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a b s t r a c t 

In a recent paper published in the journal Nature physics [1] , a possibility to measure the fully differ- 

ential cross section of the reaction of single Compton ionization of a helium atom without detecting the 

scattered photon has been demonstrated. A comparison of the experimental data with the theory based 

on the Kramers-Heisenberg-Waller model has shown a good applicability of this model to the case of low 

(of the order of several keV) photon energies. In the present paper, the possibility of using such reactions 

for studying the momentum distribution of the active electron in the target atoms is discussed in more 

detail. We also make a comparison of Compton momentum spectroscopy method with widely known 

electron momentum spectroscopy. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

Recently, an international research team has carried out a kine- 

atically complete experimental measurement of Compton ioniza- 

ion cross sections of free helium atoms at synchrotron Petra III 

DESY, Hamburg) with the COLTRIMS detector (COLd Target Re- 

oil Ion Momentum Spectroscopy) and gave an adequate theoret- 

cal description of the obtained results. In the experiment, Comp- 

on scattering of photons with the energy of 2.1 keV by helium 

toms was studied near the ionization threshold, i.e. the reactions, 

n which the transferred energy was close to the potential of single 

onization of the helium atom I p = 24 . 6 eV. A comparison of the

xperimental cross sections with the theoretical ones calculated in 

he Kramers-Heisenberg-Waller approximation (also called A 

2 ap- 

roximation) [2,3] with various initial and final trial wavefunctions 

f the atom has shown a sensitivity of the fit quality to the choice 

f the wave functions [1] . 

A theoretical description of Compton scattering by free elec- 

rons was given almost a hundred years ago independently by 

ompton [4] and Debye [5] based on the concept of the photon 

s a relativistic particle. However, this description completely dis- 

egarded the effects of electron boundness in the atoms. These 

ffects were first considered by DuMond [6] , who, shortly after 

he development of quantum mechanics and the description in its 
∗ Corresponding author. 
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ramework of the atomic structure, made the assumption based 

n the results of his experiments that Compton scattering can be 

sed for exploring the structure of the atoms of the scatterer. He 

ssociated the broadening of the energy spectrum observed at a 

xed scattering angle with the momentum distribution of the elec- 

rons bound in the material of the scatterer and, having considered 

everal trial momentum distributions for various electronic states, 

ound that the structure of the observed spectrum of the radiation 

cattered by beryllium atoms is well reproduced theoretically us- 

ng the quantum mechanical description of bound electrons in the 

toms. 

Since the time of Compton’s experiments, the researches in this 

eld have been based on the coincidence method for simultaneous 

etection of the electron emitted as a result of the ionization and 

he scattered photon, which was proposed by the German physi- 

ists Bothe and Geiger [7] just for studying the Compton effect in 

924. However, the use of the electron-photon coincidence method 

or precision measurements was impossible because of a number 

f technical restrictions. The situation changed with the develop- 

ent of a new method of registration of charged scattered parti- 

les, called COLTRIMS [8] , and there appeared a real opportunity to 

se Compton scattering to determine the angular and energy spec- 

ra of both the scattered photons and the electrons emitted as a 

esult of a single ionization. The COLTRIMS method allows one to 

imultaneously measure the momenta of the electron and the re- 

oil ion, which makes it possible to carry out measurements by the 

oincidence method with high accuracy. In particular, using this 

echnique, it became possible to collect the ions and electrons from 

https://doi.org/10.1016/j.jqsrt.2021.107820
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jqsrt
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jqsrt.2021.107820&domain=pdf
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lmost the total solid angle �tot = 4 π . In this case, the momentum 

f the scattered photon can be found from the law of momentum 

onservation, which eliminates the necessity to detect it. Often this 

s just impossible in experiments with atoms, because the cross 

ections are extremely small (about a million times smaller than 

he typical cross sections of photoionization), and it takes a very 

ong time to collect the necessary statistics. 

In quantum electrodynamics, the standard theory of Compton 

onization is based on two Feynman diagrams of the second order 

see, for example, [9] ). However, in the case of photons with ener- 

ies of several (and even several tens of) keV, one can consider the 

escription of this process using the non-relativistic Schrödinger 

quation [10] . As a result, the matrix element corresponding to 

hese diagrams splits into the sum of two terms. Both these terms 

re of the second order in the fine structure constant α, but the 

orm of the first term, traditionally denoted A 

2 , resembles that of 

he first Born approximation (FBA) in the case of the atom ioniza- 

ion by a charged particle (proton, electron), and the form of the 

econd (integral) term coincides with that of the second Born ap- 

roximation (SBA). For a sufficiently high photon energy, the main 

ontribution to the amplitude is given by the FBA term, and the 

econd term turns out to be small and can be viewed as a correc- 

ion [11] . 

This theoretical model turned out to be fairly simple, which al- 

owed us to consider a number of trial functions of the initial and 

nal states and to compare the results with the experiment, as 

ell as to estimate the possibility of this new method to carry out 

 precision spectroscopy (angular and energy) of the outer shells of 

toms (molecules). At the same time, the experiment distinguished 

etween the sets of the trial functions, which showed the possibil- 

ty of using Compton ionization along with the well-known spec- 

roscopic methods such as (e, 2e) (electron impact ionization), (p, 

e) (proton impact ionization), etc. In the theory of single ioniza- 

ion of a target by a fast projectile particle, two types of reactions 

re distinguished depending on the value of the momentum trans- 

er Q . Reactions with low momentum (and energy) transfer from 

 projectile to a target atom make it possible to better distinguish 

etween the models of the final state functions, and their fully dif- 

erential cross sections (FDCS) are less sensitive to the details of 

he one-particle wave function of the active electron in the atom, 

s well as to (ee ) - correlations in the target. Such reactions are

alled binary. On the contrary, in the case of reactions with large 

omentum (and energy) transfer, the final wave function simpli- 

es greatly, and the FDCS reveals individual details of the momen- 

um distribution of an electron in an atom (molecule). Such reac- 

ions are called quasielastic. 

Thus, the experimental and theoretical results recently pub- 

ished in [1] , showed new possibilities of Compton ionization of 

toms as a method of dynamical spectroscopy of the active elec- 

ron. This became possible due to the precision measurements of 

ery small differential cross-sections using modern techniques. As 

 result, the attempts of the pioneers to use the Compton effect 

iscovered almost a hundred years ago for the purpose of spec- 

roscopy of quantum objects with the help of their unsophisticated 

evices, nowadays received a new impetus. 

For a sufficiently high photon energy, Compton ionization reac- 

ions allow one to vary the momentum transfer over a wide range, 

hich makes it possible to study both types of reactions in one ex- 

eriment. The theoretical interpretation of the final state of a tar- 

et is also greatly simplified. Thus, in this paper, we focus on large 

omentum transfers in the Compton ionization reaction (below 

e shortly call them CMS – Compton momentum spectroscopy), 

nd make a comparison of such reactions with (e, 2 e ) reactions in

he kinematics of electron momentum spectroscopy (EMS), which 

ow give a valuable information about the wave function of the 

ctive electron in the target [12,13] . 
2 
The atomic units e = m e = h̄ = 1 , c = 137 are used throughout

he paper, unless it is stated otherwise. 

.1. General formulas 

As it has been already noted in the Introduction, nowadays the 

tandard theoretical description of Compton scattering at free and 

ound electron is carried out in the framework of QED. However, 

he rigorous relativistic approach contains a series of logical diffi- 

ulties, namely: 

1. In QED, the ion is considered not as a particle, but as a source 

of an external classical Coulomb field. Of course, such a consid- 

eration is admissible due to the huge ion mass M ion . However, 

in the COLTRIMS detector, where the ion is detected and its mo- 

mentum is measured, it moves and behaves like a particle. 

2. It is extremely challenging to construct a trial wave function of 

an atom with electron correlations. 

3. It is also very difficult to find Green’s function of an electron in 

the Coulomb field of the ion. 

However, historically the description of the Compton effect was 

arried out with the help of the time-dependent non-relativistic 

chrödinger equation, which is quite adequate even for photon en- 

rgies of several tens of keV and low electron energies up to a hun- 

red eV. At such energies, the ion remains practically at rest during 

he reaction and acquires a momentum K . The energy-momentum 

onservation laws are written in the form: 

 1 = ω 2 + I p + E e + E ion (1.1) 

 1 = k 2 + p + K (1.2) 

In Eq. (1) , I p is the single ionization potential of the helium 

tom, E e (p ) is the energy (momentum) of the emitted electron, 

 ion (K ) is the energy (momentum) of the residual ion, and ω i (k i )

tands for energy (momentum) of the initial (final) photon. The 

omentum transfer is Q = k 1 − k 2 = p + K . 

Let us write down the Schrödinger equation for the helium 

tom with a vector-potential A of electromagnetic field: 

 

∂ 

∂t 
�( r 1 , r 2 , r n , t ) = 

[
1 

2 

(
−i ∇ 1 − 1 

c 
A ( r 1 , t ) 

)2 

+ 

1 

2 

(
−i ∇ 2 − 1 

c 
A ( r 2 , t ) 

)2 

+ 

1 

8 M 

(
−i ∇ n + 

1 

c 
A ( r n , t ) 

)2 

− 2 

| r n − r 1 | −
2 

| r n − r 2 | + 

1 

| r 1 − r 2 | 
]
�( r 1 , r 2 , r n , t ) . (2) 

In Eq. (2) M = 1836 a.u. is the proton mass, r n is the co-

rdinate of the nucleus, and r 1 , 2 denote the coordinates of the 

lectrons. Here, we will not use the second quantized operator 

f electromagnetic field, but rather define the vector potential 

s follows: 

1 

c 
A (r , t) = 

√ 

2 π

ω 1 

e 1 e i ( k 1 r −ω 1 t) + 

√ 

2 π

ω 2 

e 2 e −i ( k 2 r −ω 2 t) + c.c. (3) 

In this formula e 1 (e 2 ) denotes the vector of the linear polariza- 

ion of the initial (final) photon. Such a choice of the vector po- 

ential corresponds to the normalization of the photon wave func- 

ion to one photon per unit volume and allows to describe pro- 

esses with one absorbed and one emitted photon. We recall that 

 k i · e i ) = 0 , so div A (r , t) = 0 , which corresponds to the Coulomb

auge of the field. 
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The term describing the interaction of an electron with the field 

an be written down as 

 int = i 
1 

c 
( A ( r , t ) · ∇ r ) + 

1 

2 c 2 
A 

2 ( r , t ) (4.1) 

= i 

( √ 

2 π

ω 1 

e i ( k 1 r −ω 1 t ) ( e 1 · ∇ r ) + 

√ 

2 π

ω 2 

e −i ( k 2 r −ω 2 t ) ( e 2 · ∇ r ) 

) 

+ 

π

ω 1 

+ 

π

ω 1 

e 2 i ( k 1 r −ω 1 t) + 

π

ω 2 

+ 

π

ω 2 

e −2 i ( k 2 r −ω 2 t) 
)
+ (4.2) 

2 π√ 

ω 1 ω 2 
( e 1 · e 2 ) e 

i [ ( k 1 −k 2 ) r −( ω 1 −ω 2 ) t ] + c.c. (4.3) 

The term in Eq. (4.3) just defines the A 

2 approximation in the 

ompton scattering theory. Two more terms relevant for this pro- 

ess are the terms in Eq. (4.1) , which describe the successive ab- 

orption and emission of photons by an electron taking into ac- 

ount intermediate Green’s function of the atom. These interaction 

erms will not be considered here, because their contribution is 

mall for a relatively high photon energy, and it was investigated 

n more detail for the case of the hydrogen atom in our recent pa-

er [11] . 

Further, calculating the ionization cross section, carrying out 

tandard operations and omitting details, we 

1. neglect the interaction of the nucleus with the field, since it is 

inversely proportional to the mass of the nucleus (which is also 

valid in the relativistic treatment); 

2. integrate the matrix element with respect to the time t and the 

coordinate of the ion r n , which, since we have neglected the 

interaction with the field, describe the uniform motion of the 

atom and give the corresponding delta functions of energy and 

momentum conservation; 

3. neglect the energy of the residual ion in the law of energy con- 

servation, because E ion = K 

2 / 8 M, and the ion mass 4 M is huge; 

4. perform further integrations, removing the delta functions. 

Consequently, we obtain the FDCS of the single ionization of an 

tom by Compton scattering 

 DCS ≡ d 3 σ

d E e d �e d �1 

= 

α4 

(2 π) 3 
p 

(
1 − E e + I p 

ω 1 

)
1 

2 

∑ 

e 1 ,e 2 

| M| 2 . (5) 

he summation in Eq. (5) implies averaging over the initial polar- 

zation e 1 and the summation over the final e 2 polarization of the 

hoton. The matrix element has the form 

( Q , p ) = ( e 1 · e 2 ) < 	−
f 
(p ) | 

2 ∑ 

j=1 

e i Qr j | 	0 > . (6) 

ince the initial < r 1 , r 2 | 	0 > and final < 	−
f 
(p ) | r 1 , r 2 > wave

unctions can be trial and do not need to be the eigenfunctions 

f the Hamiltonian of the helium atom, they should be orthogo- 

alized in order that the matrix element M(Q , p ) = 0 at Q = 0 . We

hoose the standard recipe of orthogonalization and replace 

−∗( p ; r 1 , r 2 ) → 	−∗( p ; r 1 , r 2 ) − 〈 	−(p ) | 	0 〉 	0 ( r 1 , r 2 ) , 

s well as take into account the symmetrization by introducing the 

actor 1 / 
√ 

2 . 

In this formula, the symmetric trial function of the initial state 

f the helium atom 	0 (r 1 , r 2 ) may include electron correlations 

f various degrees, and the simple final function is chosen in its 

symptotic form 

−∗
f 

( p ; r 1 , r 2 ) 

= 

1 √ 

2 

[ ϕ 

(∗−) ( p , r 1 ; Z) ϕ 

He + 
0 (r 2 ) + ϕ 

(∗−) ( p , r 2 ; Z) ϕ 

He + 
0 (r 1 )] . (7) 
3 
ith 

 

He + 
0 (r) = 

√ 

8 

π
e −2 r , ϕ 

(∗−) ( p , r ; Z) 

= e −πζ/ 2 �(1 + iζ ) e −i p ·r 
1 F 1 [ −iζ , 1 ; i (pr + p · r )] . 

he Coulomb function ϕ 

(∗−) ( p , r ; Z) depends on the effective ion 

harge Z = −pζ , that the electron feels when leaving the atom. 

symptotically Z = 1 , but inside the atom it can also depend on 

he radius r. 

Let us now discuss the matrix element in Eq. (6) . It has been

erived as the second order term in the A 

2 model, but from the 

oint of view of scattering of a charged particle (electron, proton) 

y an atom, this matrix element has the structure of the plane- 

ave first Born approximation (PWFBA). The singlet symmetry of 

ll wave functions and that of the transition operator enable us to 

roup the terms in Eq. (7) in such a way that the variable p in the

ntegrands in Eq. (6) mates to the variable r 1 . As a result, we get 

1 

2 

∑ 

e 1 ,e 2 

| M| 2 = (1 + cos 2 θ ) | T 1 + T 2 − 2 T 3 | 2 , (8) 

here 

 1 ( p , Q ) = 〈 ̃  	−(p ) | e i Q ·r 1 | 	0 〉; T 2 ( p , Q ) = 〈 ̃  	−(p ) | e i Q ·r 2 | 	0 〉;

 3 ( p , Q ) = 〈 ̃  	−(p ) | 	0 〉〈 	0 ) | e i Q ·r | 	0 〉 . (9) 

he tilde in Eq. (9) means that the continuum wave function is not 

ymmetric anymore. Since in the atomic units k = ω/c (c = 137) , 

he momentum transfer is Q = k 1 

√ 

1 − 2 t cos θ + t 2 , where θ is the 

cattering angle of the photon, i.e. the angle between the vectors 

 1 and k 2 . The variable 

 = 

(
1 − I p + E e 

ω 1 

)
, 

etermines the energy of the final photon, since ω 2 = ω 1 t . 

.2. Physical mechanisms 

The first term T 1 in sum (8) describes the process, where elec- 

ron 1 (active) both absorbs and emits a photon, acquires a mo- 

entum transfer Q and leaves the atom. In the exponential, the 

omentum p is subtracted from the momentum Q , and T 1 de- 

ends therefore on the momentum q = p − Q . This momentum is, 

n fact, the momentum of the bound active electron in the atom 

nitially being at rest, since q + K = 0 . This is the direct process, 

hich plays the crucial role in the reactions of scanning the mo- 

entum distributions in atoms, such as (e, 2e) [12,13] . The main 

ontribution to the integral T 1 does not depend on the magnitude 

f the vectors p and Q , but only on their difference. Of course, the

ctive electron is described by a Coulomb wave, which somewhat 

istorts the effect of the plane wave description, but does not fun- 

amentally change the effect of the term T 1 as a tool of dynamic 

pectroscopy. 

The term T 2 in sum (8) describes a different physical process. 

assive electron 2 absorbs a photon, but transfers its energy and 

omentum to electron 1 through the internal correlations. Elec- 

ron 2 remains in the atom, whereas electron 1 flies out. Such 

 process is just impossible, if the electrons in the atom are not 

orrelated in any way. Therefore, this matrix element rapidly de- 

reases with increasing momenta Q and p, while its negative effect 

s leveled out. 

The third term T 3 is artificial and goes down quickly, when Q

nd p increase. 

Thus, the larger the values of Q and p are, the better Comp- 

on ionization works as a method of studying momentum distri- 

ution of the active electron in an atom. Let us estimate the en- 

rgies of the initial photon and the scattering angles of the final 
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ne, for which it is possible. For relatively small energy of the 

mitted electron t ∼ 1 with a high accuracy. Let the photon en- 

rgy be 10 keV. Then ω 1 = 10 0 0 0 / 27 . 2 = 367 . 6 a.u. and k 1 = 2 . 68 .

e require the condition Q ∼ p to be fulfilled. This is the so-called 

ethe-ridge, where the ion recoil momentum K = 0 , and the dif- 

erential cross section of the process (e, 2 e ) reaches its maximum. 

hen E e ∼ k 2 
1 
/ 2(1 − 2 t cos θ + t 2 ) and k 2 

1 
/ 2 ≈ 98 eV. The momen-

um transfer reaches its maximum for backscattering, i.e. Q max ∼
 k 1 . Thus, 0 < E e � 390 eV, and larger energies of the emitted elec-

rons are achieved, when photons are backscattered. 

Hence it follows that the larger the cutoff angle θ0 of the scat- 

ered photons is, beyond which we collect the statistics of coinci- 

ence events, the closer the total amplitude in (8) is to the term T 1 ,

hich gives information of spectroscopic value. Below we present 

ome calculations and estimates. 

. Calculations and discussion 

Despite the possibility of highly informative coincidence mea- 

urements, cross sections (6) are still rather small, and one has to 

easure various integral cross sections, from which it is also pos- 

ible to extract useful information about the structure of an atomic 

arget. However, in the present paper we are interested in the role 

f various terms in expression (8) . To this end, we calculate the 

ingle differential cross section 

DCS p = 

dσ

dE e 
= 2 π

∫ π

0 

sin χdχ

∫ 2 π

0 

d φ

∫ π

θ0 

sin θd θ F DCS (10) 

n the electron energy range 0 < E e < 150 eV for four cutoff angles 

0 = 0 , 20 ◦, 30 ◦, 90 ◦. The angle χ is the angle between the momen-

um of the emitted electron and the momentum of the incident 

hoton k 1 (axis z), the angle φ is the angle between the planes 

ormed by vectors (k 1 , k 2 ) and (k 1 , p ) . To make the estimates, we

se the simplest Hylleraas (Hy) model of the wave function of he- 

ium atom 

Hy ( r 1 , r 2 ) = φ(r 1 ) φ(r 2 ) , φ(r) = 

√ 

Z 3 

π
e −Zr , Z = 27 / 16 . 

In each of the four plots in Fig. 1 , the contribution of only the

 1 term (solid curves) and the sum of all three terms in Eq. (8) are

hown. 

As it was expected, the dashed line approaches the solid line of 

 1 with increasing electron energy and the growth of the momen- 

um transfer. Of course, there must be a balance between achiev- 

ng small contributions of the undesirable terms T 2 and T 3 and the 

ccumulation of statistics. Fig. 1 shows that although the cross sec- 

ion seems to be small at θ0 = 90 ◦, it is not the case. It grows and

eaches its maximum at the electron energy close to E e ∼ Q 

2 / 2 . For

onvenience of estimating the cross-section value, we can convert 

he atomic units to more common units: 1 a . u . = 10 6 barn/(eV ·
r 2 ) . 

We see the same trend in Fig. 2 , although here a helium ground

tate function with intensive radial and angular electron correla- 

ions is used [14,15] , which we denote by CF: 

CF ( r 1 , r 2 ) = 

10 ∑ 

j=1 

D j (e −a j r 1 −b j r 2 + e −a j r 2 −b j r 1 )e −γ j r 12 . 

his function provides the helium ground state energy ε CF 
0 

= 

2 . 90371 a.u., which is practically very close to its experimen- 

al value ε exp 
0 

= −2 . 903724 a.u. In various previous calculations in 

ther models, this function gave the best fit of experimental data, 

n particular, in paper [1] . A comparison of Figs. 1 and 2 confirms

he known fact that the single differential cross sections are less 
4 
ensitive to the correlation details of the helium ground state. The 

otal cross section does not depend on such details at all. 

In this connection, the following remarks should be made. The 

elium atom as an object for various kinds of theoretical research 

n the scattering theory is studied for a long time already, and 

here are innumerable test wave functions of this atom. However, 

n the case of other multi-electron atoms, the theory has not ad- 

anced far beyond the scope of the Hartree-Fock method, which 

as recently been joined by the density functional theory (DFT). 

or relevant calculations, the Clementi-Roetti [16] tables of trial 

ave functions of atoms up to Z = 54 and their ions are widely 

sed. For this reason the simplest Hylleraas function used above 

or the estimates is not so simple against this background. We note 

hat the wave function of the helium atom, taken from these ta- 

les, gives practically the same curves as those in Fig. 2 . 

Of course, for the purposes of studying the momentum distri- 

ution of the active electron in an atom, it is required that recoil 

omentum q = p − Q be of the order of a few atomic units (for

uasielastic (e, 2e) reactions it is usually 2 - 3 a.u., after which, 

epending on the shell under study, distortions begin to appear). 

herefore, the fact that for θ0 = 90 ◦ the term T 1 dominates in 

ig. 2 at E e ∼ 30 eV does not mean that spectroscopic studies can 

e carried out at these energies. In all cases p ∼ Q , which discrim- 

nates the types of electron detectors by their energy resolution 

ower for use in the COLTRIMS device. It is useful to compare the 

MS method with the widely known (e, 2e) EMS method in the 

inematics of a quasi-elastic impact, which we now turn to. 

.1. Comparison with (e,2e) dynamical spectroscopy 

Electron momentum spectroscopy in quasielastic impact kine- 

atics [12,13] is one of the most powerful methods of studying the 

omentum distribution of an active electron in an atom. In the ex- 

eriment, a fast projectile electron knocks out also a fast electron 

rom the target, and both final electrons have approximately equal 

nergies and the angles ∼ 45 ◦ with respect to the bisector of the 

ngle between them. For fast projectile electrons, the momentum 

ransfer Q is rather large in this case. The laws of conservation of 

nergy and momentum are similar to those in Eq. (1) : 

 0 = E 1 + E 2 + I p + E ion , 

 0 = p 1 + p 2 + K . 

In the experiments, by changing the energy or azimuthal an- 

le of the projectile electron, experimenters achieve a signal from 

he required shell with a single ionization potential I p , and then, 

lightly changing the angles of final electrons, they obtain the mo- 

entum profile of the wave function of the active electron initially 

resent in this shell. The recoil momentum q = −p 0 + p 1 + p 2 is 

recisely its momentum in the target initially at rest, since K + q = 

 . 

In the plane-wave impulse approximation (PWIA), the triple dif- 

erential cross section (3DCS) takes the form 

d 3 σ

d E 2 d �e d �1 

= 2 

p 1 p 2 
(2 π) 3 p 0 

(dσ ) Mott | T 1 | 2 . (11) 

 1 = < p 1 , p 2 , φ
He + 

∣∣e i Q ·r 1 ∣∣p 0 , 	0 > 

= 

∫ 
d 3 r 1 e −i q ·r 1 

∫ 
d 3 r 2 ϕ 

He + 
0 ( r 2 ) 	0 ( r 1 , r 2 ) . (12) 

n (12) Q = p 0 − p 1 , and the Mott cross section 

σ Mott = 

4 

Q 

4 

(
2 πx 

exp (2 πx ) − 1 

)[
1 + y 4 − y 2 cos (2 x ln y ) 

]
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Fig. 1. SDCS as a function of the emitted electron energy E e in the case of the Hy ground helium wave function. The photon energy is ω = 10 keV. The cutoff angles θ0 are 

shown in the figures. The solid (black) curve is the result of the calculation with only T 1 , the dashed (red) curve is the sum of all terms in Eq. (8) . 

Fig. 2. The same as in Fig. 1 , but for the CF ground helium wave function. 
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ith x = | p 1 − p 2 | −1 , y = | p 0 − p 1 | / | p 0 − p 2 | . For the pure EMS

inematics y = 1 . 

Let us pay attention to the amplitude T 1 in Eq. (12) . The dia-

ram of the scattering process in the PWIA approximation, which 

ives rise to this amplitude, is schematically shown in Fig. 3 . Ac- 

ording to this diagram, it is precisely the Fourier transform of 

he one-particle wave function of the active electron contained in 

 certain shell of the atom, which determines the profile of its 

omentum distribution. This matrix element is similar to T in 
1 

5 
q. (9) taking into account the final state wave function in the form 

f Eq. (7) . 

At this point, a comment on the applicability range of the plane 

ave approximation is needed. In Eq. (12) , for simplicity of the 

hysical picture, we have neglected the fact that both emitted elec- 

rons are in the field of the residual ion, and should be described 

y distorted (Coulomb) waves. Moreover, to describe the three- 

article Coulomb continuum, the so-called 3C function is often 

sed, which takes into account the interaction of the two electrons 
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Fig. 3. The diagram of the process (e, 2e) in the plane-wave impulse approximation. 

The summation is carried out over all electrons in the target contained in the shell 

under study. For a helium atom, Z = 2 . 
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Fig. 4. Ratio R Eq. (15) , q = 0 . Black (solid) curve: Hy wave function, red (dashed) 
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nd the ion and gives the correct three-particle Coulomb asymp- 

otics [17] . 

The question of PWIA validity and its applicability range is ac- 

ively discussed in the literature (see, for example, [19,20] ). Nu- 

erous calculations show that PWIA successfully works for initial 

nergies of at least 5 keV, and only when studying external shells. 

therwise, to achieve a coincidence of calculations with the exper- 

ment, one has to use the distorted-wave Born (impuls) approxi- 

ation (DWBA, DWIA) [21] , which destroys the attraction of the 

e,2e) EMS reactions as a direct method of dynamic momentum 

pectroscopy. Thus, even for relatively large energies of the final 

lectrons and large momentum transfers, the final wave function 

s not trivial. 

Note that the matrix element T 1 in Eq. (9) is much simpler, be- 

ause it includes only one Coulomb wave in the final state. Re- 

lacing it by a plane wave, we immediately obtain Eq. (12) . Of 

ourse, there remains the problem of distortion of the electron 

lane wave by the atom field after the ionization, the distortion 

eing especially strong for the inner shell electrons, which pre- 

ents the use of low energy electrons for the purpose of momen- 

um spectroscopy. 

Thus, the question arises, at what energy can we consider the 

oulomb wave to be almost a plane wave and obtain a pure mo- 

entum profile of an active electron from Eq. 5 ? We immediately 

ote that this issue has been discussed in the literature for many 

ears, and there is still no clarity. This topic is partially covered in 

eview [18] . To investigate the problem of the ”transformation” of 

 Coulomb wave into a plane wave in this case, we note that the 

alue of q = | Q − p | must be limited, since the momentum of an

ctive electron in an atom is expected to be small, and its large 

alues lie at the distribution boundary. The minimum value q = 0 

the so-called Bethe-ridge, when the entire momentum transfer is 

iven to the electron) is reached under the condition Q = p . If we 

ncrease the electron energy, we must accordingly change the scat- 

ering angle of the photon also increasing it. Fortunately, in con- 

rast to the (e, 2e) reaction, where the momentum transfer is in 

he denominator of the cross section as Q 

4 , because the interac- 

ion is mediated by a virtual photon (Coulomb potential), there is 

o such thing here, since the interaction occurs with a real pho- 

on, and we can increase both Q and E e . However, such options are 

estricted by the capabilities of experimental detector devices. 

The boundary value of momentum transfer, which is achieved 

n this problem at θ = 180 ◦, is equal to Q 

max = 2 k 1 = 5 . 36 a.u.,

hich corresponds to the maximal electron energy E max 
e = 390 

V. We will again choose the simplest model Hy (helium ground 

tate)+ CW (Coulomb wave of emitted electron) for estimations. In 

his case, from Eq. (9) we have Z = 27 / 16 : 

T 1 ( p , Q ) = 〈 ̃  	−(p ) | e i Q ·r 1 | 	0 〉 = −
√ 

8 

π

(
2 Z 

Z + 2 

)3 ∂ 

∂Z 
I( Q , p , Z) . 

(13) 
6 
n (13) 

( Q , p , Z) = 4 πR (ξ ) 
[(Z − ip) 2 + Q 

2 ] iξ

[( Q − p ) 2 + Z 2 ] 1+ iξ , (14) 

nd 

 (ξ ) = exp (−πξ/ 2) �(1 + iξ ) , ξ = −1 /p. 

f we put ξ = 0 in Eq. (14) , we get the plane wave approximation 

 

PW ( Q , p , Z ) = 

4 π

( Q − p ) 2 + Z 2 
. (14.1) 

We calculate the ratio 

 = 

∣∣T 1 / T PW 

1 

∣∣2 
, (15) 

hich is shown in Fig. 4 . It can be seen from the figure that for

 e = 50 eV, which is considered to be rather large, the difference 

etween the plane and Coulomb wave effects is 12–14% both for 

imple Hy and complex CF ground helium wave functions. At E e = 

90 eV the difference goes down to 2% . The shapes of both curves 

re practically the same, and here again the question rests on the 

apabilities of high-energy electron detectors. 

Now we estimate the ratio of the FDCS (5) and 3DCS (11) sup- 

osing that the momentum profile is defined in both cases by 

q. (12) . We assume for (e,2e) equal final (large) electron energies 

nd equal angles about 45 ◦. In the atomic units, this ratio is equal

o 

F DCS 

3 DCS 
≈ α4 

√ 

2 

E 2 e . (16) 

f course, this ratio is proportional to the small factor α4 , but in- 

reases with the growth of the energy of the emitted electron. For 

 e ∼ 400 eV, the value E 2 e / 
√ 

2 ∼ 150 ∼ c a.u. However, we have to 

ote that the distortions of the final electron state at this energy 

re still rather large for the PWIA model to be used. 

.2. Possible experiment setting to get the momentum profile of the 

ctive electron from CMS 

Let us discuss the setup of a possible CMS experiment. Recall 

hat in this experiment, the electron and ion momenta are mea- 

ured in coincidence, and the energy and momentum of the fi- 

al photon and, accordingly, the momentum transfer are calculated 

rom the conservation laws. The most difficult problem of such ex- 

eriments is the determination of the shell, from which the ion- 

zation occurs. Helium has only one shell, and there is no such 

roblem here. However, experiments with the reaction (e,2e) in 

he EMS kinematics allow one to resolve, for example, 2s and 2p 
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hells in the neon atom. What is the situation here? We would 

ike to put forward the following way. We write down the momen- 

um transfer in the case of backward scattering θ = 180 ◦. In this 

ase, Q = k 1 (1 + t) . Next, we recall that the momentum transfer is

xpressed in terms of the experimentally measured momenta as 

 = | p + K | . Let us consider the case, where the final photon scat-

ers back and select the coincidence events, where the electron is 

mitted strictly forward, and the ion is recoiled strictly backward. 

hen we get the formula: 

 p = c[(2 k 1 − p) + K] − p 2 

2 

= const. (17) 

n principle, this relation is restricted by the inequality I p + E e ≤
 1 . According to our choice of large electron momenta and rel- 

tively small ion momenta K = q , we consider the momenta p ∼
 k 1 . In this paper, for our choice ω 1 = 10 keV the electron en-

rgy is E e � 390 eV. In order for ratio (16) to be positive, we need

2 k 1 − p) + K > 0 . 1 , which is quite reasonable. 

However, this ideal picture cannot be actually realized with the 

OLTRIMS setup, since, with the increasing detectable electron en- 

rgies, the momentum resolution for the ion generally decreases. 

e will discuss this point in more detail below. 

Let us consider now, for simplicity, the plane wave instead of 

he Coulomb wave in the term T 1 . In this case, this term in (9) will

epend only on the ion momentum K = q . By measuring K, for 

xample, in a narrow backscattering cone, we will be sure, even 

ithout measuring the electron momentum for coincidence, that 

hese momenta are large. Thus, we will receive directly the mo- 

entum distribution of the active electron in the atom. However, 

ithout knowing the shell, from which the ionization occurred, 

e get the average distribution over all shells in the atom. The 

nly exception among the many-electron atoms is the helium atom 

22] . 

Thus, for future experiments the technically most challenging 

roblem is to determine the final state of the ion produced by 

ompton scattering, i.e. to determine the shell from which the 

lectron was ejected. This is problematic since a) the initial pho- 

on energy is not very well defined, because today the high flux 

eeded to compensate for the small Compton cross section pro- 

ibits narrow monochromatizating of the incoming photons, and 

) the electron energy resolution of a COLTRIMS spectrometer for 

igh-energy electrons is insufficient for resolving valence subshells, 

nd c) for heavier atoms and molecules the momentum resolution 

or the ion detection degrades. These problems can be overcome 

y adding a large area pixel detector for detecting the scattered 

hotons such as DEPFET sensors [23] . Such detectors can be read 

ut at MHz rates and can detect single photons. The polar and az- 

muthal scattering angle of the photons can be detected in coin- 

idence with the polar and azimuthal angle of the ejected elec- 

ron and the recoil ion. However, for the latter two the magni- 

ude of the momentum is detected only with insufficient resolu- 

ion. Such a realistic photon-electron-ion coincidence would have 

arge enough solid angle and it would determine a total of 6 lin- 

arly independent quantities. This is sufficient to fully characterize 

ompton scattering including the energy of the final ionic state. 

n the final state there are 9 momentum components (scattered 

hoton, electron, ion) and the excitation energy of the ion to be 

etermined. From these 10 quantities only 6 are linearly indepen- 

ent since there are a total of 3 conservation laws for the three 

omentum components and additionally energy conservation. 

. Conclusion 

In the present paper we have shown that the process of sin- 

le Compton ionization of an atomic target has a good potential 

or being used as a tool for studies of the momentum distribu- 
7 
ion of an active electron in the helium atom. This becomes possi- 

le at relatively high energies of the emitted electron and, accord- 

ngly, at large momentum transfers Q , where the contributions of 

he undesirable terms T 2 and T 3 are reduced. Wherein the quantity 

 = | Q − p | = K just determines the momentum of the active elec- 

ron inside the target before its interaction with the photon, and 

his momentum should be small. Changing the angles and magni- 

udes of the vectors Q and p , one can vary q in the required range.

With the current state of the art, the measurement of very 

mall cross sections of Compton ionization is experimentally feasi- 

le, and therefore it could compete with other known methods of 

tomic spectroscopy, in particular, (e, 2 e ) in the EMS kinematics. 

n this case, Compton ionization has a number of advantages from 

he point of view of theoretical interpretations. First, as the photon 

nergy increases (remaining within the non-relativistic description 

f the scattering process), the range of electron energies and mo- 

entum transfers changes significantly without changing the value 

f the cross section in Eq. (5), if the momentum q remains small. 

econd, we can achieve a decrease in the influence of the undesir- 

ble terms T1 and T2 without changing the contribution of the T 1 
erm. Third, the final state is represented by only one electron, not 

wo, which significantly reduces the choice of models for the fi- 

al state, and therefore increases the reliability of determining the 

omentum distribution of the active electron in the target. Finally, 

ourth, the dominance of FBA ( A 

2 ) increases with increasing pho- 

on energy in comparison with SBA. We have not considered this 

ssue in detail here due to space savings, but this is the case. 

However, the COLTRIMS in its present day realization does not 

llow to determine the atomic shells, from which the ionization 

ccurs, and, for this reason, it can be consistently applied to a lim- 

ted number of many-electron targets (for example, helium atom, 

ee also [24] ). This significantly reduces the advantages of CMS as 

 method of dynamic spectroscopy in comparison with EMS. Al- 

hough other applications of Compton single ionization are possi- 

le to processes with large electron momenta and small ion mo- 

enta for studying the ionization of light atoms, where the reso- 

ution of the electron shells is not necessary. A full realization of 

he CMS can be achieved in the future with new detectors, such as 

EPFET sensors. 
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