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In this paper we propose a generating function method for constructing new two- and 

three-point iterations with p (3 ≤ p ≤ 8) order of convergence. This approach allows us to 

derive a new family of the optimal order iterative methods that include well known meth- 

ods as special cases. The necessary and sufficient conditions for p th order convergence 

of the proposed iterations are given in terms of parameters τ n and αn . We also propose 

some generating functions for τ n and αn . We give the extension of a class of optimal 

fourth-order Jarratt’s type iterations with a � = 

2 
3 

. We develop a unified representation of 

all optimal eighth-order methods. Several numerical results are given to demonstrate the 

efficiency and the performance of the presented methods and compare them with some 

other existing methods. 
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1. Introduction 

Solving a nonlinear equations is important in many mathematical and physical problems. In recent years, a number of

higher-order iterative methods have been developed and analyzed on this issue, see [1–11] and references therein. Motivated

by the recent results in [11] in this paper, we introduce a generating function method for the construction of new two and

three-point iterations with p th order of convergence. 

This paper is organized as follows. Section 2 is devoted to the construction of a generated function for the optimal fourth-

order method. We then present some choices for the parameters τ n and αn . Some iterations are proposed among which

some are already well known. In Section 3 we propose a family of optimal eighth-order methods, that include many well-

known methods as a particular case. We develop a proper representation of eighth-order methods. We also give necessary

and sufficient conditions for three-point iterations to be p order of convergence (p = 5 , 6 , 7) . In the last Section 4 we employ

the new families of proposed methods to solve some nonlinear equations and compare them with some existing methods. 

In our previous paper [11] we have considered two and three-point iterative methods 

y n = x n − f (x n ) 

f ′ (x n ) 
, x n +1 = x n − τn 

f (x n ) 

f ′ (x n ) 
, (1) 
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and 

y n = x n − f (x n ) 

f ′ (x n ) 
, z n = y n − τ̄n 

f (y n ) 

f ′ (x n ) 
, x n +1 = z n − αn 

f (z n ) 

f ′ (x n ) 
. (2)

We have proved in [11] the following theorems 

Theorem 1. Assume that f ( x ) is smooth enough function with a simple root x ∗ ∈ I and the initial approximation x 0 is close enough

to x ∗. Then iterative method (1) has fourth-order of convergence if and only if the parameter τ n is given by 

τn = 1 + θn + 2 θ2 
n + O (θ3 

n ) , θn = 

f (y n ) 

f (x n ) 
. (3)

Theorem 2. Assume that all assumptions of Theorem 1 are fulfilled. Then the three-point iterative methods (2) has an eighth-

order of convergence if and only if the parameters τ̄n and αn are given by 

τ̄n = 1 + 2 θn + βθ2 
n + γ θ3 

n + · · · , (4a)

or 

τn = 1 + θn + 2 θ2 
n + βθ3 

n + γ θ4 
n + · · · , 

(
τ̄n = 

τn − 1 

θn 

)
, (4b)

and 

αn = 1 + 2 θn + (β + 1) θ2 
n + (2 β + γ − 4) θ3 

n + (1 + 4 θn ) 
f (z n ) 

f (y n ) 
+ O (θ4 

n ) . (5)

Our approach in [11] is constructive in the sense that it proposes a new way to obtain optimal order iterations (see

[11] in details). 

2. Construction of optimal fourth-order methods 

2.1. Generating function method 

We show that Theorems 1 and 2 not only give sufficient conditions for iterations to be p = 4 , 8 order of convergence,

but also allow us to construct new iterations with p order of convergence. Obtaining new optimal methods of order four is

still important, because they combine higher-order of convergence and low computational cost. We consider the following

choice of the parameter τ n 

τn = H(θn ) , (6)

where H ( θ ) is a real valued function to be determined properly. Obviously τ n will satisfy the condition (3) if 

H(0) = 1 , H 

′ (0) = 1 , H 

′′ (0) = 4 . (7)

We call the function H ( θ ) satisfying conditions (7) generating one for iteration (1) . 

Construction of the generating function allows us to derive a new optimal order family of iterations. The following theo-

rem is a consequence of Theorem 1 . 

Theorem 3. Assume that all assumptions of Theorem 1 are fulfilled. Then the optimal fourth-order two-point iterations (1) are

obtained by the generating function (6) satisfying the conditions (7) . 

Of course, many different variants of the generating function H ( x ), satisfying condition (7) are possible. We cite here one

simple form of them 

H(x ) = 

1 + (1 − mα) x + (2 − mα + 

m (m −1) 
2 

α2 ) x 2 + ωx 3 

(1 − αx ) m 

, α, m, ω ∈ R . (8)

The optimal two-point iterations (1) with τn = H(θn ) given by (8) include a lot of well-known iterations as a special cases.

For example, if ω = 0 , m = 1 and α = 2 − b, b ∈ R , then (1) leads to King’s one [5] . If α = 0 , m = 1 and ω = 1 in (8) , then

(1) leads to new modification of Potra-Ptak’s one [4] . If α = m = 1 and ω = −1 in (8) , then (1) leads to Maheshwari’s one [7] .

If α = 1 , m = 2 and ω = 0 in (8) , then (1) leads to Chun and Lee’s one [2] and so on (see Table 1 ). More recently, Behl et al.

[12] proposed a general class of fourth-order optimal methods that includes the well-known Ostrowski’s and King’s family

as special cases. We note that this general class of optimal fourth-order iterations is also included in our methods with τn =
H(θn ) given by (8) as a special case. Namely, if m = 3 , α replaced by −α and ω = α2 + 

5 
3 α + 

4 
3 or ω = (1 − β

6 ) α
3 + α2 − 2 α,

then the iterations (1) with τn = H(θn ) given by (8) reduce to (3.8) and (3.10) in [12] , respectively. This shows that our

class of optimal fourth-order methods is wider than that of [12] . So, we have obtained an optimal fourth-order convergence

family of iterative methods with three degrees of freedom based on the generating function method. 

Analogously, one can construct the generating function (6) for the third-order iterations (1) . It has form 

τn = H(θn ) ≡ 1 + (1 + η) θn 
, η ∈ R . (9)
1 + ηθn 
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Table 1 

Some choices of generating function H ( x ). 

Name of iterations 

№ m α ω H ( x ) β γ with function H ( x ) 

1 0 ∀ 0 1 + x + 2 x 2 0 0 Bi et al. [1] 

2 ∀ 0 0 

3 0 0 1 1 + x + 2 x 2 + x 3 1 0 optimal Potra-Ptak (OP4) 

4 1 2 0 1 −x 
1 −2 x 

4 8 Wang, Liu [10] 

Cordero et al. [3] 

5 1 9 
4 

0 
1 − 5 

4 x − 1 
4 x 

2 

1 − 9 
4 x 

9 
2 

81 
8 

Wang, Liu [10] 

6 1 1 0 1+ x 2 
1 −x 

2 2 Chun, Lee’s [2] β = 0 

7 2 1 0 1 −x + x 2 
(1 −x ) 2 

3 5 Chun, Lee’s [2] 

8 1 ∀ ∀ 1 + 

x (1+(2 −α) x + ωx 2 ) 
1 −αx 

2 α + ω α(2 α + ω) 2 

9 1 0 ∀ 1 + x + 2 x 2 + ωx 3 ω 0 

10 1 2 − b 0 1 + 

x (1+ bx ) 
1+(b−2) x 

2(2 − b) 2(2 − b) 2 King’s [13] , Thukral, Petkovic [14] 

Sharma and Sharma [9] 

11 1 2.5 0 1 −1 . 5 x −0 . 5 x 2 

1 −−2 . 5 x 
5 12.5 Bi et al. [1] 

12 1 1 -1 1 + 

x (1+ x −x 2 ) 
1 −x 

1 1 Maheshwari [7] 

 

 

2.2. Two-point iterations with two parameters 

Let us consider the following two-point iterative method: 

y n = x n − a 
f (x n ) 

f ′ (x n ) 
, x n +1 = x n − τn 

f (x n ) 

f ′ (x n ) 
, (10) 

where τ n is the iteration parameter to be determined properly. 

Note that when a = 1 the iteration (10) leads to (1) . However, in some case the iteration (10) is applied with a � = 1.

Therefore, the study of convergence of iteration (10) is also interesting and we prove the following. 

Theorem 4. Assume that all assumptions of Theorem 1 are fulfilled. Then the two-point iteration (10) has a fourth-order of

convergence if and only if the parameter τ n is given by 

τn = 1 + 

θn − (1 − a ) 

a 2 
+ 2 

(
θn − (1 − a ) 

a 2 

)2 

+ 

(1 − a )(a + 4) 

a 3 

(
1 − f ′ (y n ) 

f ′ (x n ) 
− 2(θn − (1 − a )) 

a 

)
+ O ( f 3 (x n )) . (11) 

Proof. We use Taylor expansion of f (x n +1 ) at point x n . 

f (x n +1 ) = (1 − τn ) f (x n ) + 

f ′′ (x n ) 

2 

τ 2 
n 

(
f (x n ) 

f ′ (x n ) 

)2 

− f ′′′ (x n ) 

6 

τ 3 
n 

(
f (x n ) 

f ′ (x n ) 

)3 

+ O ( f 4 (x n )) . 

Multiplying by ( f ′ (x n )) −1 two-sides of last expression, we get 

( f ′ (x n )) 
−1 f (x n +1 ) = 

(
1 − τn + τ 2 

n θ̄n − τ 3 
n 

6 

( f ′ (x n )) 
−1 f ′′′ (x n ) 

(
f (x n ) 

f ′ (x n ) 

)2 
)

( f ′ (x n )) 
−1 f (x n ) + O ( f 4 (x n )) , (12) 

where 

θ̄n = 

( f ′ (x n )) 
−1 f ′′ (x n ) 

2 

f (x n ) 

f ′ (x n ) 
= O ( f (x n )) . (13) 

We seek for τ n in the form: 

τn = 1 + θ̄n + c ̄θ2 
n + d n + O ( f 3 (x n )) . (14) 

Substituting (14) into (12) we obtain 

( f ′ (x n )) 
−1 f (x n +1 ) = 

( 

−θ̄n − c ̄θ2 
n − d n + θ̄n + 2 ̄θ2 

n −
f ′′′ (x n ) 

6 f ′ (x n ) 

(
f (x n ) 

f ′ (x n ) 

)2 
) 

( f ′ (x n )) 
−1 f (x n ) + O ( f 4 (x n )) , 

because of τ 2 
n = 1 + 2 ̄θn + O ( f 2 (x n )) , τ 3 

n = 1 + O ( f (x n )) . 

From this we conclude that 

f (x n +1 ) = O ( f 4 (x n )) , (15) 
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under condition 

c = 2 , d n = −1 

6 

( f ′ (x n )) 
−1 f ′′′ (x n ) 

(
f (x n ) 

f ′ (x n ) 

)2 

. (16)

Hence 

τn = 1 + θ̄n + 2 ̄θ2 
n −

1 

6 

( f ′ (x n )) 
−1 f ′′′ (x n ) 

(
f (x n ) 

f ′ (x n ) 

)2 

+ O ( f 3 (x n )) . (17)

It means that the iteration (10) has a fourth-order convergence if and only if τ n is given by (17) . 

Next, we using Taylor expansions of f ( y n ) and f ′ ( y n ) at point x n we get 

θn = 

f (y n ) 

f (x n ) 
= (1 − a ) + a 2 θ̄n + a 3 d n + O ( f 3 (x n )) , (18a)

( f ′ (x n )) 
−1 f ′ (y n ) = 1 − 2 a ̄θn − 3 a 2 d n + O ( f 3 (x n )) . (18b)

From this we find θ̄n 

θ̄n = 

1 

a 2 

(
θn − (1 − a ) − a 3 d n 

)
+ O ( f 3 (x n )) . (19)

Substituting θ̄n given by (19) into (17) , we get 

τn = 1 + 

θn − (1 − a ) 

a 2 
+ 2 

(
θn − (1 − a ) 

a 2 

)2 

+ (1 − a ) 
(

1 + 

4 

a 

)
d n + O ( f 3 (x n )) . (20)

Elimination θ̄n from (18a) and (18b) gives us 

d n = 

1 

a 2 

(
1 − ( f ′ (x n )) 

−1 f ′ (y n ) − 2(θn − (1 − a )) 

a 

)
+ O ( f 3 (x n )) . (21)

If we take into account (21) in (20) , we get (11) . The converse is evident from (12) and (14) . �

Note that Theorem 4 is converted to Theorem 2 when a = 1 . The iteration (10) with a � = 1 is not optimal although its

convergence order is four, because it requires four function evalutions f ( x n ), f ( y n ), f 
′ ( x n ) and f ′ ( y n ) per iteration. 

From (13) and (16) we find that 

d n = −ω 2 ̄θ
2 
n , ω 2 = 

2 

3 

f ′′′ (x n ) f 
′ (x n ) 

( f ′′ (x n )) 2 
. (22)

Hence the expression (17) can be written as 

τn = 1 + θ̄n + (2 − ω 2 ) ̄θ
2 
n + O ( f 3 (x n )) . (23)

2.3. Optimal Jarratt’s type iterations 

Another class of optimal fourth-order methods appears when τ n depends not only on θn , but also on 

f ′ (y n ) 
f ′ (x n ) 

. The well-

known Jarratt optimal fourth-order method [15] and method found in [16] has a form (10) with a = 

2 
3 and τn = 

1 
2 (1 + 

1 

1+ 3 
2 

b n 
)

and τn = 1 − 3 
4 b n + 

9 
8 b 

2 
n , b n = 

f ′ (y n ) 
f ′ (x n ) 

− 1 , respectively. 

It is easy to show that τ n in these methods satisfies the sufficient fourth-order convergence condition (17) . 

We consider another family of two-point iterative methods 

y n = x n − a 
f (x n ) 

f ′ (x n ) 
, x n +1 = x n − τn 

f (x n ) 

f ′ (x n ) 
, (24)

where the iteration parameter τ n is given by 

τn = 

1 −
(

1 
2 a 

+ mα
)
(ξn − 1) + 

(
1 

2 a 2 
+ 

mα
2 a 

+ 

m (m −1) 
2 

α2 
)
(ξn − 1) 2 

(1 + α(ξn − 1)) m 

+ 

1 

a 2 

(
1 − 3 a 

2 

)(
2(1 − a − θn ) 

a 
− (ξn − 1) 

)
, α, m ∈ R , (25)

with 

θn = 

f (y n ) 

f (x n ) 
and ξn = 

f ′ (y n ) 

f ′ (x n ) 
. (26)
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Table 2 

Some particular cases of (27) . 

№ Choices of parameters τ n Methods 

1 m = 1 , α = − 3 
2 

1 
2 

(
1 + 

1 

1+ 3 2 (ξn −1) 

)
Jarratt’s [15] 

2 m = 0 or α = 0 1 − 3 
4 
(ξn − 1) + 

9 
8 
(ξn − 1) 2 Petkovic et al. [16] , Chun [17] 

3 m = 1 , α = − 3 
4 

−1 − 3 
4 
(1 − ξn ) + 

8 
1+3 ξn 

Chun [17] 

4 m = 2 , α = − 3 
4 

1 − 4 
1+3 ξn 

+ 

(
4 

1+3 ξn 

)2 
Chun [17] 

5 m = 1 , α = − 1 
2 

2 g(ξn ) 
ξn 

, g(1) = 1 , 

g ′ (1) = − 1 
4 
, g ′′ (1) = 

3 
2 

Lotfi [18] 

6 m = 0 or α = 0 1 
2 
(3 − ξn ) G (ξn ) , G (1) = 1 , 

G ′ (1) = 

3 
4 
, G ′′ (1) = 2 Jaisway [19] 

7 m = 0 or α = 0 1 + 

4 ∑ 

j=1 

α j ξ
j 

n , α1 = 

21 
8 

− α4 , Kattri, Abbasbandy [20] 

α2 = − 9 
2 

+ 3 α4 , α3 = 

15 
8 

− 3 α4 

 

 

 

 

 

 

 

 

 

 

 

 

Above, we prove that the necessary and sufficient condition for two-point iteration to be fourth-order convergence is (17) .

Using (18b) and (21) it is easy to show that the parameter τ n given in (25) satisfies the sufficient fourth-order convergence

condition (17) . 

From (25) we see that τ n depends in generally not only on ξ n but also on θn . The exception is the case a = 

2 
3 . In this case

the second term in (25) disappears and τ n depends only on ratio ξ n and per iteration it requires evaluations of f ( x n ), f 
′ ( x n )

and f ′ ( y n ). So the two parameter family of iterations (24) is optimal one. When a = 

2 
3 the formula (25) leads to 

τn = 

1 −
(

3 
4 

+ mα
)
(ξn − 1) + 

(
8 
9 

+ 

3 
4 

mα + 

m (m −1) 
2 

α2 
)
(ξ − 1) 2 

(1 + α(ξn − 1)) m 

, α, m ∈ R . (27) 

The iterations (24) with the generating function given by (27) include many well-known iterations as a particular cases.

For example, when m = 0 , α = − 3 
2 the iteration (24) with (27) leads to Jarratt’s one [15] . When m = 0 or α = 0 , then

the iteration (24) with (27) leads to the method presented in Chun [17] and Petkovic et al. [16] . When m = 1 , α = − 3 
4 and

m = 2 , α = − 3 
4 the iterations (24) with (27) leads to the methods given in Chun [17] . When m = 1 and α = − 1 

2 the iteration

(24) with (27) leads to one found in Lotfi [18] (see Table 2 ). So our iterations (24), (27) can be considered as a generalization

of many optimal fourth-order convergence iterations. The fourth order convergent iterations (24), (25) are not optimal when

a � = 

2 
3 . Per iteration it requires evaluations of f ( x n ), f ( y n ), f 

′ ( x n ) and f ′ ( y n ). 

Remark 1. If, instead of a in (24) and (25) , we take 

a n = 

2 

3 

+ c f (x n ) � = 0 , c ∈ R , (28) 

then the influence of second term in (25) is neglectible because it has a form O ( f 3 ( x n )). 

Thus, the iterations (24) remain in the class of optimal fourth-order convergence methods under choice 

τn = 

1 −
(

1 
2 a n 

+ mα
)
(ξn − 1) + 

(
1 

2 a 2 n 
+ 

mα
2 a n 

+ 

m (m −1) 
2 

α2 

)
(ξn − 1) 2 

(1 − α(ξn − 1)) m 

, (29) 

where a n is determined by (28) . Thus, we extend significantly the class of optimal fourth-order methods due to (28), (29) . 

3. Proper representation of the optimal order three-point iterative methods 

Recently, based on optimal fourth-order methods some higher-order, in particular eighth order three-point methods have

been proposed for solving nonlinear equations (see Table 1 ). It is easy to show that τn = H(θn ) given by (8) satisfies the

condition (4b) with constants 

β = ω + 2 mα − m (m − 1) 

2 

α2 + 

m (m − 1)(m − 2) 

6 

α3 , (30a) 

γ = ωmα + m (m + 1) α2 − (m − 1) m (m + 1) 

3 

α3 + 

(m − 2)(m − 1) m (m + 1) 

8 

α4 . (30b) 

In Table 1 we present some function H ( θn ), satisfying the condition (4b) . 

The following is a consequence of Theorem 2 . 
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Table 3 

The optimal order three-point iterative methods. 

№ m αn − (1 + 4 θn ) 
f (z n ) 
f (y n ) 

Methods 

β = γ = 1 , [14] Maheshwari-based 

1 0 1 + 2 θn + (β + 1) θ2 
n + (2 β + γ − 4) θ3 

n β = 4 , γ = 8 , Method 1 in [14] see [11] 

β = 3 , γ = 4 , Chun Lee [2] 

p = d = ω = 0 , [1–3,6,8–10,14] 

2 1 
β+1+(6 −γ ) θn +((β+1) 2 −2(2 β+ γ −4)) θ2 

n 

β+1 −(2 β+ γ −4) θn 
β = 4 , γ = 8 , Method 2 in [14] 

p = d = ω = b = 0 , 

3 2 
1+2(1 −q ) θn + ( 6 −γ

2 +(β−3) q ) θ2 
n 

(1 −qθn ) 2 
β = 4 , γ = 8 , q = 2 Methods 3 in [14] 

p = −3 , d = 0 , q = 

5 
2 
, Maheshwari-based 

4 1 2 −θn 

6 θ2 
n −5 θn +2 

optimal methods [22] 

5 1 
2+(5+2 β) θn +2(3+ β) θ2 

n 

2+(1+2 β) θn −2 βθ2 
n 

d = 0 , q = − 1+2 p 
2 

, [22] 

d = 0 , q = 

2(β2 −4 β+1) 
1 −2 β

, p = 

1+4 β
1 −2 β

, 

6 1 2 β−1+2 β(β−2) θn 

2 β−1+2(β2 −4 β+1) θn +(1+4 β) θ2 
n 

King-based optimal methods [23] 

β = 4 , γ = 8 , q = 2 , p = 1 , d = ω = 0 , 

7 1 1 
1 −2 θn −θ2 

n 
method 4 in [14] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Theorem 5. Assume that all assumptions of Theorem 1 are fulfilled. Then the family of three-point iterative methods (2) has an

eighth-order of convergence if and only if the parameters τ n and αn are given by (6) , (8) and 

αn = 

(
H(θn ) + θn + (β − 1) θ2 

n + (β + γ − 4) θ3 
n 

)
+ (1 + 4 θn ) 

f (z n ) 

f (y n ) 
. (31)

Proof. It is easy to show that τn = H(θn ) satisfies the condition (4b) with parameters β and γ given in Table 1 and αn given

by (31) satisfies (5) . Then by Theorem 2 the family of methods (2) has eighth-order of convergence. �

Thus, we propose the families of three-point iterative methods (2) with generating function τn = H(θn ) . They include

many well-known eighth-order methods, as a particular cases (see Table 1 ). The above mentioned methods differ from one

to another only by αn . Moreover, they have the same asymptotic (5) , although these are determined by different formulas.

Our approach proposed in [11] is constructive in the sense that it discovers a new way to obtain optimal eighth-order

iterations. 

From (9) and (31) we see that the parameters τ n and αn are expressed through the generating function H ( θn ). It should

be pointed out that, to prove the convergence order of iterations usually computer algebraic systems such as Maple, Math-

ematica and so on are applied, whereas in our approach we use only easily verifiable sufficient conditions (5) and (5) . The

expression in brackets in (31) can be approximated by a simple rational function without loss of generality. Then αn can be

represented as 

αn = 

1 − (2 − mq ) θn + cθ2 
n + ωθ3 

n (
1 − θn (dθ2 

n + pθn + q ) 
)m 

+ (1 + 4 θn ) 
f (z n ) 

f (y n ) 
, q, p, d, m ∈ R , (32)

where 

c = β + 1 − m (p + 2 q + 

1 

2 

(m − 1) q 2 ) , 

ω = (2 β + γ − 4) − m 

(
d + 2 p + (β + 1 + (1 − m ) p) q − (m − 1) q 2 + 

(m − 1)(m − 2) 

6 

q 3 
)

. (33)

We call the optimal order three-point iterative methods (2) with parameters τ n and αn given by (6), (8) and (32) re-

spectively proper representation. It is easy to show that all the well-known optimal order three-point iterative methods

can be represented in the proper form uniquely (see [1–3,6,8–11,13,14,21–23] and references therein). It should be men-

tioned that Wu and Lee in [10] first used proper representation of (2) . Thus, by means of (6), (8) and (32) we find a unified

representation of all optimal order three-point iterations. 

Our families of three-point iterative method (2) with parameters τ n and αn given by (6), (8) and (32) include the well-

known optimal order methods as a particular case (see Table 3 ). 

Theorem 6. Assume that all assumptions of Theorem 1 are fulfilled. Then the iterations (2) has a pth order of convergence if and

only if the parameters τ n and αn are given by formulas presented in Table 4 . 
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Table 4 

The p -order iterative methods. 

p τ n αn 

7 (6), (8) (34) 

6 (6), (8) (35) 

(9) (34) 

5 (6), (8) (36) 

(9) (35) 

Table 5 

Comparison of various fourth-order convergent iterative methods. The factor q in the brackets denotes 10 q . 

τn = 1 + 

θn (1+(2 −α) θn + ωθ2 
n ) 

1 −αθn 

f ( x ) x 0 α = 0 , ω = 0 α = 2 − b,b = 3 , ω = 0 α = 0 , ω = 1 α = 1 , ω = −1 

n | x ∗ − x n | COC n | x ∗ − x n | COC n | x ∗ − x n | COC n | x ∗ − x n | COC 

f 1 ( x ) 3.6 6 5.86( −642) 4.00 6 5.22( −525) 4.00 6 1.37( −796) 4.00 6 9.58( −686) 4.00 

−1 5 5.84( −713) 4.00 5 5.03( −705) 4.00 5 2.84( −716) 4.00 5 8.77( −721) 4.00 

f 2 ( x ) 4.86 6 1.11( −513) 4.00 6 7.12( −425) 4.00 6 3.08( −584) 4.00 6 9.41( −607) 4.00 

1.6 5 7.20( −699) 4.00 5 9.05( −661) 4.00 5 2.16( −724) 4.00 5 1.37( −726) 4.00 

f 3 ( x ) 3.2 6 6.86( −509) 4.00 6 2.87( −449) 4.00 6 8.22( −551) 4.00 6 6.79( −561) 4.00 

2.2 5 1.65( −594) 4.00 5 5.31( −557) 4.00 5 4.37( −620) 4.00 5 6.24( −623) 4.00 

f 4 ( x ) −0 . 8 5 3.99( −638) 4.00 5 2.95( −610) 4.00 5 1.21( −655) 4.00 5 7.72( −657) 4.00 

−0 . 65 4 1.43( −283) 4.00 4 4.59( −274) 4.00 4 1.25( −289) 4.00 4 7.98( −290) 4.00 

f 5 ( x ) 4 14 8.81( −881) 4.00 14 4.55( −470) 4.00 13 3.06( −330) 4.00 13 2.05( −402) 4.00 

4.5 18 3.81( −312) 4.00 19 3.01( −488) 4.00 18 2.26( −565) 4.00 18 4.70( −768) 4.00 

f 6 ( x ) −4 . 2 16 5.87( −632) 4.00 16 6.35( −288) 4.00 15 4.20( −262) 4.00 15 1.78( −340) 4.00 

−5 . 8 26 4.46( −579) 4.00 27 1.4 9( −54 8) 4.00 25 6.30( −363) 4.00 25 5.78( −595) 4.00 

 

 

 

In Table 4 we used following formulae: 

αn = 

1 + (2 − α) θn + (β + 1 − 2 α) θ2 
n 

1 − αθn 
+ 

f (z n ) 

f (y n ) 
, α, β ∈ R , (34) 

αn = 

1 + (2 − ξ ) θn 

1 − ξθn 
, ξ ∈ R , (35) 

αn = 

1 + ε 1 θn 

1 − ε 2 θn 
, ε 1 , ε 2 ∈ R . (36) 

Proof. The parameter τ n and αn given by (6), (8), (9) and (34)–(36) will satisfy conditions for τ n and αn of Theorem 5 in

[11] . Hence, by Theorem 5 in [11] , the order of iterations (2) is p . �

4. Numerical experiments 

We consider six examples taken from [6] 

f 1 (x ) = x 2 − exp (x ) − 3 x + 2 , x ∗ = 0 . 25753028543983 , 

f 2 (x ) = sin 

2 (x ) − x 2 + 1 , x ∗ = 1 . 4044 9164 885154 , 

f 3 (x ) = (x − 1) 3 − 1 , x ∗ = 2 , 

f 4 (x ) = sin (x ) exp (x ) + ln (x 2 + 1) , x ∗ = −0 . 60323197152626 , 

f 5 (x ) = exp (x 2 + 7 x − 30) − 1 , x ∗ = 3 , 

f 6 (x ) = x exp (x 2 ) − sin 

2 (x ) + 3 cos (x ) + 5 , x ∗ = −1 . 20764782713287 . 

All numerical calculations were performed using Maple 18 system. Also, to study the convergence of iterations (4a) and (4b) ,

we compute the computational order of convergence (COC) of d x n using the formula, which was taken from [6] 

d x n = 

ln 

(| x n +1 − x ∗| / | x n − x ∗| )
ln 

(| x n − x ∗| / | x n −1 − x ∗| ) , (37) 

where x n +1 , x n , x n −1 are three consecutive approximations of iterations. n displayed in Tables 5–8 is the number iteration

required such that | x n − x ∗| ≤ 10 −250 . In Tables 5, 7 and 8 the factor q in the brackets denotes 10 q . 



T. Zhanlav et al. / Applied Mathematics and Computation 315 (2017) 414–423 421 

Table 6 

Some three-point iterative methods. 

τn = H(θn ) , αn = (H(θn ) + θn + (β − 1) θ2 
n + (β + γ − 4) θ3 

n ) + (1 + 4 θn ) 
f (z n ) 
f (y n ) 

. 

H ( x ) f ( x ) f 3 ( x ) f 4 ( x ) f 5 ( x ) f 6 ( x ) Methods 

x 0 3.2 −0 . 8 4.5 −4 . 2 

α, β , γ , ω n COC n COC n COC n COC 

α = 0 , 

β = 0 , 4 7.99 3 7.99 13 7.99 12 7.99 Bi et al. [1] 

γ = 0 

α = 1 , 

1 + 

x +2(1 −α) x 2 

(1 −αx ) 2 
β = 3 , 4 8.00 3 7.99 12 7.99 11 8.00 Chun, Lee [2] 

γ = 4 

α = −1 , 

β = −5 , 4 7.99 3 7.99 14 8.00 12 7.99 New method 

γ = 8 

α = 2 , 

β = 4 , 4 8.00 3 7.99 11 7.99 10 8.00 Cordero [3] 

γ = 8 , 

ω = 0 

α = 2 . 5 , 

β = 5 , 4 8.00 3 7.99 8 8.00 7 8.00 Bi et al. [1] 

γ = 12 . 5 , 

ω = 0 

α = 1 , 

1 + 

x (1+(2 −α) x + ωx 2 ) 
1 −αx 

β = 2 , 4 8.00 3 7.99 13 8.00 11 8.00 Chun, Lee [2] , 

γ = 2 , b = 0 , Thukral, 

ω = 0 Petkovic [14] 

α = 1 , 

β = 1 , 4 8.00 3 7.99 13 8.00 11 8.00 Maheshwari-based 

γ = 1 , methods in [8,14] 

ω = −1 

α = −1 , 

β = 0 , 4 8.00 3 7.99 13 7.99 12 8.00 New method 

γ = 0 , 

ω = 2 

Table 7 

Some particular cases of (29) and (28) with c = 0 . The factor q in the brackets denotes 10 q . 

f 1 (x ) , x 0 = −1 f 2 (x ) , x 0 = 4 . 86 

Choices of parameters n | x ∗ − x n | COC n | x ∗ − x n | COC Methods 

m = 1 , α = − 3 
2 

5 2.49( −847) 4.00 5 7.73( −363) 4.00 Jarratt’s [15] 

m = 0 or α = 0 5 3.76( −688) 4.00 6 1.42( −497) 4.00 Petkovic et al. [16] , Chun [17] 

m = 1 , α = − 3 
4 

5 1.89( −745) 4.00 6 1.62( −696) 4.00 Chun [17] 

m = 2 , α = − 3 
4 

5 7.42( −832) 4.00 6 5.03( −924) 4.00 Chun [17] 

m = 1 , α = − 1 
2 

5 6.81( −755) 4.00 6 4.70( −604) 4.00 Lotfi [18] 

m = 0 or α = 0 5 3.76( −688) 4.00 6 1.42( −497) 4.00 Jaisway [19] 

m = 0 or α = 0 5 3.76( −688) 4.00 6 1.42( −497) 4.00 Kattri, Abbasbandy [20] 

 

 

 

 

 

 

 

 

 

In Table 5 we present results of various fourth-order methods corresponding to (8) with m = 1 . In particular, the last

three columns correspond to King’s, modification of Potra-Ptak’s and Maheshwari’s methods, respectively. 

Table 5 shows the methods: the King’s [13] method corresponds to ω = 0 , m = 1 and α = 2 − b, b ∈ R in (8) , the Potra-

Ptak’s [3] method corresponds to ω = 0 , m = 1 and ω = 1 in (8) , the Maheshwari’s [7,8] method corresponds to α = m = 1

and ω = −1 in (8) , Chun and Lee’s [2] method corresponds to α = 1 , m = 2 and ω = 0 in (8) and so on. Fig. 1 shows the

residual of the f 1 ( x n ) versus first five iteration numbers n for different parameters values. 

From Table 6 we see that the convergence order of the proposed families with different parameters and the iteration

number n are the same as for all considered methods. But the dynamic behavior of iterations may depend on the concrete

choices of parameters [24–27] . Find the optimal choices of parameters is important task from practical point of view and

deserve additional study. 

The results presented in Table 7 are obtained by the known optimal methods with a = 

2 
3 , whereas results in Table 8 are

obtained by optimal methods with a � = 

2 
3 (a n = 

2 
3 + c f (x n )) . From Tables 5 to 8 we see that the COC coincides with theoret-

ical one. 
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Table 8 

Some particular cases of (28) and (29) with c = −1 . The factor q in the brackets denotes 10 q . 

f 1 (x ) , x 0 = −1 f 2 (x ) , x 0 = 4 . 86 f 3 (x ) , x 0 = 2 . 2 

Choices of parameters n | x ∗ − x n | COC n | x ∗ − x n | COC n | x ∗ − x n | COC 

m = 1 , α = − 3 
2 

5 3.93( −563) 4.00 7 2.17( −899) 4.00 5 9.56( −758) 4.00 

m = 0 or α = 0 5 1.97( −346) 4.00 6 5.21( −313) 4.00 5 2.70( −725) 4.00 

m = 1 , α = − 3 
4 

5 4.18( −473) 4.00 6 3.78( −304) 4.00 5 6.36( −753) 4.00 

m = 2 , α = − 3 
4 

5 7.22( −347) 4.00 8 3.78( −380) 4.00 5 2.29( −815) 4.00 

m = 1 , α = − 1 
2 

5 1.50( −438) 4.00 7 1.45( −962) 4.00 5 3.02( −739) 4.00 

m = 0 or α = 0 5 1.97( −346) 4.00 6 5.21( −313) 4.00 5 2.70( −725) 4.00 

m = 0 or α = 0 5 1.97( −346) 4.00 6 5.21( −313) 4.00 5 2.70( −725) 4.00 

1 2 3 4 5

10-190
10-180
10-170
10-160
10-150
10-140
10-130
10-120
10-110
10-100
10-90
10-80
10-70
10-60
10-50
10-40
10-30
10-20
10-10
100

|f 1(
x n)|

n

x0=3.6
 = =0
 =2-b, b=3, =0
 =0, =1
 =1, =-1

Fig. 1. The residual of the f 1 ( x n ) versus first five iteration numbers n for different parameters values (see Table 5 ). 

 

 

 

 

 

 

 

 

 

 

 

 

Conclusions 

The construction of the generating function for τ n and αn allows us to derive new optimal order family of iterations.

This family includes many known iterations as a special case. We develop a unified and proper representation of optimal

eighth-order three-point methods. The sufficient and necessary conditions for iterations (2) to be p (p = 5 , 6 , 7) order of

convergence are also given in term of parameters τ n and αn . We also select and propose a new family of two and three-

point iterations, for which the parameter τ n depends not only on θn , but also on 

f ′ (y n ) 
f ′ (x n ) 

ratio of first derivatives. For such

iterations we also give the necessary and sufficient conditions for the optimal fourth-order of convergence. We extend sig-

nificantly the class of optimal fourth-order Jarratt’s type iterations. It should be mentioned that the dynamic behavior of

iterations may depend on the specific choices of parameters. Finding the optimal choices of parameters are an important

task from a practical point of view and it deserves an additional analysis. 
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