Fig. 2. The resonance energy values ES(A) and the corresponding maximum
values of the transmission coefficient |T |211 are presented in Tables 1 and 2, and the resonance energy values
ES for n = 5 are presented in Table 3.

For metastable states, the eigenfunctions satisfy boundary conditions (22) of the third kind, where the
matrices R(ξt

0) = diag(R(ξt
0)) depend on the sought complex energy eigenvalue E ≡ Em = Re Em+ı ImEm,

Im Em < 0, and are given by

Rioio(ξ
max
0 ) =

⎧

⎨

⎩

ıpm, Re Em ≥ ε
S(A)
j ,

ıqm, Re Em < ε
S(A)
j ,

Rioio(ξ
min
0 ) = −Rioio(ξ

max
0 ),

pm =
√

Em − ε
S(A)
io

, qm = ı

√

ε
S(A)
io

− Em,

(27)

because the asymptotic solutions of this problem contain only outgoing waves in the open channels. In this
case, the eigenfunctions satisfy the orthogonality and normalization conditions

(Fm|Fm′) = (ıpm + ıpm′)
[ ∫ ξmax

0

ξmin
0

FT
m(ξ0)Fm′(ξ0) dξ0 − δmm′

]

+ Cmm′ = 0,

Cmm′ = −FT
m(ξmax

0 )Fm′(ξmax
0 ) + FT

m(ξmin
0 )Fm′(ξmin

0 ).

(28)

We note that the orthogonality condition results from calculating the difference of variational function-
als (26) with the eigenvalues Em and Em′ , the eigenfunctions Fm(ξ0) and Fm′(ξ0), and the elements of the
matrices R(ξmax

0 ) and R(ξmin
0 ) given by (27) substituted in them. In this case, the normalization condition

agrees with the choice in [2].
For the method of exterior complex scaling, the orthogonality and normalization relations were chosen

according to [21]:

(Fm|Fm′)C =
∫

C

FT
m(ξ0)Fm′(ξ0) dξ0 − δmm′ = 0, (29)
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Table 1

l ES
l |T |211 m EM

m ED21
l

1
8.175

8.306

0.775

0.737

1

2

8.175− ı5.1(−3)

8.306− ı5.0(−3)
8.19

2
11.111

11.229

0.495

0.476

3

4

11.110− ı5.6(−3)

11.229− ı5.5(−3)
11.09

3 12.598 0.013
5

6

12.598− ı6.4(−3)

12.599− ı6.3(−3)
12.51

4
13.929

14.003

0.331

0.328

7

8

13.929− ı4.5(−3)

14.004− ı4.6(−3)
13.86

5
14.841

14.877

0.014

0.008

9

10

14.841− ı3.5(−3)

14.878− ı3.5(−3)
14.74

6 15.794 0.246
11

12

15.788− ı6.0(−3)

15.799− ı6.3(−3)
15.67

7 16.670 0.065
13

14

16.666− ı2.9(−3)

16.669− ı4.3(−3)
16.53

8
16.731

16.77

0.361

0.404

15

16

16.730− ı7.0(−3)

16.775− ı5.2(−3)
16.59

l EA
l |T |211 m EM

m ED21
l

1
11.551

11.610

1.000

1.000

11

12

111.551− ı1.8(−3)

11.610− ı2.0(−3)
11.52

2
14.459

14.564

0.553

0.480

3

4

14.459− ı2.9(−3)

14.565− ı2.7(−3)
14.42

3
16.176

16.254

0.855

0.824

5

6

16.176− ı4.7(−3)

16.254− ı4.2(−3)
16.11

The sets of the first resonance energy values E
S(A)
l at which the maximum of

the transmission coefficient |T |211 is achieved, the complex energy eigenvalues
EM

m = Re EM
m + ı ImEM

m of the metastable states, and their approximations
ED21

l for S and A states of n = 3 particles at σ = 0.1 and α = 20.

where C is the appropriate integration contour in the complex plane of the independent variable ξ0. In
variational functional (26), we integrated over ξ0 along the same contour C continued into the complex plane
beyond the integration interval [ξmin

0 , ξmax
0 ], ensuring the decay of the sought solution with the required
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Table 2

l ES
l |T |211 m EM

m ED31
l ED22

l

1 10.121 0.321
1

2

10.119− ı4.0(−3)

10.123− ı4.0(−3)
10.03

2 11.896 0.349 3 11.896− ı6.3(−5) 11.76

3
12.713

12.717

0.538

0.538

4

5

12.710− ı4.5(−3)

12.720− ı4.5(−3)
12.60

4 14.858 0.017
6

7

14.857− ı4.3(−3)

14.859− ı4.3(−3)
14.71

5 15.188 0.476
8

9

15.185− ı3.9(−3)

15.191− ı3.9(−3)
15.04

6 15.405 0.160 10 15.405− ı1.4(−5) 15.21

7 15.863 0.389 11 15.863− ı5.3(−5) 15.64

l EA
l |T |211 m EM

m ED31
l ED22

l

1 19.224 0.177
1

2

19.224− ı4.0(−4)

19.224− ı4.0(−4)
19.03

2 20.029 0.970 3 20.029− ı3.3(−7) 19.24

The same as in Table 1 but for n = 4 particles.

accuracy. The solutions of the boundary-value problem were discretized on the finite-element grid

Ωh = (−10.5(150)− 3.5(300)3.5(150)10.5) for n = 3,

Ωh = (−12.8(220)− 4.2(440)4.2(220)12.8) for n = 4,

Ωh = (−15.0(250)− 5.0(500)5.0(250)14.0) for n = 5

with the Lagrange elements of the fifth order (k = 5). The algebraic eigenvalue problem was solved using
the Newton method with the optimal choice of the iteration step [6], [31], [32] using the additional condition
Ξh(Fm, Em, ξmin

0 , ξmax
0 ) = 0, obtained as a result of discretizing functional (26) and ensuring the estimates

from above for the approximate eigenvalue. Using the alternative condition (Fm|Fm′) = 0 yields lower
estimates of the approximate eigenvalue [6]. The real eigenvalues and eigenfunctions orthonormalized by the
condition that the expression in square brackets in Eq. (28) is zero were used as the initial approximation.
They were found using the program KANTBP 3.0 as a result of solving the bound-state problem with
functional (26) at R(ξt

0) = 0 on the grid

Ωh = (−3.5(300)3.5) for n = 3,
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Table 3

l ES
l |T |211 m EM

m ED41
l ED32

l

1 11.794 1.6(-4)
1

2

11.794− ı1.3(−3)

11.794− ı1.3(−3)
11.61

2 4.166 0.014
3

4

14.166− ı1.1(−3)

14.166− ı1.1(−3)
13.94

3
14.764

14.774

0.666

0.666

5

6

14.764− ı6.6(−6)

14.774− ı5.6(−6)
14.42

4 16.429 0.005
7

8

16.429− ı3.3(−3)

16.429− ı3.3(−3)
16.16

The same as in Table 1 but for n = 5 particles.

Ωh = (−4.2(440)4.2) for n = 4,

Ωh = (−5.0(500)5.0) for n = 5.

The results of the calculations with variational functional (26), (28), defined both in the interval
[ξmin

0 , ξmax
0 ] and on the contour C for complex values of the energy of metastable states EM

m ≡ Em =
Re Em + ı ImEm for n = 3, n = 4, and n = 5 are presented in Tables 1–3.

These metastable states are responsible for the resonance energy values corresponding to the maximum
values of the transmission coefficient, i.e., the quantum transparency of the barriers.

The position of peaks shown in Fig. 2 is seen to agree quantitatively with the real part ReE, and
the geometric half-width of the |T |211(E) peaks agrees in order of magnitude with the imaginary part
Γ = −2 ImE of the complex energy eigenvalues E = ReE + ı Im E of the metastable states.

5. Classification of the metastable states

Because narrow Gaussian peaks were chosen as the potential barriers V (xi), i = 1, . . . , n,

V (xi) =
α√
2πσ

e−x2
i /σ2

,

for the approximate calculation of the real part ED
l ≈ Re Em of the energy eigenvalues for metastable S

and A states, we restrict ourself to the solution of problem (1) with d = 1 using the approximation of the
potential barriers V (xi) by infinitely high impenetrable walls.

In this approach, we seek the approximate solution in one of the potential wells, neglecting the tunnel-
ing through the barriers separating the wells. Hence, we cannot calculate the splitting inherent in the exact
eigenvalues of the metastable S and A states. Nevertheless, we can explain the mechanism of their appear-
ance and classify them, which is an important characteristic of the spectrum. To simplify the notation, we
omit the indexes S and A in this section.
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To find the square-integrable solutions Ψ(x) localized in the vicinity of one of the 2n−2 local minimums
of the multidimensional barrier U(x1, . . . , xn) from (1), we restrict ourself to solving the eigenvalue problem
for Eq. (1) in the n-dimensional domain Ωt of a special type, i.e., to finding the set of eigenvalues ED

1 <

ED
2 < · · · < ED

lmax
and the corresponding set of orthonormal eigenfunctions

ΨD
1 (x1, . . . , xn), ΨD

2 (x1, . . . , xn), . . . , ΨD
lmax

(x1, . . . , xn),
∫

Ωt

ΨD
l (x1, . . . , xn)ΨD

l′ (x1, . . . , xn) dΩt = δll′ .

This problem is solved in the Cartesian coordinates x1, . . . , xn in one of the 2n−2 subdomains

Ωt = {x1, . . . , xn | σixi > 0, i = 1, . . . , n}, σi = ±1,

with the Dirichlet conditions ΨD(x1, . . . , xn)|∂Ωt = 0 both at the inner boundary ∂Ωin
t = ∪n

i=1{xi = 0}
and at the outer boundary ∂Ωout

t of the chosen subdomain Ωt. The value σi = −1 or σi = 1 indicates the
location of the ith particle to the respective right or left of the barrier V (xi) with respect to the variable xi.

We seek the desired solution ΨD
l (x) = ΨD

l (x1, . . . , xn) ∈ L2(Ωt) in the domain Ωt = Ωt∪∂Ωin
t ∪∂Ωout

t ⊂
R

n in the form of an expansion with the matrix of unknown coefficients ΨD = {ΨD
jl} at

j ∈ Δ =
{

i1, . . . , in

∣

∣

∣

∣

n
∑

k=1

ik ≤ imax,
ik + 1

2
∈ N for k = 1, . . . , n

}

,

ΨD
l (x) =

∑

j∈Δ

Φ̄D
j (x)ΨD

jl, (30)

in the orthonormal basis of the n-dimensional oscillator Φ̄D
j (x) ∈ L2(Ωt) in the domain Ωt:

Φ̄D
j (x) =

∑

{i1,...,in}∈Δ̄j

ᾱj[i1,...,in]Φ̄
osc
[i1,i2,...,in](x),

Φ̄osc
[i1,i2,...,in](x) =

n
∏

k=1

Φ̄ik
(xk), Φ̄ik

(xk) =
√

2
e−x2

k/2Hik
(xk)

4
√

π
√

2ik

√

ik!
.

(31)

The limit for the functions Φ̄ik
(xk) follows from the Dirichlet conditions Φ̄ik

(xk)|xk=0 = 0 at the
inner boundaries ∂Ωin

t , namely, their subscripts ik should be even. The functions Φ̄ik
(xk) then satisfy the

orthogonality and normalization conditions on the half-axis σixi ∈ R
1
+. The set of indices Δ̄j ≡ {i1, . . . , in}

taking odd values is defined by the condition

Δ̄j =
{

i1, . . . , in

∣

∣

∣

∣

2
n
∑

k=1

ik + n = εDj

}

of belonging to the set of the eigenfunctions Φ̄osc
[i1,...,in](x) corresponding to the eigenvalue of the n-dimen-

sional oscillator chosen equal to the desired energy eigenvalue εDj = εosc[i1,...,in].
To calculate the eigenfunctions ΨD

l (x) symmetric (or antisymmetric) under permutations of particles
in the entire domain R

n, it is necessary and sufficient to ensure that the function ΨD
l (x) is symmetric

(antisymmetric) with respect to permutation of the coordinates xi with the same σi in one of the wells.
The basis functions Φ̄D

j (x) satisfying this condition and expressed as linear combination (31) with the
coefficients ᾱj[i1,...,in] were generated using a program implementing the standard method [9].
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As a result, we obtain the algebraic eigenvalue problem

DΨD = ΨDED,

where the real symmetric matrix D has the size ND ×ND, which was solved by the diagonalization method
using the subroutines imtql2 and tred2 in [33]. In the calculations, ik took odd values 1, 3, . . . , 21, hence
imax = 20 + n, and for n = 3, n = 4 and n = 5, the number of rows (columns) ND of the matrix D
respectively did not exceed 161, 336, and 489.

For the known local solution ΨD(x) ≡ ΨD(n−k)(k)
l (x) in one of the subdomains Ωt with k particles

to the left of the barrier and n−k particles to the right of it, for example, for σ1 = · · · = σk = −1 and
σk+1 = · · · = σn = 1, i.e., ωt ≡

∑n
i=1 σi = n − 2k, the solution Ψ(x) ∈ W 1

2 (Ω) in the entire domain
Ω =

⋃

t Ωt ⊂ R
n is calculated using a three-step algorithm and program.

Step 1. The calculated local solution in one of the subdomains Ωt is continued into all subdomains
Ωt′ for which ωt′ = ωt (k particles are to the left of the barrier and n−k particles are to the right of it)
using the symmetry (antisymmetry) of the sought solution under permutations of the particles (xi ↔ xj ,
i, j = 1, . . . , n):

ΨD(n−k)(k)
l (. . . , xi, . . . , xj , . . . ) = ±ΨD(n−k)(k)

l (. . . , xj , . . . , xi, . . . )

(the sign + denotes S states and − denotes A states).

Step 2. If ωt′ �= 0, then the solution found in Step 1 is continued into all subdomains Ωt′′ for which
ωt′′ = −ωt (n−k particles are to the left of the barrier and k are to the right of it) by coordinate inversion,
thus producing even (gerade), ΨD(n−k)(k)

l (−x) = ΨD(n−k)(k)
l (x), and odd (ungerade), ΨD(n−k)(k)

l (−x) =
−ΨD(n−k)(k)

l (x), solutions.

Step 3. In the remaining 2n − n!/(k!(n− k)!) · (2− δ0ωt′ ) subdomains, the sought solution is equal to
zero.

In the case n = 3, there are six identical potential wells. The symmetry with respect to the plane ξ0 = 0
in which the barriers are localized explains the presence of doublets (see Fig. 2) similar to the pairs of even
(g) and odd (u) solutions with exponential splitting for symmetric double-well molecular potentials. In
contrast to the case where n = 2, there is one additional condition, related to the presence of the symmetry
condition, namely, to construct the solution symmetric or antisymmetric under permutation of two particles
in the subdomain (octant) bounded by the planes of pair collisions 12 and 13, i.e., the first particle is to
the left of the barrier, σ1 = −1, and the second and the third particle are to the right of it, σ2 = σ3 = 1, it
is necessary and sufficient to ensure that the eigenfunction of the problem is symmetric or antisymmetric
under the permutation x2 ↔ x3. In other words, the solutions should satisfy different boundary conditions
for x2 = x3: the Neumann condition for S states and the Dirichlet condition for A states. It hence follows
that the energy levels of symmetric and antisymmetric states differ.

For example, the first three symmetric solutions and the first antisymmetric solution of the problem
corresponding to the energy eigenvalues in Table 1 in the above octant have the following leading components
in expansion (30) in the domain x1 < 0, x2 > 0, x3 > 0:

ΨD21
1;S (x1, x2, x3) ≈ Φ̄1(|x1|)Φ̄1(|x2|)Φ̄1(|x3|),

ΨD21
2;S (x1, x2, x3) ≈ Φ̄1(|x1|)

Φ̄1(|x2|)Φ̄3(|x3|)+Φ̄3(|x2|)Φ̄1(|x3|)√
2

,
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a b

c d

Fig. 3. Isosurfaces of the eigenfunctions of the (a,c) S1 states, (b,d) A1 states, (a,b) g states, and

(c,d) u states of three identical particles in Cartesian coordinates x1, x2, x3 of the three-dimensional

configuration space R
3: positive and negative values of the functions are respectively shown by dark

and light shading.

ΨD21
3;S (x1, x2, x3) ≈ Φ̄3(|x1|)Φ̄1(|x2|)Φ̄1(|x3|),

ΨD21
1;A (x1, x2, x3) ≈ Φ̄1(|x1|)

Φ̄1(|x2|)Φ̄3(|x3|) − Φ̄3(|x2|)Φ̄1(|x3|)√
2

.

Continuing each of these solutions into the other five wells (octants), after multiplying by the normalizing
factor 1/

√
6, we correspondingly obtain six symmetric solutions (three even and three odd) and two anti-

symmetric solutions (one even and one odd). Hence, the lower levels of the energy spectrum of S and A
states form sequences of g-u doublets.

The isosurfaces of the eigenfunctions of the first symmetric (S1) and antisymmetric (A1) doublet (g-u)
states corresponding to the energy values ED21

l presented in Table 1 for three identical particles in Cartesian
coordinates of the three-dimensional configuration space are shown in Fig. 3. In the presented projection,
the planes of pair collisions are perpendicular to the plane of the figure and pass through three straight lines
(projections of the coordinate axes) crossing in the center. It can be seen from the figure that in the case of
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a b

Fig. 4. Probability density |χi(ξ0)|2 for the components (17) of the wave function expansion in the

center-of-mass coordinate of the ground S state of a four-particle cluster at the collision energy E

corresponding to the (a) first, E = 9.543, |T |211 = 0.591, and (b) second, E = 11.128, |T |211 = 0.309,

maximums of the transmission coefficient: the Gaussian barrier parameters are α = 10 and σ = 0.1.

symmetric (antisymmetric) states of the particles, the eigenfunctions are symmetric (antisymmetric) with
respect to these lines. This g-u degeneration of the energy levels ED

l of the symmetric (antisymmetric)
states is removed in the calculation of the corresponding complex energy values of the metastable states
presented in Table 1.

For n = 4, there are 14 potential wells. Six of them in the center correspond to the case where two
particles are on one side of the barrier and the other two particles are on the other side. They are denoted
by the symbol D22. The remaining eight wells located at the edges of the central six-well area correspond to
the case where one particle is on one side of the barrier and the other three particles are on the other side.
These states are labeled with the symbol D31. Because the well D22 is narrower than D31, the energy levels
ED22

l are higher than the corresponding levels ED31
l (see Table 2). The peaks corresponding to localizing

the wave function in the wells D22 are singlet because in the vicinity of the symmetry space ξ0 = 0, there
are no barriers except the coordinate origin. Two groups of wells D31, in analogy with the case of three
particles n = 3, are separated by the barriers, and doublets occur in this case. But they are not seen in
Fig. 2, because the separation between the levels in the doublet is of the order of their width, i.e., essentially
smaller than in the case of three particles, which is explained because two groups of D31 wells are separated
by two barriers while they are separated by only one barrier in the case of three particles.

As can be seen from Table 2, for doublet D31 states at l = 2, we can observe two peaks of the
transmission coefficient, and a local minimum of |T |211 is located in the middle between these peaks, its
value being smaller by a few thousandths. For doublet states D31 with l = 1, 4, 5, for which the width of the
energy levels is nearly the same but the levels are closer to each other, one maximum of the transmission
coefficient is observed exactly in the middle between the real parts of the complex energy values EM

m .
We note that the components χS

j1(ξ0) of the eigenfunction ΨS
1(ξ0, ξ) given by (17) corresponding to the

first maximum of the transmission coefficient (see Fig. 4) have minimums in the vicinity of zero, i.e., the
function ΨS

1(ξ0, ξ) is localized in the D31 wells, while the components of the eigenfunction corresponding
to the second maximum are localized in the vicinity of zero, i.e., the function is localized in the D22 wells,
which is confirmed by the last columns in Table 2. Similarly to the case n = 3, for D31 states, this g-u
degeneracy of the energy levels ED

l for the symmetric (antisymmetric) states is removed in the calculation
of the appropriate complex energy values of metastable states. We note that the width of the singlet D22
levels is smaller than that of the D31 levels by an order of magnitude, which is related to the fact that the
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D22 wells are separated from the free motion domain by two barriers.

Similarly, for n = 5, 6, . . . , there are 2n−2 potential wells. For odd n, there are groups D(n − k)(k),
k = 1, . . . , (n−1)/2, each including 2n!/k!(n−k)! wells separated by barriers as in the case n = 3, and only
doublet states exist in this case. For example, if n = 5, then there are four groups of wells: five D41 wells
and ten D32 wells corresponding to the case where one or two particles are to the left of the barrier and two
similar groups corresponding to one or two particles are to the right of the barrier. This is analogous to the
case of the four-well symmetric potential, where two central wells differ from the two peripheral wells. For
example, if n = 5 (see Table 3), then the complex energies of the doubled D41 states are close to each other
(the separation between them being 10−4), and the individual maximums of the transmission coefficient are
not resolved, while for doublet D32 states, the separation between the levels is greater than their width and
double peaks are hence observed. For even n, in addition to the groups D(n − k)(k), k = 1, . . . , (n − 2)/2,
there is a group of n!/((n/2)!)2 wells located in the vicinity of the coordinate frame origin, i.e., n/2 particles
are on one side of the barrier and n/2 are on the other side, which yields singlet states. In this case, the
separation between the complex energy values in the doublets for a fixed number n of particles in the cluster
grows as the number k of particles located on one side of the barrier increases because the number of barriers
separating the groups of wells decreases, and the level width decreases because of the increasing number of
barriers separating the wells from the domain of “free motion” of the entire cluster of n particles, and the
singlet levels have the minimum width. In particular, it can be seen from Tables 1–3 that the energy level
widths for the corresponding doublet states D21, D31, and D41 with n = 3, 4, 5, which are separated from
the domain of free motion by only a single barrier, are nearly similar and amount to 10−3.

As expected, for n = 3, 4, 5 with the considered narrow high barrier, the approximation by impermeable
walls yields an estimate with an error smaller than 2% for the calculated resonance energies E

S(A)
l and the

real part of the energy EM
m of metastable states presented in Tables 1–3.
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