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The process in which a fast passing proton captures an electron from a hydrogen atom and scatters at small
angles is considered. In contrast to previous calculations within the peaking approximation the numerical
calculations of the second Born as well as second Born-Faddeev diagrams are presented. The results of
calculations are compared with the experimental data obtained at 2.8 and 5.0 MeV impact energy. It is shown
that numerical second Born calculations give quite different results from that in the peaking approximation. In
particular, the role of thepp interaction is rather noticeable. On the other hand, the second Born-Faddeev
numerical calculations clearly demonstrate the important role of distortion of plane waves.
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I. INTRODUCTION

The processes in which a fast ion captures one or several
electrons colliding with an atomic target have been studied
for a long time and their theory has been well established
[1,2]. However, in precise coincidence experiments on the
helium atom, where the fast proton captures the electron si-
multaneously ionizing a recoil ion all independent kinemati-
cal characteristics of all the final particles have been mea-
sured, with the use of a uniqueCOLTRIMS technique[3]. The
scattering angle of helium has been scanned in the range
0.1–0.5 mrad and the proton energy has been varied in the
rangeEp=0.15–1.4 MeV.

The experimentalists suggested that such reactions could
be used as a test for the atomic ground state wave function
and this idea has become a subject of controversy[4]. Actu-
ally, the behavior of the single differential cross section
(SDCS) in the angular range 0.1–0.3 mrad depends on the
choice of the helium ground state wave function because of
the domination of the direct capture mechanism. But prelimi-
nary calculations showed that the contribution of other reac-
tion mechanisms, including double scattering, is substantial.
Thus a problem of the most extensive and precise calcula-
tions of different reaction mechanisms arises. To our knowl-
edge, no such calculations have been performed for a helium
target. Moreover, the uncertainty related to the helium wave
function, which is not known exactly, strongly complicates
the analysis of the role of double scattering. In view of these
facts it is natural to start by considering the simpler charge
exchange reaction

p + Hs1sd → Hs1sd + p8, s1d

in which case the atomic wave function is known exactly.
Such an approach allows us to develop an accurate calcula-
tion scheme to evaluate the contributions from different re-
action mechanisms. Measurements of the SDCS of reaction
(1) at projectile energies of the order of a few MeV and at

proton scattering angles in the rangeupP f0,0.6g mrad were
carried out by Vogtet al. [5].

Let us label the projectile proton by index 1 and the target
proton by index 2 and write down basic quantum mechanical
equations to calculate the amplitude of reaction(1). The
Hamiltonian of the system reads

H = T1 + T2 + Te + W= H0 + W, s2d

whereW=Ve1+Ve2+V12 is the total interaction potential. The
exact amplitude of reaction(1) is given by

T = kf fusW− Ve2 − vdufil

+ kf fusW− Ve1 − v8dGsEdsW− Ve2 − vdufil, s3d

whereGsEd=sE−H+ i0d−1 is the full Green’s function of the
system, andv ,v8 are the distorting potentials. In Eq.(3) the
initial and final states satisfy the respective equations

fE − H0 − Ve2 − vgufil = 0,

fE − H0 − Ve1 − v8guf fl = 0. s4d

All calculation schemes for the amplitudeT are based on
different approximations to Eq.(3). The first term denotes
the single-collision mechanisms and can be called the first
Born approximation(B1). In this case the choice of the dis-
torting potentialv depends on the particulars of the approxi-
mation as well as on the possibility of carrying out the com-
plex numerical calculations. The continuum distorted wave
(CDW) models[6–8], where in the initial and final states the
Coulomb interaction between the proton andsepd pair frag-
ments is taken into account, have been widely used.

If we put GsEd=G0sEd in Eq. (3), then one considers the
mechanisms of double scattering including the distorted
waves as well. The sum of the first and second terms is
called the second Born approximation(B2). In 1927 Thomas
[9], using only classical treatment, showed the importance of
double electron scattering. It is important to mention the
work [10] on quantum treatment of double-scattering mecha-
nisms. It has become clear that the contribution of particular
double-scattering mechanisms of particles in the intermedi-*Electronic address: vinitsky@srd.sinp.msu.ru
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ate states is comparable with and sometimes much bigger
than that of the B1 approximation in certain angular do-
mains. Thus a problem of numerical calculations of B2 ma-
trix elements arises. These terms are described by sixfold
integrals.

As far as we know, the first numerical calculations of B2
integrals without partial decompositions were performed by
Simony and McGuire[11] using the technique of the Lewis
integrals that is widely applied in high-energy physics for
calculating Feynman diagrams. However, they calculate only
the so-called electronic part of the total interaction potential
W, ignoring thepp interactionV12. Such a choice is based on
the conclusion that all the B2 terms which include thepp
potential cancel each other. This conclusion, in turn, follows
from the so-called peaking approximation[12,13], which
should be valid at high collision energies, however high they
could be. At the energies of actual experiments[5] the peak-
ing approximation might be too crude.

Reaction(1) is a fundamental example of the three-body
problem, and such problems should be considered in the con-
text of Faddeev equations(see, for example, the monograph
[14]). The step-by-step Born-Faddeev approximations(B1F,
B2F) can be derived directly from Eqs.(2) and (3) using
some transformations of full Green’s functions. The nonrel-
ativistic diagram method[15] is also effective. In such an
approach, instead of the two-body potentials the two-body
off-shell scattering amplitudes appear in matrix elements. In
fact, this replacement allows us to take into account some
multiple scattering(distortion) and to investigate its contri-
bution to the full amplitude(3). For the first time such esti-
mations were presented in[16] and the approximate B2F
calculations as well as comparison with experimental data
were given in[17] (B2F is referred to as FWL there). The
FWL model employs both the peaking approximation and an
approximation of the two-body off-shell amplitude, using its
small deviation from the on-shell one, which is typical of the
eikonal approximation widely utilized in calculations of cap-
ture reactions(see also the very recent publication on this
subject[19]).

In this work the results of complex numerical B2 and B2F
calculations for reaction(1) are presented. It is shown that
the results of the precise numerical calculations differ con-
siderably from those of the peaking approximation. Precise
B1F calculations and first-order FWL(FWL1) calculations
were also carried out by us. It follows from the comparison
that the FWL approximation is rather crude at moderate en-
ergies. The results of the numerical B2F calculations are also
presented. In our approach thesppd amplitude is taken ex-
actly by using the Schwinger representation[21], while the
sepd amplitude is evaluated using the closure approximation,
which takes into account the averaged contribution of inter-
mediatesepd pair excitations. Besides that, we apply another
technique of calculation of complex integrals based on the
Laplace transform.

In the present calculations we neglect all the terms of the
same order with ratios of both the electron mass and the
transferred momentum to the masses of heavy particles, as is
generally accepted. In other words, the target nucleus(the
proton) is assumed to be at rest in the laboratory system
during the reaction. Therefore we neglect the nuclear ex-

change processes too. Atomic unitsme=e="=1 are used
throughout the paper.

II. THEORY

Let us denote the projectile momentum bypW , the final-
state hydrogen momentum bypWH, and the recoil-ion momen-

tum byKW . Therefore, we can introduce a transferred momen-
tum qW =pWH−pW . The momentum and energy conservation laws

FIG. 1. First- and second-order Born-Faddeev diagrams for re-
action(1). Solid line corresponds to the fast proton, wavy line to the
electron, chain line to the slow nucleus, and the array to hydrogen.
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in the laboratory system thus assume the respective forms

KW = − qW ,

E0
H +

p2

2m
=

spW + qWd2

2sm+ 1d
+

q2

2m
+ E0

H. s5d

In Eq. (5) m=1836.15 is the proton mass, andE0
H=−0.5 is

the hydrogen ground-state energy. Choosing the direction of
the proton velocityvWp=pW /m along thez axis one getsq'

=mvp sinup<mvpup in the case of smallup.
A peculiarity of the scattering at small angles is that the

transferred momentumq is much smaller than the proton
(nucleus) mass. It allows one to assume the nucleus to be at
rest during the reaction, i.e., to neglectq2/2m in Eq. (5).
Under this assumption, from Eq.(5) it follows that

qz =
vp

2
. s6d

And even ifvp&20 a.u. andmup is several a.u., the inequal-
ity q2/2m!1 holds true.

The SDCS for the scattering of hydrogen in the direction
specified by the solid angleV in the laboratory system is
given by

ds

dV
=

m2

s2pd2uT u2, s7d

whereT is the capture process amplitude

T = kw2e,pW usV1e + V12duCl. s8d

In Eq. (8) uw2el is the hydrogen initial ground state anduCl is
the total wave function of the system. Let us present the total
wave function asuCl= uc1el+ uc2el+ uc12l and for its compo-
nents we write down a system of Faddeev equations:

uc1el = G0
+t1efuc2el + uc12lg + uw1espH

W d,KW l,

uc2el = G0
+t2efuc1el + uc12lg,

uc12l = G0
+t12fuc1el + uc2elg. s9d

Using the well-known operator identityt=V+VG0
+t one

finds the amplitude of reaction(1):

T = kw2e,pW uV1e + t12 + t12G0
+t2e + t1eG0

+t12 + t1eG0
+t2e

+ ¯ uw1espH
W d,KW l. s10d

In this work we consider series(10) up to the second-
order terms(B2F). For the sake of visualization we present it
in the form of five nonrelativistic diagrams(see Fig. 1). Let
us denote them asF1, F3, F11, F13, andF31, where thesepd
scattering is labeled by 1 and thesppd scattering by 3.

Let us consider the first-order diagrams. TheF1 diagram
represents the direct capture process[the first-order
Brinkman-Kramers(BK) term] and assumes the form

F1 = −
4Îp

1 + svWp − qWd2w0sqd, s11d

where w0sqWd=8Îp / s1+q2d2 is the hydrogen ground-state
wave function in the momentum space.

FIG. 2. Differential cross sections for 1s→1s capture in 2.8 and
5.0 MeV proton-hydrogen collisions vs the scattering angle in the
laboratory system. Results of B1(solid line) and B1-MPA(dashed
line) calculations are compared.

FIG. 3. Differential cross sections for 1s→1s capture in 2.8 and
5.0 MeV proton-hydrogen collisions vs the scattering angle in the
laboratory system. Results of the BK term(17) (B1E, dotted line),
B1 (dashed line), and B2(solid line) calculations(upper panel), as
well as B2(solid line), B2-MPA (dashed line, Ref.[18]), and B2E
(dotted line) calculations(lower panel) are compared.
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The triangular diagramF3 corresponds to the process of
proton-nucleus(proton) scattering and it has the following
integral expression:

F3 =E d3q8W

s2pd3w0sq8dtppSpW + q8W

2
,
pW − q8W

2
+ qW ;

p2

4m

+ E0
H +

vWpq8W

2
−

q82

2
+ i0Dw0svWp − q8W d. s12d

The arguments of the scattering amplitude are the relative
incoming and outgoing momenta and the relative energy of a
pair.

Then there are three second-order diagrams of the Born-
Faddeev approximation, involvingsepd scattering andsppd
scattering processes in the intermediate state. The diagrams
F11, F13, andF31 assume the integral form:

F11 =E d3q8

s2pd3 E d3q9

s2pd3tepSvp
W − q8W ,vp

W − q8W + q9W ;E0
H

+
vp

2

2
− vp

W q8W + i0D w0sq8dw0svp
W + q9W − qWd

E0
H − vp

W q9W − sq8W − q9W d2/2 + i0

3tepsq9W − q8W ,q9W − qW ;E0
H − vp

W q9W + i0d, s13d

F13 =E d3q8

s2pd3 E d3q9

s2pd3tepSvp
W − q8W ,vp

W − q8W + q9W ;

E0
H +

vp
2

2
− vp

W q8W + i0D w0sq8dw0svp
W + q9W − q8W d

E0
H − vp

W q9W − sq8W − q9W d2/2 + i0

3tppSpW + q9W + q8W

2
,
pW + q9W − q8W

2
;

E0
H +

p2

4m
−

sq8W − q9W d2

2
+ i0D , s14d

F31 =E d3q8

s2pd3 E d3q9

s2pd3tppSpW − q8W

2
,
pW + 2q9W − q8W

2
;E0

H +
p2

4m

−
q8W 2

2
−

vp
W q8W

2
+ i0D w0sq8dw0svp

W + q9W − qWd

E0
H − vp

W q9W − q8W 2/2 + i0

tepsq8W ,q9W − qW ;E0
H − vp

W q9W + i0d. s15d

Each two-body amplitudetij can be presented as the sum

tij = vi j + vi jG0
+tij , s16d

whereG0
+ is the free three-body Green’s function. If in the

functionsFa sFabd the amplitudestij are substituted by the
potentialsvi j (in F3 right up to the second order) one can
obtain the B2 result. For example,

A1 ; F1 = −
4Îp

1 + svWp − qWd2w0sqd, s17d

A3 = 4pE d3q8W

s2pd3

w0sq8dw0svWp − q8W d

sqW − q8W d2
, s18d

B2 = fA1 + A3 + A11 + A31 + A13 + A33g, s19d

where Ai si =1,3d and Aij si , j =1,3d are, respectively, the
first- and second-order terms of the Born series.

Our definitions differ from those of Alston[17]. To avoid
confusion we present below the table of correspondence:

B1E =A1 → AB1 fAlston, Eq.s20dg,

B1 = A1 + A3 → AB1 + kF fuVPTuFil sAlstond,

B2 = A1 + A3 + A11 + A31 + A13 + A33

→ kF fuT Born
s2d uFil fAlston, Eq.s11dg,

B2E =A1 + A11→ AB1 + kF fuVTeG0
+sEdVPeuFil sAlstond,

B1F =A1 + F3 → AB1 + An
s1d fAlston, Eq.s24dg,

B2F =A1 + F3 + F11 + F13 + F31

→ kF fuT R
s2duFil fAlston, Eq.s4dg.

III. RESULTS AND DISCUSSION

A. First Born approximation

Usually in the literature the termA3 is calculated in the
so-called peaking approximation[12,13]. It is assumed that
the regions of maxima of the functionw0 mainly contribute
to the integral(18). Since there are two such regions one
introduces the multiple-peaking approximation(MPA) [18].
Using the precise numerical calculation of the integral(18)
(details are presented in Appendix A), it is interesting to
compare the B1 and B1-MPA results in a range of small
scattering angles. As it follows from Fig. 2, where this com-
parison is presented, the difference between B1 and B1-MPA
results is considerable. The convergence of the B1-MPA re-
sults to those of the B1 is extremely slow and it was found
that even atvp=20 the relative difference between the results
is quite noticeable in the angular regionup,0°.

B. Second Born approximation

The results of numerical B2 calculations for reaction(1)
are shown in Figs. 3–5. The total contribution of the dia-
gramsA11, A13, A31, and A33 is considerable in the whole
angular region, and the processes of double collision play a
significant role at the anglesup=0.3–0.5(see upper panel of
Fig. 3). For numerical calculations the dimensions of the
integralsAij (see Appendix B) were reduced.

Calculations in the B2-MPA approximation[12,13,17,18]
exhibit another tendency: the total contribution of the dia-
gramssA3+A13+A31+A33d, involving the proton-nuclear in-
teraction, tends to zero at asymptotically highvp. However,
this conclusion does not follow from the results of the
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present numerical calculations. Figure 3(lower panel) shows
the calculation only of the electronic part of the interaction
(B2E=A1+A11 diagrams) for the experimental velocitiesvp
=10.6 and 14.2 a.u. It can be seen that the contribution of the
proton-nuclear interaction is significant everywhere.

Comparison between exact numerical and MPA calcula-
tions of the B2 terms[18] is presented in Fig. 3(lower
panel). The following feature should be noticed: the B2-MPA
calculation approaches the precise B2E calculation at large
angles. It is interesting to compare the B2 results with ex-
perimental data. This comparison is presented in Fig. 4. To
compare with experiment, the theoretical results were convo-
luted with the beam profile[5] (it is important to note that
the theoretical results in Figures 2, 3, 5, 6, and 8 are pre-
sented without convolution). The convolution procedure
strongly smooths the gap observed atu,0.3 mrad. The dif-

ference between the numerical calculations and experimental
data indicates the role of distorting factors, which is related
to the fact that instead of the potentials the amplitudes are
taken into account.

The precise B2M calculations including the recoil-ion
motion (i.e., we leave in B2 all terms proportional to 1/m)
are also performed in Fig. 5 and the correctness of the hy-
pothesis that the nucleus can be considered at rest is shown.

C. Born-Faddeev approximation

Let uxspWdl be a solution of the two-body Schrödinger
equation with the potentialv. It is easy to show that
vuxspWdl= tupWl, i.e., the presence of amplitudes in the diagrams
Fi andFij amounts to the account for the Coulomb distortion
of the plane waves in intermediate states. This statement re-
flects the fact that the distorting potentialsv and v8 some-
times are used in Eq.(3) if the full Green’s function is re-
placed by the free one. These potentials play no role in the
exact equation, but in its approximate forms they can be
important.

Let us compare the B1 and B1F results, when in the in-
ternuclear term sA3→F3d we substitute Vpp→ tpp. The
Schwinger representation of thetpp amplitude is used to cal-
culate numerically theF3 diagram,

tppspW ,p8W ;Ed = 4pF 1

spW − p8W d2
− ihIspW ,p8W ;EdG, h =

1
Î4E/m

,

s20d

where

IspW ,p8W ;Ed =E
0

1

rihFrspW − p8W d2 −
m

4E
sE − TdsE − T8d

3s1 − rd2G−1

dr.

In our case we obtain

FIG. 4. Differential cross sections for 1s→1s capture in 2.8 and
5.0 MeV proton-hydrogen collisions vs the scattering angle in the
laboratory system. Results of B2(solid line) and B2-MPA(dotted
line, Ref. [18]) calculations are compared with the experimental
data of Vogt(Ref. [5]). The theoretical results have been convoluted
with the beam profiles.

FIG. 5. Contribution of the recoil-ion motion(B2M, dashed
line) to the differential cross section of the reaction(1) in compari-
son with B2 calculations.

FIG. 6. Differential cross sections of reaction(1). Results of
B1F (solid line) and B1(dashed line) calculations are presented.

FAST PROTON-HYDROGEN CHARGE EXCHANGE… PHYSICAL REVIEW A 71, 012706(2005)

012706-5



tppFpW + q8W

2
,
pW − q8W

2
+ qW ;

p2

4m
+ E0

H +
vWpq8W

2
−

q82

2
+ i0G

< 4pF 1

sqW − q8W d2
−

i

vp
E

0

1 ri/vp dr

frsqW − q8W d2 − vp
−2sE0

H − q82/2dfE0
H − svWp − q8W d2/2gs1 − rd2 + i0g

G .

The integralF3 takes the form

F3 = A3 − DA3, s21d

where

DA3 =
4pi

vp
E

0

1

dr ri/vpE d3q8W

s2pd3

w0sq8dwsvWp − q8W d

frsqW − q8W d2 − vp
−2sE0

H − q82/2dfE0
H − svWp − q8W d2/2gs1 − rd2 + i0g

. s22d

As one can see in Fig. 6 the divergence between B1 and B1F
results is noticeable only in the gap regionu
,0.3–0.4 mrad.

It is impossible to take fully into account the two-body
amplitudestpp and tep in the numerical B2F calculation, al-
though there are analytical expressions for these amplitudes
[20]. We suppose thattpp=Vpp. Such a proposal is based on
the calculations of integral(22). Futher, the operatortep can
be presented in the form

tepsEd = Vep+ o
s

VepuwslkwsuVep

E − «s + i0
, s23d

where uwsl is a full orthonormal set of the Coloumb eigen-
functions of the two-body problem. In the closure approxi-
mation (CA) the eigenenergy is replaced by an averaged

valuees→ Ē. In this case from Eq.(23) the following expres-
sion can be obtained:

kpW8utepsEdupWl = −
4p

spW8 − pWd2 +
1

8

s4pd2

E − Ē + i0

1

upW8 − pW u
, s24d

whereĒ is the CA parameter, −0.5ø Ē,0. This means that
we consider here only an averaged contribution of bound
excitations to thesepd amplitude.

After taking into accounttep in the form(24) and carring
out some transformations of the integrals the correction to
the B2 result looks like

I =
1

p3 E E d3xW

x

d3yW

y2

w0svWp − qW + yWd

s1 + 2Ēd + 2vWpyW − i0

3
fw0sqW − xW − yWd − w0sqW − xWdg
1 + 2vWpyW + sqW − xW − yWd2 − i0

. s25d

Thus the B2F amplitude of the problem in our approximation
assumes the formTB2F=A1+F3+A11+A31+A13+ I. The con-
voluted results of these calculations are presented in Fig. 7.

The best fitting is reached atĒ=−0.4. The calculations in the
B2 and FWL[17] approximations are also presented for the
completeness.

Two important conclusions follow from comparison of the
curves. The first is that one can see the instability of the
contribution of the sepd excitations (a distortion of the
waves) with growth of the proton energy. This contribution is
relatively small in the whole angular range atEp=2.8 MeV.
But at Ep=5.0 MeV this contribution is sufficiently big at
up=0.2–0.5 mrad. At the same time we see that the B2F
model approaches the experiment atEp=2.8 MeV and prac-
tically coincides in the angular rangeup=0–0.25 mrad. In
the angular rangeup=0.25–0.5 one can see the discrepancy
between the theoretical and experimental results. We ascribe
this effect to the necessity to take more carefully into account
the sepd pair continuum intermediate states.

Comparison between the B1F calculations and the first-
order FWL model calculations is also presented in Fig. 8,
where (as we mentioned in the Introduction) the two-body
Coulomb amplitudestC

FIG. 7. Differential cross sections for 1s→1s capture in 2.8 and
5.0 MeV proton-hydrogen collisions vs the scattering angle in the
laboratory system. Results of B2F(solid line), FWL (dashed line,
Ref. [17]), and B2(dotted line) calculations are compared with the
experimental data of Vogt(Ref. [5]). All theoretical results have
been convoluted with the beam profiles.
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tCsk8W ,kW ;«d = kk8W uVCS1 +F« −
1

2m
¹r

2 − VC + ihG−1

VCDukWl

3sC = pp,epd s26d

in the vertices ofF3, F13, F31, and F11 diagrams are taken
only in a limited neighborhood of the energy shell, when

d =
s2mE − k2ds2mE − k82d

2mEukW − k8W u2
! 1.

Such an approximation contains a number of “submarine
reefs,” because the amplitudetCskW ,kW8 ;Ed is a formally singu-
lar function in this neighborhood[21]. Moreover, after this
substitution Alston calculates the resulting multidimensional
integrals in the peaking approximation. Many authors men-
tioned that the peaking approximation is rather crude at mod-
erate energies, and we see that the numerical and approxi-
mate B2 calculations considerably differ from each other. To
test the accuracy of the FWL model, the first-order calcula-
tions within this model(FWL1=AB1+An

s1d; see Eq.(33) in
[17]) were performed and compared with the precise calcu-
lations of the term B1F. As can be seen in Fig. 8, in this case
the FWL model demonstrates very poor convergency to the
precise calculations.

IV. SUMMARY

We present here precise numerical calculations of the
plane wave B1 and B2 terms for the proton-hydrogen charge
exchange reaction at small scattering angles and moderate
energies of existing experiments. The obtained results clearly
show the considerable role of double-scattering mechanisms
even in the angular range 0–0.1 mrad. In any case the term
A1=B1E [Eq. (17)], which contains the direct information on
the ground state wave function, can be dominant nowhere
(see Fig. 3). This observation means that the charge ex-
change reaction at small scattering angles(with or without
ionization of the residual ion) cannot be effectively used for

the angular spectroscopy of a target’s correlation structure.
We also can formulate the following conclusions.
(1) The performed numerical calculation of the multiple

integrals describing the B2 matrix elements shows that the
peaking approximation is rather crude and can be used only
for general estimates of differential cross sections at small
hydrogen scattering angles and high energies of actual ex-
periments. One finds a slow convergence between precise
and approximate calculations with growth of the proton en-
ergy.

(2) The widely known thesis that the B2E contribution is
dominant in the total second Born approximationsuA1+A11u
@ uA3+A13+A31+A33ud is valid only for the peaking approxi-
mation at high energies. Numerical calculations at moderate
energies give the opposite result. Figure 3 clearly demon-
strates that there is no complete cancellation of the terms
containing the internuclear potential.

(3) In the B1 minimum regionsup,0.3 mradd a number
of factors affect the cross-section behavior. One should take
into accountsepd subsystem excitations into discrete and
continuum spectra, proton-nuclear scattering, and even the
accuracy of the hydrogen final-state measurements[8].

(4) We also present here numerical calculations of the
effects of the wave distortion which naturally reveal them-
selves by means of intermediate two-body Coulomb ampli-
tudes. This distortion effect is quite small for protons, which
is to be expected in the considered angular domain. The dis-
tortion of electron waves becomes apparent in the Thomas
peak regionsupù0.4 mradd. However, the simple models,
such as the closure or eikonal approximations, do not yield
the desired results. The accurate representation models of the
two-body amplitudetep [Eq. (26)] appropriate for numerical
calculations must be involved in the whole range of variation
of its three arguments. This problem is the most difficult in
spite of the analytical form of this amplitude.

(5) Finally, we estimate numerically the effect of motion
of the proton in the final state which initially was at rest in
the laboratory system. We found it to be practically negli-
gible as it should be in the considered domains of angles and
energies.
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APPENDIX A: FIRST-ORDER TERM

Let us consider the first-order matrix elementA3

A3 = 4pE d3q8W

s2pd3w0sq8d
1

sqW − q8W d2
wsvWp − q8W d.

After the replacementqW −vWp+q8W =kW and double Laplace
transformations it reads

FIG. 8. Test of the accuracy of the first-order FWL model. Re-
sults of FWL1 (dashed line) and B1F(solid line) calculations are
compared.
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A3 =
32

p
E

0

`

t1 dt1E
0

`

t2 dt2E dkW

k2 exp„− hf1 + sqW − kWd2gt1

+ f1 + skW − qW + vWpd2gt2j…

= 64ÎpE
0

`

t1 dt1E
0

`

t2 dt2

3
exph− sq2 + 1dt1 − f1 + svWp − qWd2gt2j

Ît1 + t2

31F1S1

2
,
3

2
;
fqWt1 − svWp − qWdt2g2

t1 + t2
D .

We put t1=rx, t2=rs1−xd,

A3 = 64ÎpE
0

1

xs1 − xddxE
0

`

dr r5/2 exph− rfsq2 + 1dx

− svWp − qWd2 + 1gs1 − xdj1F1S1

2
,
3

2
;rfqW − vWps1 − xdg2D .

The integral overr can be calculated analytically, and finally
we obtain

A3 = 120pE
0

1 xs1 − xd
b7/2 2F1S7

2
,
1

2
;
3

2
;
l

b
D

= 120pE
0

1

dx
xs1 − xdf1 + 2l/3sl − bd + l2/5sl − bd2g

fb − lg1/2fbg3 dx,

whereb=fsq2+1dx−svWp−qWd2+1gs1−xd, l=fqW −vWps1−xdg2.

APPENDIX B: SECOND-ORDER TERM

We consider here the second-order matrix elementA11 as
an example. The following chain of transformations can be
applied:

A11 = s4pd2E d3q8

s2pd3 E d3q9

s2pd3w0sq8d

3
1

q92

1

E0
H − vWpqW9 − sqW8 − q9W d2/2 + i0

1

sq8W − qWd2

3w0svWp + qW9 − qWd,

A11 =
32

p3i
I11, I11 =E d3x

sqW − xWd2

1

s1 + x2d2E
0

` E
0

`

t1 dt1 dt3 J1,

J1 =E d3y

y2 exp„− y2sit3 + t1d + 2yWfit3xW − it3vp
W − t1svp

W − qWdg

− hit3s1 + x2d + t1f1 + svp
W − qWd2gj…

=
2p3/2

Ît1 + it3
1F1S1

2
,
3

2
;
„it3xW − it3vp

W − t1svp
W − qWd…2

t1 + it3
D

3exp„− hit3s1 + x2d + t1f1 + svp
W − qWd2gj…,

1F1S1

2
,
3

2
;
fit3xW − it3vp

W − t1svp
W − qWdg2

t1 + it3
D

=
1

2
E

0

1 du
Îu

expSu
fit3xW − it3vp

W − t1svp
W − qWdg2

t1 + it3
D .

Let us replacexW→xW +qW and note thatsvWp−qWd2=q2. Then

I11 = 2p3/2E
0

1 du
Îu
E

0

` E
0

` E
0

` t1t2 dt1 dt2 dt3
Ît1 + it3

J2,

J2 =E d3x

x2 expF− x2St2 + it3 +
ut3

2

t1 + it3
D

− 2xWft2qW + it3qW + usvWp − qWdit3gG
3exp„− ht2s1 + q2d + it3s1 + q2d

+ t1f1 + svWp − qWd2g − ust1 + it3dq2j…

=
2p3/2

Ît2 + it3 + ut3
2/st1 + it3d

31F1S1

2
,
3

2
;
ft2qW + it3qW + usvWp − qWdit3g2

t2 + it3 + ut3
2/st1 + it3d

D
3e−fst1+t2+it3ds1+q2d−ust1+it3dq2g.

We designatet1=rxy, t2=rs1−xdy, t3=rs1−yd, and after in-
tegrating byr we obtain

I11 = 24p3E
0

1E
0

1E
0

1 y3xs1 − xddx dy du

ÎuÎsl1 + il 3dsl2 + il 3d + ul3
2

1

b4

32F1S4,
1

2
;
3

2
;
l

b
D ,

wherel1=xy, l2=s1−xdy, l3=s1−yd, and

b = sl1 + l2 + il 3ds1 + q2d − usl1 + il 3dq2,

l =
fl2qW + il 3qW + usvWp − qWdil 3g2

l2 + il 3 + ul3
2/sl1 + il 3d

,

2F1S4,
1

2
;
3

2
;zD =

1

96F 16

s1 − zd3 +
20

s1 − zd2 +
30

s1 − zd

+
15
Îz

lnS1 +Îz

1 −Îz
DG .
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