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Fast proton-hydrogen charge exchange reaction at small scattering angles
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The process in which a fast passing proton captures an electron from a hydrogen atom and scatters at small
angles is considered. In contrast to previous calculations within the peaking approximation the numerical
calculations of the second Born as well as second Born-Faddeev diagrams are presented. The results of
calculations are compared with the experimental data obtained at 2.8 and 5.0 MeV impact energy. It is shown
that numerical second Born calculations give quite different results from that in the peaking approximation. In
particular, the role of thep interaction is rather noticeable. On the other hand, the second Born-Faddeev
numerical calculations clearly demonstrate the important role of distortion of plane waves.
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I. INTRODUCTION proton scattering angles in the rangge [0,0.6) mrad were

The processes in which a fast ion captures one or severgf"r[zdugl:;ggl \tfgeﬁoaggil]é roton by index 1 and the target
electrons colliding with an atomic target have been studied Proj P y g

for a long time and their theory has been well establishe(g r?,;[gtri] 0?1);|Tge§a2lci?aﬁgv rtlri d;)r\,/]\m"?l?dséc 219 ?ggucrpdr; eg_?gnlcal
[1,2]. However, in precise coincidence experiments on th q P .

helium atom, where the fast proton captures the electron si- amiltonian of the system reads
multaneously ionizing a recoil ion all independent kinemati- H=Ti+To+ T+ W=Hy+W, (2
cal characteristics of all the final particles have been mea- . . . .
sured, with the use of a uniquoLTRIMS techniquel3]. The ~ WNereW=Ve, +Ve,+Vi5is the total interaction potential. The
scattering angle of helium has been scanned in the rang&@ct amplitude of reactiofl) is given by
0.1-0.5 mrad and the proton energy has been varied in the 7= (¢ (W= Vg, — w)| )
rangeE,=0.15-1.4 MeV. )

The experimentalists suggested that such reactions could +{(pl(W=Ve1 = 0")GE)W= Ve~ 0)| ), (3)

be used as a test for the atomic ground state wave funCtio\Whereg(E):(E—H+i0)‘1 is the full Green’s function of the
and this idea has become a subject of controvetyActu- system, andv, ' are the distorting potentials. In E() the

ally, the behavior of the single differential cross section. ... . ; ; N
! i initial and final states satisfy the respective equations
(SDCS in the angular range 0.1-0.3 mrad depends on the fy P 9

choice of the helium ground state wave function because of [E-Ho— Ve~ w]|#) =0,
the domination of the direct capture mechanism. But prelimi-
nary calculations showed that the contribution of other reac- [E-Hg— Ve —o']|¢s) =0. (4)

tion mechanisms, including double scattering, is substantial. All calculat h for th litude based
Thus a problem of the most extensive and precise calcula- caiculation schemes for the amplitudeare based on

tions of different reaction mechanisms arises. To our knowl-diTerent approximations to Eq3). The first term denotes

edge, no such calculations have been performed for a heliuge single-collision mechanisms and can be called the first

target. Moreover, the uncertainty related to the helium wav: orm approxw_natlor(Bl). In this case t_he choice of the d|s-_
function, which is not known exactly, strongly complicates torting potentiaks depends on '.{h.e. part|cu|ar§ of the approxi-
the analysis of the role of double scattering. In view of thesdnation as well as on the possibility of carrying out the com-

g . : lex numerical calculations. The continuum distorted wave
facts it is natural to start by considering the simpler charge’ : - .
exchange reaction y 9 P 9 (CDW) models[6—8], where in the initial and final states the

Coulomb interaction between the proton aeg) pair frag-
p+H(1ls) — H(1ls) + p’, (1) ments is taken into account, have been widely used.

in which the atomi function is k " If we put G(E)=Gy(E) in Eq. (3), then one considers the
gu\évh ';n ;asfoacer}] le(zjnvvsc l\J/\éa;)e d(laj\r;gkl)onalﬁ agg&’\:;t:xcz‘l:czirqechanisms of double scattering including the distorted
tion schempepto evaluate the contributic?ns from different re- aves as well. The sum of the first and second terms is
action mechanisms. Measurements of the SDCS of reacti called the second Born approximati®2). In 1927 Thomas

o . ], using only classical treatment, showed the importance of
(1) at projectile energies of the order of a few MeV and atdouble electron scattering. It is important to mention the

work [10] on quantum treatment of double-scattering mecha-
nisms. It has become clear that the contribution of particular
*Electronic address: vinitsky@srd.sinp.msu.ru double-scattering mechanisms of particles in the intermedi-
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ate states is comparable with and sometimes much bigger P Vv
than that of the B1 approximation in certain angular do- =
mains. Thus a problem of numerical calculations of B2 ma-
trix elements arises. These terms are described by sixfold
integrals.

As far as we know, the first numerical calculations of B2
integrals without partial decompositions were performed by
Simony and McGuirg11] using the technique of the Lewis
integrals that is widely applied in high-energy physics for
calculating Feynman diagrams. However, they calculate only
the so-called electronic part of the total interaction potential
W, ignoring thepp interactionV,,. Such a choice is based on
the conclusion that all the B2 terms which include {he
potential cancel each other. This conclusion, in turn, follows
from the so-called peaking approximatigh2,13, which
should be valid at high collision energies, however high they
could be. At the energies of actual experimdiiisthe peak-
ing approximation might be too crude.

Reaction(1) is a fundamental example of the three-body p t
problem, and such problems should be considered in the con-
text of Faddeev equatior{see, for example, the monograph
[14]). The step-by-step Born-Faddeev approximatitBisF,

B2F) can be derived directly from Eq$2) and (3) using
some transformations of full Green’s functions. The nonrel-
ativistic diagram method15] is also effective. In such an
approach, instead of the two-body potentials the two-body
off-shell scattering amplitudes appear in matrix elements. In
fact, this replacement allows us to take into account some
multiple scatteringdistortion and to investigate its contri-
bution to the full amplitud&3). For the first time such esti-
mations were presented ii16] and the approximate B2F
calculations as well as comparison with experimental data
were given in[17] (B2F is referred to as FWL thereThe
FWL model employs both the peaking approximation and an
approximation of the two-body off-shell amplitude, using its
small deviation from the on-shell one, which is typical of the
eikonal approximation widely utilized in calculations of cap-
ture reactiongsee also the very recent publication on this
subject[19]).

In this work the results of complex numerical B2 and B2F
calculations for reactioril) are presented. It is shown that
the results of the precise numerical calculations differ con-
siderably from those of the peaking approximation. Precise
B1F calculations and first-order FW(EWL1) calculations
were also carried out by us. It follows from the comparison @~ @ ——~. ... e A =
that the FWL approximation is rather crude at moderate en- 'q tw “
ergies. The results of the numerical B2F calculations are also FIG. 1. First- and second-order Born-Faddeev diagrams for re-
presented. In our approach tkyep) amplitude is taken ex- action(1). Solid line corresponds to the fast proton, wavy line to the
actly by using the Schwinger representati@i], while the  electron, chain line to the slow nucleus, and the array to hydrogen.
(ep amplitude is evaluated using the closure approximation,
which takes into account the averaged contribution of interchange processes too. Atomic unitg=e=#=1 are used
mediate(ep) pair excitations. Besides that, we apply anotherthroughout the paper.
technique of calculation of complex integrals based on the
Laplace transform.

In the present calculations we neglect all the terms of the Il. THEORY
same order with ratios of both the electron mass and the o ~ ]
transferred momentum to the masses of heavy particles, as is Let Us denote the projectile momentum pythe final-
generally accepted. In other words, the target nuclgis ~ State hydrogen momentum Iy, and the recoil-ion momen-
proton) is assumed to be at rest in the laboratory systentum byK. Therefore, we can introduce a transferred momen-
during the reaction. Therefore we neglect the nuclear extum =py—p. The momentum and energy conservation laws

p+q

p+q

(F13) q

p+q-q'+q"
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FIG. 2. Differential cross sections fos1- 1s capture in 2.8 and
5.0 MeV proton-hydrogen collisions vs the scattering angle in the ¢
laboratory system. Results of R%olid line) and B1-MPA(dashed
line) calculations are compared.
10"
in the laboratory system thus assume the respective forms &
- - 8107
K=-q, 2
[a]
2 (-’ -’)2 2 @ -3
+ 10
5‘ p_ = u + q_ + ES‘ . (5)
2m 2(m+1) 2m
In Eq. (5) m=1836.15 is the proton mass, af=-0.5 is 10
the hydrogen ground-state energy. Choosing the direction o l l l [

the proton velocityv,=p/m along thez axis one getsy, 00 0.1 0. Y
=mu,, sin 6,~ Mu, 6, in the case of smalb,. ®)
A peculiarity of the scattering at small angles is that the F|G. 3. Differential cross sections fos- 1s capture in 2.8 and
transferred momentuny is much smaller than the proton 50 MeV proton-hydrogen collisions vs the scattering angle in the

(nucleug mass. It allows one to assume the nucleus to be ghboratory system. Results of the BK tetti7) (B1E, dotted ling,

2 0.3
B [mrad]

rest during the reaction, i.e., to neglegt/2m in Eq. (5).
Under this assumption, from E¢) it follows that

_Up
0z 5

And even ifv, =20 a.u. andng, is several a.u., the inequal-
ity ¢?/2m<1 holds true.

(6)

The SDCS for the scattering of hydrogen in the direction

specified by the solid angl@ in the laboratory system is
given by

do e 2
- = 7
dQ (27-r)Zm ’ @
where7 is the capture process amplitude
T={¢ze, ﬁ|(vle + V12)|\P>- (8)

In Eq. (8) | ¢, is the hydrogen initial ground state ap) is
the total wave function of the system. Let us present the tot
wave function agW)=|yne)+| e + |12 and for its compo-
nents we write down a system of Faddeev equations:

lne) = Gotad [h2e) + 11201 + |‘P1e(p;): K),
|thae) = Gotad [¥h1e) + |12,

B1 (dashed ling and B2(solid line) calculations(upper pang| as
well as B2(solid ling), B2-MPA (dashed line, Ref{18]), and B2E
(dotted ling calculations(lower panel are compared.

l12) = Gotad |4 + [1h2e)]- 9

Using the well-known operator identity=V+VG;t one
finds the amplitude of reactiofl):

T= (26, P|V1e + tia + t1G0toe + t1eGotio + t1eGotoe

+ | @elpp) K. (10)

In this work we consider seried0) up to the second-
order termgB2F). For the sake of visualization we present it
in the form of five nonrelativistic diagranmsee Fig. 1 Let
us denote them aB,, F3, Fy4, Fq3, andF3;, where the(ep)
scattering is labeled by 1 and tlpp) scattering by 3.

Let us consider the first-order diagrams. Thediagram
represents the direct capture procefthe first-order
aérinkman-Kramers{BK) term] and assumes the form

F 4\s"7_7
[ e——— )
1+(U,-0)?

where ¢y(G)=8Vw/(1+g?)? is the hydrogen ground-state
wave function in the momentum space.

(@), 11
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The triangular diagranf; corresponds to the process of d°q’ 0@ o~ q')

proton-nucleugproton) scattering and it has the following Az=4m 3 = , (18
integral expression: (2m) (G-q)?
dg’ <5+<i' p-a . P B2=[A +Ag+ A+ Agy+ At Aggl, (19
F.= | —= Mol ——,—— +§;— '
3 f (277)3%(q ) pp 2 2 q am

where A; (i=1,3) and A; (i,j=1,3) are, respectively, the
5 &, q2 . first- and second-order terms of the Born series.
+Ep + 2 = T +i0 | @o(vp,— ). (12) Our definitions differ from those of AlstoflL7]. To avoid
2 2 confusion we present below the table of correspondence:

The arguments of the scattering amplitude are the relative B1E=A, — Ag [Alston, Eq.(20)],
incoming and outgoing momenta and the relative energy of a
pair.

Then there are three second-order diagrams of the Born-
Faddeev approximation, involvingep) scattering andpp)
scattering processes in the intermediate state. The diagrams

B1=A;+A;— Ag +(®|Vpr|®)) (Alston),

B2=A +Ag+ A+ Az + Az + Agz

F11, F13 andF3; assume the integral form: N <q>f|7'<823m|q>i> [Alston, Eq.(11)],
d3q ' d3q” e S 7 3 . =H — +
N i0> ¢o(d)eo(vp*+ ' = d) BIF=Ay+F3— Agy+ Al [Alston, Eq.(24)],
2 P H_ 7 S _ (31— Am2 ;
Eo —vpd" (@~ )72 +i0 B2F=A;+Fa+ Fyy+FigtFyy
Xtee(@' = q',q" = G;Eg —vpq” +10), (13 —(®(|TZ|d;) [Alston, Eq.(4)].
—_ dsq, daq,, = _>! = _)! _)N .
Fi3= W Wtep Up~q L vp—q T4 Ill. RESULTS AND DISCUSSION
) . . A. First Born approximation
. ’ +d -q’
ES + % —v,q + io) QDO(?B%(UE qﬁ @) Usually in the literature the termg is calculated in the
2 EY - vpd" - (q' - q)%2 +i0 so-called peaking approximatidid2,13. It is assumed that
P the regions of maxima of the functiapy mainly contribute
<t (p+q tq pta-q. to the integral(18). Since there are two such regions one
PP 2 2 introduces the multiple-peaking approximatidviPA) [18].

5 = Using the precise numerical calculation of the intedf8)

ey P C ) +i0) (14) (details are presented in Appendix),At is interesting to
0" 4m 2 ’ compare the B1 and B1-MPA results in a range of small
scattering angles. As it follows from Fig. 2, where this com-

3, 3, e oo 5 parison is presented, the difference between B1 and B1-MPA
Foo [ S d'q’ (P— 9 P20 -9 w, P° results is considerable. The convergence of the B1-MPA re-
31 @em3) em®PP\ 2 2 "0 4m sults to those of the B1 is extremely slow and it was found

- - - o that even av,=20 the relative difference between the results
12 ! ( /) (U +q - ”) . . . . . °

B BT IRTS I DL 2T Bk is quite noticeable in the angular regigp~0°.

2 2 EN - v,0" - q'%/2+i0

-

B. Second Born approximation

51 =.peH T

e, 0"~ G:Eg ~vpq" +10). (15 The results of numerical B2 calculations for reactidn

Each two-body amplitudg; can be presented as the sumare shown in Figs. 3-5. The total contribution of the dia-
gramsA;q, Az Agg, and Ag; is considerable in the whole
ti = v + vijGotij. (16)  angular region, and the processes of double collision play a

. , , ) significant role at the angle$,=0.3—0.5(see upper panel of
where gy is the free three-body Green's function. If in the iy 3 For numerical calculations the dimensions of the
funcUo_ns F., ('.:“B) thg amplitudeg;; are substituted by the integralsA;j (see Appendix Bwere reduced.
potentialsvj; (in F3 right up to the second ordepne can Calculations in the B2-MPA approximatidi2,13,17,18
obtain the B2 result. For example, exhibit another tendency: the total contribution of the dia-
grams(Ag+Aq3+As;+Ags), involving the proton-nuclear in-
teraction, tends to zero at asymptotically high However,
this conclusion does not follow from the results of the

4\

A=F=- m%@, (17)
p
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SDCS [a.u./sr]

0.0 0.1 0.4 0.5

0.3
B [mrad]
FIG. 4. Differential cross sections fos1- 1s capture in 2.8 and
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SDCS [a.u./sr]
3,
T

107 ¢ ] I 1 N 1 3
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B [mrad]

FIG. 6. Differential cross sections of reactigh). Results of

5.0 MeV proton-hydrogen collisions vs the scattering angle in theB1F (solid line) and B1(dashed ling calculations are presented.

laboratory system. Results of B2olid line) and B2-MPA(dotted

line, Ref.[18]) calculations are compared with the experimental ferance petween the numerical calculations and experimental
data of Vogt(Ref.[5]). The theoretical results have been convoluteddata indicates the role of distorting factors, which is related

with the beam profiles.

present numerical calculations. Figur¢l®@wver panel shows

to the fact that instead of the potentials the amplitudes are
taken into account.

The precise B2M calculations including the recoil-ion

the calculation only of the electronic part of the interactionmotion (i.e., we leave in B2 all terms proportional to riy

(B2E=A;+A,; diagrams for the experimental velocities,

are also performed in Fig. 5 and the correctness of the hy-

=10.6 and 14.2 a.u. It can be seen that the contribution of thgothesis that the nucleus can be considered at rest is shown.

proton-nuclear interaction is significant everywhere.

Comparison between exact numerical and MPA calcula-

tions of the B2 termg18] is presented in Fig. 3lower

pane). The following feature should be noticed: the B2-MPA

C. Born-Faddeev approximation

Let |x(p)) be a solution of the two-body Schrodinger

calculation approaches the precise B2E calculation at largequation with the potentiab. It is easy to show that
angles. It is interesting to compare the B2 results with exv|x(p))=t|p), i.e., the presence of amplitudes in the diagrams
perimental data. This comparison is presented in Fig. 4. T& andF;; amounts to the account for the Coulomb distortion
compare with experiment, the theoretical results were convoef the plane waves in intermediate states. This statement re-

luted with the beam profil¢5] (it is important to note that

flects the fact that the distorting potentialsand ' some-

the theoretical results in Figures 2, 3, 5, 6, and 8 are pretimes are used in Eq3) if the full Green’s function is re-
sented without convolution The convolution procedure placed by the free one. These potentials play no role in the

strongly smooths the gap observeddat 0.3 mrad. The dif-

SDCS [a.u./sr]

1 1 i _ 1
0.0 0.1 0.2 0.3 0.4 0.5
0 [mrad]

FIG. 5. Contribution of the recoil-ion motioB2M, dashed
line) to the differential cross section of the reactidn in compari-
son with B2 calculations.

exact equation, but in its approximate forms they can be
important.

Let us compare the B1 and B1F results, when in the in-
ternuclear term(A;—F3) we substitute V,,—t,, The
Schwinger representation of the, amplitude is used to cal-
culate numerically thé; diagram,

.- 1 s 1
tpp(p,p’;E)=4w{—»—Inl(p,p’;E)}, 7

(p-p)? VaEm’
(20
where
1
> . — in 2 9'2_2 - -T
I(p,p"sBE)=1| P p(p-p") 4E(E THE-T)
0

In our case we obtain

012706-5
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p+q p-q . . PP . Ul
t —+Q,—+Ey + -
”P{ 2 g Tyt
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pi/vp dp

{ 1 i fl
=~ 4 — -
(G-9)% Uplo

The integralF; takes the form
F3 =A

where

[p(G- ") - v (EN -

- AA,,

q'42)ES - (6, - q)%2](1 - p)? +i0]
(21)

‘PO(q,)(P(Jp - d),)

AA;=

ﬂf
Up

f @) [p(G-q')? - vA(EY -

— . (22
q'%2)[Ef - (v,-a)%2](1 - p)? +i0]

As one can see in Fig. 6 the divergence between B1 and B1F Two important conclusions follow from comparison of the

results is noticeable only in

~0.3-0.4 mrad.

the gap regiow

curves. The first is that one can see the instability of the
contribution of the(ep) excitations (a distortion of the

It is impossible to take fully into account the two-body waveg with growth of the proton energy. This contribution is
amplitudest,,, andte, in the numerical B2F calculation, al- relatively small in the whole angular range&j=2.8 MeV.
though there are analytical expressions for these amplitudeBut at E,=5.0 MeV this contribution is sufficiently big at
[20]. We suppose tha,=V,,. Such a proposal is based on §,=0.2-0.5 mrad. At the same time we see that the B2F

the calculations of integral?). Futher, the operatdg,, can
be presented in the form

|(Ps><‘Ps|Ve
tolE) = Vg + S, ~en sl Vep, 23
oo )= Vept 2 L (29

where |¢g) is a full orthonormal set of the Coloumb eigen-
functions of the two-body problem. In the closure approxi-
mation (CA) the eigenenergy is replaced by an average

valuee,— E. In this case from Eq23) the following expres-
sion can be obtained:

47
(P’ -p)?

whereE is the CA parameter, ~0sE<0. This means that

1 (4m)? 1

8E-E+iolF — Pl

(P'[tegB)P) = - . (29

we consider here only an averaged contribution of bound 152 %

excitations to th€ep) amplitude.
After taking into accountg, in the form(24) and carring

out some transformations of the integrals the correction to‘n 10°

the B2 result looks like
L [ [ _elip-dry
™ XY (1+26)+20,y-i0
[@o(q X—Y) ~ ¢o(d = X)]
1+2vpy+(q X-y)?-i0’

(25)

Thus the B2F amplitude of the problem in our approximation

assumes the formig,r=A;+F3+A 1+ Az +A5+]. The con-
voluted results of these calculations are presented in Fig.

The best fitting is reached Bt=-0.4. The calculations in the

model approaches the experimenEgt2.8 MeV and prac-
tically coincides in the angular rang#=0-0.25 mrad. In

the angular rang#®,=0.25-0.5 one can see the discrepancy
between the theoretical and experimental results. We ascribe
this effect to the necessity to take more carefully into account
the (ep) pair continuum intermediate states.

Comparison between the B1F calculations and the first-
rder FWL model calculations is also presented in Fig. 8,
here (as we mentioned in the Introductipthe two-body

Coulomb amplitudes:

[a.u./sr]

CD

107 E

0.2 0.3 0.4 0.5

B [mrad]

0.0 I I 0.1 I
FIG. 7. Differential cross sections fos4- 1s capture in 2.8 and
.0 MeV proton-hydrogen collisions vs the scattering angle in the

aboratory system. Results of B2Bolid line), FWL (dashed line,
Ref. [17]), and B2(dotted ling calculations are compared with the

B2 and FWL[17] approximations are also presented for theexperimental data of VogtRef. [5]). All theoretical results have

completeness.

been convoluted with the beam profiles.

012706-6



FAST PROTON-HYDROGEN CHARGE EXCHANGE PHYSICAL REVIEW A 71, 012706(2005

the angular spectroscopy of a target’s correlation structure.

We also can formulate the following conclusions.

(1) The performed numerical calculation of the multiple
integrals describing the B2 matrix elements shows that the
peaking approximation is rather crude and can be used only
for general estimates of differential cross sections at small
hydrogen scattering angles and high energies of actual ex-
periments. One finds a slow convergence between precise
and approximate calculations with growth of the proton en-
ergy.

(2) The widely known thesis that the B2E contribution is
dominant in the total second Born approximatidf; +A,|
>|Ag+A 3+ Ag+Agg) is valid only for the peaking approxi-

i mation at high energies. Numerical calculations at moderate
0.4 05 energies give the opposite result. Figure 3 clearly demon-
strates that there is no complete cancellation of the terms

FIG. 8. Test of the accuracy of the first-order FWL model. Re-containing the internuclear potential.
sults of FWL1(dashed lingand B1F(solid ling) calculations are (3) In the B1 minimum regior(6,~ 0.3 mrad a number
compared. of factors affect the cross-section behavior. One should take
into account(ep) subsystem excitations into discrete and

SDCS [a.u./sr]
S

10° |

10°

0.0 0.1 0.2 0.3
B [mrad]

. R 1, |t _ continuum spectra, proton-nuclear scattering, and even the
te(k' k) =(k'|Vc| 1+ & - Z_Vr ~Ve+in| Vcllk accuracy of the hydrogen final-state measuremggits
y7i . .
(4) We also present here numerical calculations of the
X(C=ppep (26)  effects of the wave distortion which naturally reveal them-

selves by means of intermediate two-body Coulomb ampli-
tudes. This distortion effect is quite small for protons, which
is to be expected in the considered angular domain. The dis-

in the vertices off3, F5 F3;, andF,; diagrams are taken
only in a limited neighborhood of the energy shell, when

(2uE - K)(2uE - K'?) tortion of electron waves becomes apparent in the Thomas
o= . <1. peak region(#,=0.4 mrad. However, the simple models,
2pE[k - K'| such as the closure or eikonal approximations, do not yield

Such an approximation contains a number of “submarindh€ desired results. The accurate representation models of the
reefs,” because the amplitutigk, k' E) is a formally singu- two-body amplitude,, [Eq. (26)] appropriate for numerical
lar function in this neighborhoof21]. Moreover, after this calculations must be involved in the whole range of variation

substitution Alston calculates the resulting multidimensionalOf Its three arguments. This proplem IS the most difficult in
spite of the analytical form of this amplitude.

integrals in the peaking approximation. Many authors men- . ) . .
tioned that the peaking approximation is rather crude at mod- (5) Finally, we est|'mate numenpally t'h'e effect of mothn
f the proton in the final state which initially was at rest in

erate energies, and we see that the numerical and approt laborat i We found it to b icall i
mate B2 calculations considerably differ from each other. To € laboratory system. We tound it 1o be practically negil-

test the accuracy of the FWL model, the first-order calcula9/0I€ as it should be in the considered domains of angles and
tions within this model(FWL1=Ag,+A; see Eq.(33) in  °"0 9

[17]) were performed and compared with the precise calcu- ACKNOWLEDGMENTS
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precise calculations. Schuch for their help in the solution of the convolution prob-

lem. P.S.V. would like to thank the Dynasty Foundation for
partial financial support of this work. One of (%u.P) is
IV. SUMMARY grateful to H. Shmidt-Boking for motivating these investiga-

. . . tions and his hospitality in Frankfurt. This work is partially
We present here precise numerical calculations of th%upported by the foundation “Universities of Russia.”
plane wave B1 and B2 terms for the proton-hydrogen charge

exchange reaction at small scattering angles and moderate APPENDIX A: FIRST-ORDER TERM
energies of existing experiments. The obtained results clearly ) _ )
show the considerable role of double-scattering mechanisms Let us consider the first-order matrix elemext
even in the angular range 0—-0.1 mrad. In any case the term 3
A;=B1E[Eq.(17)], which contains the direct information on - dq , 1 -
: . 3= 4m 3¢0(d") —— e, —q).
the ground state wave function, can be dominant nowhere (2m) G-q')2
(see Fig. 3 This observation means that the charge ex- .
change reaction at small scattering angl#h or without  After the replacemenlﬁ—zip+q’:lz and double Laplace
ionization of the residual ioncannot be effectively used for transformations it reads
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32(” ” dk .
= _J t dtlf t dtzf — exp(— {1 +(G- Kty
m™Jo 0 k

+[1+(K=d+0p))t2})

= 64\’[7_Tf tl dt]_J tz dtz
0 0

% exp(= (o° + Dt; —[1 + (0, — §)*It}
\J"tl + t2

- (1 3 [Gty - Ug‘q)tz]z)
k! 2'2’ ty +t, '

We putt; =px, t,=p(1-x),

1

A= 64T f X(1 = x)dx f dp p°'2 exp{~ pl(0? + 1)x
0

0

3
- (Up= @)%+ 1](1 =X}, F (; 2,p[q Up(1- x)]2>.

The integral ovep can be calculated analytically, and finally

we obtain

X(1—X) (7 1_3_5)

A3—1207Tf TzF 2228

X(1=x)[1+ 2M/3(\ - B) + \25(\ - B)?]
[8-\"ABT
where B=[(g?+1)x~(v,= @)+ 1](1-x), N=[G-v,(1-X)]%

= 1207Tf dx dx,
0

APPENDIX B: SECOND-ORDER TERM

We consider here the second-order matrix elendgntas

an example. The following chain of transformations can be

applied:
d3 ’ d3 "
L ey
(2m)* ) (2m)
1 1 1
X—5 "2 > =y SN2 H s ~\2
A7 EQ -vp,G" - (@' —)%2+i0(q" - )

><()D()(vp-'-q _q)!

A—gl fd3 thdtdtJ

A1 = (4m)?

d3
Jl—f v exp(— y2(itg + t;) + 2y itaX - |t3vp tl(vp 9]

—{its(1 +>) + [ 1 + (v, — G2}

_ 2773/2 = (l §(|t3)—() |t3l} t]_(Up d)) )
Vi +itgt \2'2° ty +its

xexp(— {ita(1 +32) + [ 1+ (v, — G,

PHYSICAL REVIEW A 71, 012706(2005

= (1 3 [it3)?—it3v;,—tl(v;—q)]2>
1 ty +its

p( [itsX —
o u

Let us replace— X+ and note thatv,~§)?=q% Then

t;t, dt; dt, dt
277_3/2J f f f 12 1 2 3‘]2,
0 iy +itg
t
Jz—J 2 exp{—x t2+|t3 )
+itg

- 2At,q + itz + u(v, - d)its]}

itavp ~ vy~ ﬁ)]2>
ty +itg '

xexp(— {ty(1 +0?) +itg(1 +g?)

+ty[1+ (0~ 6)%] - u(ty +it3)g%)
2312

Vit +itg + utd/(ty +ity)
e (1 3 [t +itaf+ u(v, - ﬁ)|t3]2)
EIPPY ty + ity + Ut/(ty +itg)

gLt +tority (1+67)-ulty +itg)o”]

We designate, =pxy, t,=p(1-X)y, t3=p(1-y), and after in-
tegrating byp we obtain

yx(l x)dxdydu 1
|11—247T 2_
o (I +ilg)(Ix +il5) +ulg Lo
E.§.£>
2!21B 1

><2F1<4,
wherel;=xy, l,=(1-x)y, I3=(1-y), and

B=(ly+1x+il3)(1+g?) = u(ly +il 307,

_ (126 +il 3G+ u(vp = )il *
L +ilg+uly/(l,+il5)

96| (1-2° (1-2° (1-2

15 ( 1+ VE)
+—=1In =1].
\Z 1-vz

F<41-§-z>—i 16 20 30
21 12!21 -
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