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Abstract
We have determined the multiply differential cross sections (MDCS) of the vertical
photo-double ionization of diatomic nitrogen with coincidence detection of the ejected
electrons, for fixed and random orientations of the internuclear axis, using the correlated
product of two two-centre continuum Coulomb functions for the description of the two ejected
electrons, which satisfies the exact asymptotic conditions. To verify our procedure, we have
applied it to the photo-double ionization of diatomic hydrogen for which many experimental
and theoretical results are available. Our results on diatomic hydrogen show the influence of
the initial state correlation. In the case of diatomic nitrogen only, the photo-double ionization
of the 3σg orbital is considered resulting in the 1�g state of the residual N2+

2 dication. The case
of the nearby 3�u final state having an open shell configuration will be considered in a future
paper. Our results confirm the symmetry properties of the MDCS and give the optimal ejection
angles. A comparison is also made with results obtained by the Gaussian parametrization
method.

(Some figures may appear in colour only in the online journal)

1. Introduction

The double ionization by a single polarized photon is one
of the principle experimental means to study the electronic
structure of atoms and molecules and to probe electron–
electron correlation, which is the main factor which causes
double ionization of a target [1–3]. An abundant literature
is available for the particular case of (γ , 2e) photo-double
ionization, where the two ejected electrons are detected in
coincidence, especially for the helium and rare gas targets.
See [4–9] for the experimental aspects of this process, and
[10–17] for some of the theoretical approaches. In the case of
diatomic targets, theoretical results are relatively less frequent
for the multiply differential cross section (MDCS) [18], in spite
of the fact that experimental detection of the ejected electrons
from stable, naturally existing diatomic targets like H2 or N2

is quite similar to that of atoms like helium or nitrogen. This
may come from the lack of theoretical support. In fact, after
eliminating the rotational and vibrational movements of the
diatomic target (for that see [19]), describing conveniently

the two ejected electrons in the field of two attractive centres
remains much more difficult than in the atomic case [20–24].

To our knowledge, in spite of the large interest on
molecular dications in astrophysics and plasma science,
dications being very abundant in the ionosphere of many
planets and in interstellar clouds, no MDCS values are
available for the (γ , 2e) photo-double ionization of diatomic
nitrogen with coincidence detection of the two ejected
electrons and the residual N+(3P) ion. In fact the potential
energy of the fundamental state of N2+

2 has a potential well
around the equilibrium internuclear distance whose minimum
is higher than the level of the N+(3P)–N+(3P) separated
ions [25, 26]. This can be exploited in (γ , 2e) dissociative
ionization experiments with coincidence detection of the
residual N+ fragments with the two ejected electrons. This type
of coincidence detection can give the orientation of the initial
target and permit the observation of two-centre interference
phenomena [27–29]. Similar complete experiments have been
performed recently in the case of dissociative (e, 2e) simple
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ionization of diatomic hydrogen by electrons [30], where the
emerging proton was detected in coincidence with the ejected
electron.

The aim of the present work is to give the first MDCS
of (γ , 2e) photo-double ionization of the 3σg orbital of N2

resulting in the 1�g state of the residual N2+
2 dication. The case

of the ionization to the neighbouring 3�u final state of N2+
2

[31, 32], which has an open shell electronic configuration, will
be treated in a future paper. We extend here the computational
procedure with which we have recently obtained [33] the
MDCS of the (e, 3e) double ionization of N2 and H2 in which
we have applied the two-centre double continuum function
[29]. This has given a better agreement with the experimental
results on the (e, 3e − 1) double ionization of the hydrogen
molecule [34], and has shown that the introduction of the
electron–electron correlation in the final state is necessary.

2. Theory

Following Chang and Fano [35] and Ijima et al [19], we admit
that the target, during the inelastic collision, is found in its
fundamental electronic vibrational and rotational state and
apply the closure relation on all of the vibrational and rotational
levels of the final 1�g state of the residual N2+

2 dication
[19]. The MDCS of the photo-double ionization for fixed
internuclear distance ρ and orientation can then be written
in atomic units by

σ (4)(ρ) = d4σ

d�ρd�1d�2 d(k2
1/2)

= 4π2

ω
αk1k2|Tf i|2, (1)

where d�1, d�2 and d�ρ are respectively the elements of the
solid angles for the orientations of the ejected electrons and
the internuclear axis. k1 and k2 represent the moduli of the
wave vectors of the ejected electrons. α = 7.297 35 × 10−3

is the fine-structure constant, ω is the photon frequency. In
the case of randomly oriented targets, we must pass to the
triple differential cross section (TDCS) by integrating over all
possible and equally probable directions of the molecule in
space

σ (3) = 1

4π

∫
d�ρσ

(4)(ρ). (2)

The conservation of the energy, for fixed internuclear distance
ρ, gives

E f = E1 + E2 = Ei + ω, (3)

where E1 = k2
1/2, E2 = k2

2/2 represent respectively the energy
values of the ejected electrons. Ei represents the energy needed
to free the two bound electrons in N2. We define the transition
matrix element

Tf i =
∫

dr1

∫
dr2χ̄ f (r1, r2)Vϕi(r1, r2). (4)

Here V is given in the velocity gauge by

V = ε (∇r1 + ∇r2 ) (5)

with ε representing the polarization vector for the photon. In
the length gauge, it can be given by

V = −ωε (r1 + r2). (6)

The symmetrized final state wave function describing the
state of the two equivalent ejected electrons coming from the
same molecular orbit is written in the following form

χ f (r1, r2) = φ f (k1, r1, k2, r2) + φ f (k1, r2, k2, r1)√
2

. (7)

Here

φ f (k1, r1, k2, r2) = v(k12)1F1

× (ıα12, 1,−ı(k12r12 + k12r12))T (k1, r1)T (k2, r2), (8)

in which we have introduced, like in the case of atoms [36], the
electron–electron correlation. r12 = r1 − r2 gives the relative
position of the two electrons, and

v(k12) = exp
(
−πα12

2

)
� (1 − ıα12) , (9)

represents the Gamow factor with

α12 = 1

2k12
, k12 = 1

2
(k1 − k2). (10)

The final state wave function satisfies the ortho-normality
condition in the sense

〈φ f (k1, r1, k2, r2)|φ f (k′
1, r1, k′

2, r2)〉
= δ(k1 − k′

1)δ(k2 − k′
2). (11)

In equation (8), the one electron two-centre continuum (TCC)
wave function [29] is given by

T (ki, r j) = exp(−παi)(�(1 − ıαi))
2 exp(ıkir j)

(2π)3/2

× 1F1(ıαi, 1,−ı(kir ja + kir ja))

× 1F1(ıαi, 1,−ı(kir jb + kir jb)). (12)

It describes a slow electron in the field of two Coulomb centres.
Here

αi = −Zi

ki
, r ja = r j + ρ/2, r jb = r j − ρ/2, i, j = 1, 2,

(13)

and Zi = 1. Finally ϕi(r1, r2) represents the space part of the
initial state wave function.

Taking into account the symmetry of the final and initial
functions with respect to exchange of r1 and r2, we can reduce
the expression of the transition matrix element to the following
six dimensional integral

Tf i =
√

2
∫

dr1

∫
dr2φ̄ f (r1, r2)Vϕi(r1, r2). (14)

The space coordinates of the wave functions are defined in
the molecular frame of reference, whose origin is fixed on the
centre of mass of the molecule and whose z-axis is parallel to
the internuclear vector ρ of constant modulus.

3. The initial state wave functions

3.1. The case of H2

To show the importance of the initial state correlation, we
consider three different variational wave functions for the

2
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initial 1�g fundamental electronic state of H2. We first apply
the most elementary Heitler–London [37] wave function

ϕi(r1, r2) = N(ρ)[a1b2 + a2b1],

ai =
√

λ3

π
e−λria , bi =

√
λ3

π
e−λrib, (15)

N(ρ) = 1√
2(1 + S2)

, S = e−λρ

3
[ρ2λ2 + 3ρλ + 3], λ = 1.

Here the ground state energy Ei = −1.115 au at the
internuclear equilibrium distance ρ = 1.56 au. The
comparison of the results obtained by this function with those
given in [20] will permit us to verify our procedure.

We then apply the Mueller–Eyring wave function
borrowed from [38]

ϕi(r1, r2) = N(ρ)[φ(1)ψ(2) + ψ(1)φ(2)]

φ( j) = xa( j) + εxb( j), ψ( j) = εxa( j) + xb( j),

xa( j) = exp(−βξ j − γ η j), xb( j) = exp(−βξ j + γ η j),

ξ j = r ja + r jb

ρ
, η j = r ja − r jb

ρ
,

β = 0.835, γ = 0.775, ε = 0.137, N(ρ) = 0.255 (16)

for which the ground state energy Ei = −1.149 au at the
internuclear distance ρ = 1.4 au.

The Turbiner–Guevara wave function [39], gives the best
energy value Ei = −1.174 4196 au for the internuclear
distance ρ = 1.4 au. It is obtained by a variational method
having 14 parameters and includes the electron–electron
separation r12

�(�r1,�r2) = A1ψ1 + A2ψ2 + A3ψ3,

ψ1 = (1 + P̂12)(1 + P̂ab)

× exp(−α1r1a − α2r1b − α3r2a − α4r2b − γ1r12),

ψ2 = (1 + P̂12)

× exp(−α5r1a − α6r1b − α6r2a − α5r2b − γ2r12),

ψ3 = (1 + P̂12)

× exp(−α7r1a − α7r1b − α8r2a − α8r2b − γ3r12). (17)

Here P̂12 and P̂ab are the operators that interchange electrons
(1 ↔ 2) and the two nuclei (a ↔ b), respectively. As we
will see later in the results, this function will modify the
behaviour of the MDCS obtained by the Heitler–London wave
function presented in [20], that we reproduced also. This shows
the necessity of introducing the initial state electron–electron
correlation in the transition matrix element.

3.2. The case of N2

The initial ground state configuration of N2 is given by [40]

1σ 2
g 1σ 2

u 2σ 2
g 2σ 2

u 3σ 2
g 1π4

u . (18)

The molecular orbitals σg, σu and πu-type mentioned above
are constructed by linear combinations of the following
double Slater type 1s, 1s′, 2s, 2s′, 2p, 2p′ and single Slater
type 3d atomic orbitals [40] for the internuclear distance
ρ = 2.0675 au:

1s =
√

ξ 3
1

π
exp(−ξ1r), 1s′ =

√
ξ 3

2

π
exp(−ξ2r),

2s =
√

ξ 5
3

3π
r exp(−ξ3r), 2s′ =

√
ξ 5

4

3π
r exp(−ξ4r),

2pz =
√

ξ 5
5

π
z exp(−ξ5r), 2p′

z =
√

ξ 5
6

π
z exp(−ξ6r),

3dzz =
√

ξ 7
7

18π
(2z2 − x2 − y2) exp(−ξ7r),

2px =
√

ξ 5
8

π
x exp(−ξ8r), 2p′

x =
√

ξ 5
9

π
x exp(−ξ9r),

2py =
√

ξ 5
8

π
y exp(−ξ8r), 2p′

y =
√

ξ 5
9

π
y exp(−ξ9r),

3dxz =
√

2ξ 7
10

3π
x z exp(−ξ10r),

3dyz =
√

2ξ 7
10

3π
y z exp(−ξ10r). (19)

The σg, σu and πu-type molecular orbitals are given
respectively by

ψ
g
i = ci1

1sa + 1sb√
2

+ ci2
1s′

a + 1s′
b√

2
+ ci3

2sa + 2sb√
2

+ ci4
2s′

a + 2s′
b√

2
+ ci5

2pza − 2pzb√
2

+ ci6
2p′

za
− 2p′

zb√
2

+ ci7
3dzza + 3dzzb√

2
, i = 1, 3, 5,

ψu
i = ci1

1sa − 1sb√
2

+ ci2
1s′

a − 1s′
b√

2
+ ci3

2sa − 2sb√
2

+ ci4
2s′

a − 2s′
b√

2
+ ci5

2pza + 2pzb√
2

+ ci6
2p′

za
+ 2p′

zb√
2

+ ci7
3dzza − 3dzzb√

2
, i = 2, 4,

φx
i = ci8

2pxa + 2pxb√
2

+ ci9
2p′

xa
+ 2p′

xb√
2

+ ci10
3dxza − 3dxzb√

2
, i = 6,

φ
y
i = ci8

2pya + 2pyb√
2

+ ci9
2p′

ya
+ 2p′

yb√
2

+ ci10
3dyza − 3dyzb√

2
, i = 6. (20)

The optimized orbital exponents ξ j, j = 1 − 10
[40], and the corresponding coefficients of the molecular
orbitals, which have been obtained by the Fortran code STOP
[41, 42], are shown in table 1. Our calculations are performed
with relative accuracy 10−5. The comparison of the calculated
orbital energies, and the total energy values with those given
in [40, 43, 44] are displayed in table 2.

The initial wave function describing the valence electrons
of the 3σg orbital is given by

ϕi(r1, r2) = 3σg(r1)3σg(r2) ≡ ψ
g
5 (r1)ψ

g
5 (r2). (21)

In contrast to the case of diatomic hydrogen for which many
highly correlated wave functions are available, we will, at

3
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Figure 1. The variation, in polar representation, of the fourfold differential cross section in atomic units equation (1), scaled by 105, of the
photo-double ionization of H2 obtained by the velocity gauge (left) and the length gauge (right). The polar angle represents the ejection
angle θ2. Here E1 = E2 = 10 eV and the polarization vector ε is parallel to the internuclear axis ρ; k2, ε, ρ are coplanar and k1 is
perpendicular to them. (cf [20] figure 8(a).) The solid line gives the results obtained by the Turbiner–Guevara wave function, the dotted line
those obtained by the Mueller–Eyring wave function and the dashed line those obtained by the Heitler–London wave function.

Table 1. The basis exponents and coefficients for N2.

1σg 1σu 2σg 2σu 3σg 1πu

ξ1 6.212 92 ci1 0.858 87 0.859 12 −0.302 67 −0.254 63 0.071 39
ξ2 9.368 27 ci2 0.147 54 0.147 73 0.026 56 0.018 70 0.000 63
ξ3 1.467 86 ci3 −0.000 37 −0.006 05 0.083 23 0.430 95 −0.399 26
ξ4 2.246 42 ci4 0.003 23 0.003 65 0.604 23 0.657 87 −0.236 94
ξ5 1.528 53 ci5 −0.000 17 −0.004 03 0.239 54 −0.275 66 0.637 48
ξ6 3.336 78 ci6 0.002 41 0.002 68 0.158 70 −0.139 60 0.287 82
ξ7 1.935 00 ci7 0.000 84 −0.000 20 0.095 60 0.005 93 0.083 90
ξ8 1.528 53 ci8 0.650 87
ξ9 3.336 78 ci9 0.251 09
ξ10 2.437 00 ci10 0.073 59

Table 2. The molecular orbital energies and total energy of N2.

Present [40] [43] [44]

1σg −15.695 86 −15.696 23 −15.681 95 −15.721 88
1σu −15.692 25 −15.692 62 −15.678 33 −15.719 78
2σg −1.486 70 −1.485 69 −1.473 60 −1.452 70
2σu −0.787 60 −0.785 81 −0.779 60 −0.730 59
3σg −0.647 73 −0.642 78 −0.642 78 −0.544 58
1πu −0.621 38 −0.622 61 −0.615 54 −0.579 73

Total −108.978 54 −108.971 43 −108.992 80 −108.823 00
energy

this stage, apply only the above diatomic Hartree–Fock wave
function for the case of diatomic nitrogen in the frozen core
model. Applying models of wave functions going beyond
Hartree–Fock and including the electron–electron separation
r12 is somewhat more complicated and time consuming
but not impossible. We will undertake this task in future
calculations.

4. Results

In what follows we take the propagation of the linearly
polarized photon in the x direction with the polarization vector
ε parallel to the z axis of the laboratory frame. The orientation
of the internuclear axis, which will be considered as fixed
during the ionization process, will be given by the polar θρ and
azimuthal ϕρ angles with respect to the laboratory frame.

We begin by verifying our procedure first by reproducing
exactly the results concerning the (γ , 2e) photo-double
ionization of H2 given by [20], which are obtained by applying
the velocity gauge and using the simple Heitler–London wave
function. These are given by the curves with dashed lines in
figures 1–4.

In figure 1, concerning the situation ε ↑↑ ρ, we also
present the results obtained by the length gauge. We observe
that in this case the length gauge produces the same structure
as the velocity gauge with a magnitude about ten times bigger
for the result obtained by the Turbiner–Guevara wave function,
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Figure 2. Same as in figure 1, for ρ ⊥ ε. The results are obtained by
the velocity gauge. Here the cross section with the Heitler–London
wave function is multiplied by 1.5. (cf [20] figure 8(d).)
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Figure 3. Same as in figure 1, for ε ↑↑ k1; k2 coplanar with ε, k1

and ρ is perpendicular to them. (cf [20] figure 10(a).) The results are
obtained by the velocity gauge.

about 15 times for those obtained by the Mueller–Eyring wave
function and about 20 times for those obtained by the Heitler–
London wave function. This shows that the quality of the
initial state function plays an important role, and that it is not
the only factor. It is now admitted that the coincidence of the
results obtained by the length and velocity gauges for low
ejection energy values is an excellent check for the quality
of the initial and also of the final state wave function. As
an example one can see the good agreement between the
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Figure 4. Same as in figure 1, for k1 ⊥ ε; ρ is coplanar with ε. (cf
[20] figure 11(b).) The results are obtained by the velocity gauge.

results concerning the oscillator strength of He obtained by
three different gauges given in [45]. Other examples of such
coincidences can be found also in numerical convergent close
coupling calculations [46] or time-dependent close coupling
[47]. The examples, for which the two gauges do not produce
similar results, are numerous. We can mention the results of
Byron and Joachian in [48], Le Rouzo [49], Kornberg and
Miraglia [50] in the case of helium, and those of Kheifets
in the case of Be [16]. Now the reason of this disagreement
between the results of the different gauges can be diverse. The
quality of the wave functions should play the most important
role. There is also the fact that the velocity gauge is supposed to
be more appropriate to the cases of higher energy values [51].
Kheifets and Bray in [16] explain the disagreement between
the results of the length and velocity gauges by the fact that
they have used the frozen core model for Be. Now coming
back to our case of H2, where the description of the double
continuum in the final state is much more difficult, we think
that the disagreement could be due to the final state wave
function, which is given in the form of a correlated product of
the TCC wave function, which satisfies the correct asymptotic
conditions, but does not represent an exact solution of the
problem. The disagreement can also result from the fact that
the length gauge is less appropriate for the considered energy
domain as we mentioned above [51].

In figure 2 the structure of the curves obtained by the
three wave functions remains quite similar also, but the curve
obtained by the Heitler–London wave function presents four
lobes—two of them very small—which are attenuated in
the case of Mueller–Eyring and disappear completely in the
Turbiner–Guevara case.

In figure 3 the differences between the results of the three
initial state wave functions become somewhat more visible.
The three lobes do not have the same optimal directions for

5



J. Phys. B: At. Mol. Opt. Phys. 46 (2013) 185203 A A Bulychev et al

Figure 5. The variation, in polar representation, of the FDCS in
atomic units equation (2), scaled by 105, of the photo-double
ionization of H2 in the velocity gauge obtained by the
Turbiner–Guevara wave function. The polar angle represents the θ2

of the ejected electron. Here E1 = E2 = 12.5 eV and θ1 = 10◦. The
experimental data are from Weber [52]. (cf [21] figure 4.)

k2. In figure 4 the disagreement is more pronounced. This
verifies once more the fact that the initial state electron–
electron correlation is an important factor in this process.
This was pointed out in the very early stages of photo-double
ionization in [1].

In figure 5 we present the variation of the TDCS for
randomly oriented targets in atomic units obtained by the

velocity gauge for E1 = E2 = 12.5 eV compared to
the experimental results of Weber [52] extracted from [21].
Here we have used the Turbiner–Guevara wave function,
which we admit is the most reliable, as it includes the
electronic correlation best. The polarization vector and the
wave vectors of the ejected electrons lie in the plane of
the figure. The ejection angle of one of the photoelectrons
is fixed at θ1 = 10◦ with respect to the polarization vector,
and the second angle θ2 is chosen as the polar angle of the
curve. Here, all molecular orientations are taken into account.
The experimental results are scaled in such a way to have
the theoretical and experimental maxima around 250◦ of the
same size.

Once we have tested our procedure and observed that
it produces the experimental results quite well, we pass to
the photo-double ionization of N2 in the equal ejection energy
regime. Here we will also consider the photo-double ionization
of N2 as a vertical transition from the fundamental electronic
state of the neutral target at its equilibrium internuclear
distance to the fundamental 1�g state of the residual N2+

2
dication. The case of the photo-double ionization to the
neighbouring 3�u final state of N2+

2 —which should contribute
to the results in experiments—have low energy resolution
and cannot distinguish between the two possible events (see
[31, 32]). The present work is a first tentative one to tackle
the photo-double ionization of N2 by the correlated TCC
function. We will apply, at this stage, the wave function
described in section 3.2, which is constructed by the Hartree–
Fock diatomic orbital (see equation (21)). Higher quality
wave functions including the electron–electron separation r12

are more difficult to obtain, and their application is much
more time consuming. We will undertake this work in a
future paper. Our results will be compared to those obtained
by the best fit of the following Gaussian parametrization
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Figure 6. Left: greyscale representation (colourscale in the online version) of the variation of the TDCS in atomic units equation (2), scaled
by 104, of the photo-double ionization of the 3σg level of N2 obtained by the velocity gauge in terms of the two ejection angles θ1 and θ2.
Here E1 = E2 = 10 eV, and the vectors k1, k2, ε lie in the same plane. Right: the equivalent representation obtained by the Gaussian
parametrization fit.
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Figure 7. Polar representation of the variation of the TDCS in
atomic units, scaled by 104, of the photo-double ionization of the
3σg orbital of N2 obtained by the velocity gauge. The polar angle
represents the θ2 of the ejected electron. Here θ1 = 2π − θ2,
E1 = E2 = 10 eV, and the vectors k1, k2, ε lie in the same plane.
The solid line represents the results obtained by equation (2). The
dashed line shows those obtained by the Gaussian parameterization.

formula [53]

f (θ1, θ2) = a (cos(θ1) + cos(θ2))
2

× exp

[
−4 ln(2)

(θ12 − 180◦)2

�2

]
, θ12 = |θ1 − θ2|. (22)

The fitting is done by minimizing the following function with
respect to the parameters a, �, using a comprehensive modified
Newton algorithm:

F(a, �) = 1

372

37∑
i, j=1

(
σ (3)

(
θ i

1, θ
j

2

) − f
(
θ i

1, θ
j

2

))2 −→a,� min,

θ i
1 = 10◦(i − 1), θ

j
2 = 10◦( j − 1), (23)

with σ (3)(θ i
1, θ

j
2 ) representing our calculated TDCS. The

reached accuracy is 10−6. This gives the best correlation factor
width � = �(E ) = 1.7346 = 99.4◦ and

a = a(E ) = 1.2945 × 10−3, F(a, �) = 1.0029 × 10−1.

(24)

Figure 6 gives, in the greyscale representation (colourscale
in the online version), the variation of the TDCS for the photo-
double ionization of the 3σg orbital of N2 in terms of the
two ejection angles for E1 = E2 = 10 eV. Here the vectors
k1, k2 and ε lie in the same plane. On the left we present our
results, and on the right those obtained by the parameterization
formula. We observe that, on the two curves, the symmetry
σ (3)(θ1, θ2) = σ (3)(θ2, θ1) is respected. Then the diagonal
θ1 = θ2 is an axis of symmetry, as we obtain practically the
same structure on both sides of this line. We must mention
here that perfect symmetry on the figure corresponding to
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Figure 8. Same as in figure 7 but with a fixed value of θ1 = 180◦.
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Figure 9. Same as in figure 7 but with a fixed value of θ1 = 90◦.

our results is obtained by employing accurate integration over
the molecular orientations. We also observe that the second
diagonal line defined by θ1 + θ2 = 2π is also a symmetry axis
as expected. In the same manner, the lines θ1 = θ2 ± π have
the same structure on both of their sides as expected also.

These symmetry situations can also be observed on the
three polar representations of figures 7–9, where we have
plotted the results of the two types of calculations to show their
differences. In figure 7, where θ1 + θ2 = 2π and E1 = E2, the
four lobes of each curve are identical, as expected. In contrast
to the atomic case of He, we observe here the deflection
of the calculated TDCS from the Gaussian distribution.
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Figure 10. Same as in figure 7 but with a fixed value of θ1 = 60◦.

Figures 8 and 9 present two particular situations in polar
representation at respectively θ1 = 180◦ and θ1 = 90◦. Here
the deflection of our results from the Gaussian shape is also
evident. In the first case, the electron with wave vector k1, is
ejected in the direction of ε and in the second, perpendicular to
it. We see that, as expected, the latter geometry, which puts k1

far from the polarization vector ε, is more efficient. Finally, in
figure 10, we show the variation for the situation, which gives
the largest lobe with respect to the preceding cases. This
happens for θ1 = 60◦. Here the comparison with the results of
the Gaussian parametrization also shows a deflection, which
is very similar to the one observed for the experimental results
concerning the photo-double ionization of D2 for the same
ejection energy values of (see figure 3 in [18]).

5. Conclusion

We have determined the fourfold and triple differential
cross sections, corresponding respectively to the oriented and
randomly oriented diatomic molecules, of the photo-double
ionization of H2 and N2 diatomic systems, in the equal ejection
energy regime, by applying the correlated product of two TCC
functions, to describe the two equivalent ejected electrons,
which has the advantage of showing the influence of the
final state electron–electron correlation. We have applied three
different initial state wave functions for the fundamental state
of H2, shown the importance of the initial state correlation and
obtained quite good agreement with the experimental results.
In the case of N2, basic Hartree–Fock diatomic orbitals are
obtained and applied as a first attempt. The results verify
the symmetry conditions of the TDCS and show the optimal
ejection directions for an equal energy sharing geometry. The
comparison with the fitted Gaussian parametrization results
show some instructive deflections due to the diatomic nature
of the targets. The case of unequal ejection energy, and the

neighbouring 3�u state of N2+
2 , which presents open shell

configurations will be treated in a near future paper.
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