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Abstract. A symbolic-numerical algorithm implemented in Maple for
constructing Hermitian finite elements is presented. The basis functions
of finite elements are high-order polynomials, determined from a spe-
cially constructed set of values of the polynomials themselves, their par-
tial derivatives, and their derivatives along the directions of the normals
to the boundaries of finite elements. Such a choice of the polynomials
allows us to construct a piecewise polynomial basis continuous across
the boundaries of elements together with the derivatives up to a given
order, which is used to solve elliptic boundary value problems using the
high-accuracy finite element method. The efficiency and the accuracy
order of the finite element scheme, algorithm and program are demon-
strated by the example of the exactly solvable boundary-value problem
for a triangular membrane, depending on the number of finite elements
of the partition of the domain and the number of piecewise polynomial
basis functions.

Keywords: Hermite interpolation polynomials · Boundary-value
problem · High-accuracy finite element method

1 Introduction

In Refs. [9,10], the symbolic-numeric algorithms and programs for the solution
of boundary-value problems for a system of second-order ordinary differential
equations using the finite element method (FEM) of high accuracy order with
Hermite interpolation polynomials (HIP) were developed, aimed at the calcula-
tion of spectral and optical characteristics of quantum systems.

It is known that the approximating function of the boundary-value problem
solution in the entire domain can be expressed by means of its values and the
values of its derivatives at the node points of the domain via the basis functions,
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referred to as Lagrange interpolation polynomials (LIP), which are nonzero only
on a few elements, adjacent to the corresponding nodes. Generally, the approxi-
mating function for the entire domain is represented in terms of linear combina-
tions of the basis functions. The coefficients of these linear combinations are the
values of the approximating function and its directional derivatives on a given
mesh of nodes. The basis functions themselves or their directional derivatives
take a unit value at one of the nodes. In many cases, the schemes are restricted
to the set of node values of the basis functions themselves. However, there are
problems, in which the values of directional derivatives are also necessary. They
are of particular importance when high smoothness between the elements is
required, or when the gradient of solution is to be determined with increased
accuracy. The construction of such basis functions, referred to as Hermite inter-
polation polynomials, is not possible on an arbitrary mesh of nodes. It is one of
the most important and difficult problems in the finite element method and its
applications in different fields, solved to date in the explicit form only for certain
particular cases [1,2,4–8,11,13,14,17,19,21].

This motivation determines the aim of the present work, namely, the develop-
ment of a symbolic-numerical algorithm implemented in any CAS for computing
in analytical form the basis functions of Hermitian finite elements for a few vari-
ables and their application to constructing the FEM schemes with high order of
accuracy.

In the paper, we present the symbolic-numeric algorithm implemented in the
CAS Maple [15] for constructing the interpolation polynomials (basis functions)
of Hermitian finite elements of a few variables based on a specially constructed
set of values of the polynomials themselves, their partial derivatives, and deriva-
tives along the normals to the boundaries of finite elements. The corresponding
piecewise continuous basis of the high-order accuracy FEM provides the conti-
nuity not only of the approximate solution, but also of its derivatives to a given
order depending on the smoothness of the variable coefficients of the equation
and the domain boundary. This basis is used to construct the FEM scheme
for high-accuracy solution of elliptic boundary-value problems in the bounded
domain of multidimensional Euclidean space, specified as a polyhedral domain.
We also used the symbolic algorithm to generate Fortran routines that allow the
solution of the generalized algebraic eigenvalue problem with high-dimension
matrices. The efficiency of the FEM scheme, the algorithm, and the program
is demonstrated by constructing typical bases of Hermitian finite elements and
their application to the benchmark exactly solvable boundary-value eigenvalue
problem for a triangle membrane.

The paper is organized as follows. In Sect. 2, the setting of the boundary-
value eigenvalue problem is given. In Sect. 3, we formulate the symbolic-numeric
algorithm for generating the bases of Hermitian finite elements with multiple
variables. In Sect. 4, we present the results of the calculations for the benchmark
boundary-value problem, demonstrating the efficiency of the FEM scheme. In the
Conclusion, we discuss the prospects of development of the proposed algorithm
of constructing the Hermitian finite elements and its applications to high-order
accuracy FEM schemes.
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2 Setting of the Problem

Consider a self-adjoint boundary-value problem for the elliptic differential equa-
tion of the second order:

(D − E) Φ(z) ≡
⎛
⎝− 1

g0(z)

d∑
ij=1

∂

∂zi
gij(z)

∂

∂zj
+ V (z) − E

⎞
⎠ Φ(z) = 0. (1)

For the principal part coefficients of Eq. (1), the condition of uniform ellipticity
holds in the bounded domain z = (z1, . . . , zd) ∈ Ω of the Euclidean space Rd,
i.e., the constants μ > 0, ν > 0 exist such that μξ2 ≤ ∑d

ij=1 gij(z)ξiξj ≤
νξ2, ξ2 =

∑d
i=1 ξ2i ∀ξ ∈ Rd. The left-hand side of this inequality expresses the

requirement of ellipticity, while the right-hand side expresses the boundedness of
the coefficients gij(z). It is also assumed that g0(z) > 0, gji(z) = gij(z) and V (z)
are real-valued functions, continuous together with their generalized derivatives
to a given order in the domain z ∈ Ω̄ = Ω ∪ ∂Ω with the piecewise continuous
boundary S = ∂Ω, which provide the existence of nontrivial solutions obeying
the boundary conditions [6,12] of the first kind

Φ(z)|S = 0, (2)

or the second kind

∂Φ(z)
∂nD

∣∣∣
S
= 0,

∂Φ(z)
∂nD

=
d∑

ij=1

(n̂, êi)gij(z)
∂Φ(z)
∂zj

, (3)

where ∂Φm(z)
∂nD

is the derivative along the conormal direction, n̂ is the outer normal

to the boundary of the domain S = ∂Ω, êi is the unit vector of z =
∑d

i=1 êizi,
and (n̂, êi) is the scalar product in Rd.

For a discrete spectrum problem, the functions Φm(z) from the Sobolev space
Hs≥1

2 (Ω), Φm(z) ∈ Hs≥1
2 (Ω), corresponding to the real eigenvalues E: E1 ≤

E2 ≤ ... ≤ Em ≤ ... satisfy the conditions of normalization and orthogonality

〈Φm(z)|Φm′(z)〉 =
∫

Ω

dzg0(z)Φm(z)Φm′(z) = δmm′ , dz = dz1...dzd. (4)

The FEM solution of the boundary-value problems (1)–(4) is reduced to the
determination of stationary points of the variational functional [3,6]

Ξ(Φm, Em, z) ≡
∫

Ω

dzg0(z)Φm(z) (D − Em) Φ(z) = Π(Φm, Em, z), (5)

where Π(Φm, Em, z) is the symmetric quadratic functional

Π(Φm, Em, z) =

∫

Ω

dz

[ d∑
ij=1

gij(z)
∂Φm(z)

∂zi

∂Φm(z)

∂zj
+ g0(z)Φm(z)(V (z) − Em)Φm(z)

]
.
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Fig. 1. (a) Enumeration of nodes Ar, r = 1, . . . , (p + 1)(p + 2)/2 with sets of numbers
[n0, n1, n2] for the standard (canonical) triangle element Δ in the scheme with the fifth-
order LIP p′ = p = 5 at d = 2. The lines (five crossing straight lines) are zeros of LIP
ϕ14(z

′) from (12), equal to 1 at the point labeled with the number triple [n0, n1, n2] =
[2, 2, 1]. (b) LIP isolines of ϕ14(z

′)

3 FEM Calculation Scheme

In FEM, the domain Ω = Ωh(z) =
⋃Q

q=1 Δq, specified as a polyhedral domain,
is covered with finite elements, in the present case, the simplexes Δq with d + 1
vertices ẑi = (ẑi1, ẑi2, . . . , ẑid) with i = 0, . . . , d. Each edge of the simplex Δq is
divided into p equal parts, and the families of parallel hyperplanes H(i, k) are
drawn, numbered with the integers k = 0, . . . , p, starting from the correspond-
ing face, e.g., as shown for d = 2 in Fig. 1 (see also [6]). The equation of the
hyperplane is H(i, k) : H(i; z) − k/p = 0, where H(i; z) is a linear function of z.

The node points of hyperplanes crossing Ar are enumerated with sets of
integers [n0, . . . , nd], ni ≥ 0, n0 + . . . + nd = p, where ni, i = 0, 1, . . . , d are
the numbers of hyperplanes, parallel to the simplex face, not containing the i-th
vertex ẑi = (ẑi1, . . . ẑid). The coordinates ξr = (ξr1, . . . , ξrd) of the node point
Ar ∈ Δq are calculated using the formula

(ξr1, . . . , ξrd) = (ẑ01, . . . , ẑ0d)n0/p + (ẑ11, . . . , ẑ1d)n1/p + . . . + (ẑd1, . . . , ẑdd)nd/p (6)

from the coordinates of the vertices ẑj = (ẑj1, . . . , ẑjd). Then the LIP ϕr(z) equal
to one at the point Ar with the coordinates ξr = (ξr1, . . . , ξrd), characterized by
the numbers [n0, n1, . . . , nd], and equal to zero at the remaining points ξr′ , i.e.,
ϕr(ξr′) = δrr′ , has the form

ϕr(z) =

⎛
⎝

d∏
i=0

ni−1∏
n′

i=0

H(i; z) − n′
i/p

H(i; ξr) − n′
i/p

⎞
⎠ . (7)
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Note that the construction of the HIP ϕκ
r (z), where κ ≡ κ1, . . . , κd, with the

fixed values of the functions {ϕκ
r (ξr′)} and the derivatives {∂•

•ϕκ
r (z)|z=ξr′ } at

the nodes ξr′ , already at d = 2 leads to cumbersome expressions, improper for
FEM using nonuniform mesh.

The economical implementation of FEM is the following:

1. The calculations are performed in the local (reference) coordinates z′, in which
the coordinates of the simplex vertices are the following: ẑ′

j = (ẑ′
j1, . . . , ẑ

′
jd),

ẑ′
jk = δjk,

2. The HIP in the physical coordinates z in the mesh is sought in the form of
linear combinations of polynomials in the local coordinates z′, the transition
to the physical coordinates is executed only at the stage of numerical solution
of a particular boundary-value problem (1)–(5),

3. The calculation of FEM integrals is executed in the local coordinates.

Let us construct the HIP on an arbitrary d-dimensional simplex Δq with the
d + 1 vertices ẑi = (ẑi1, ẑi2, . . . , ẑid), i = 0, . . . , d. For this purpose, we introduce
the local coordinate system z′ = (z′

1, z
′
2, . . . , z

′
d) ∈ Rd, in which the coordinates

of the simplex vertices are the following: ẑ′
i = (ẑ′

ik = δik, k = 1, . . . , d). The
relation between the coordinates is given by the formula:

zi = ẑ0i +
d∑

j=1

Ĵijz
′
j , i = 1, . . . , d, Ĵij = ẑji − ẑ0i. (8)

The inverse transformation and the relation between the differentiation oper-
ators are given by the formulas

z′
i =

d∑
j=1

(Ĵ−1)ij(zj − ẑ0j), (9)

∂

∂z′
i

=
d∑

j=1

Ĵji
∂

∂zj
,

∂

∂zi
=

d∑
j=1

(Ĵ−1)ji
∂

∂z′
j

. (10)

Equation (10) is used to calculate the HIP ϕκ
r (z′) = {ϕ̌κ

r (z′), Qs(z′)} from
(20) that satisfy the conditions (13), (17), and (18) of the next section, with the
fixed derivatives to the given order at the nodes ξr′ . In this case, the derivatives
along the normal to the element boundary in the physical coordinate system are,
generally, not those in the local coordinates z′. When constructing the HIP in the
local coordinates z′ one has to recalculate the fixed derivatives at the nodes ξr′ of
the element Δq to the nodes ξ′

r′ of the element Δ, using the matrices Ĵ−1, given
by cumbersome expressions. Therefore, the required recalculation is executed
based on the relations (8)–(10) for each finite element Δq at the stage of the
formation of the HIP basis {ϕκ̄′

r (z′)}P
r=1 on the finite element Δ, implemented

numerically using the analytical formulas, presented in the next section.
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Fig. 2. Schematic diagram of the conditions on the element Δq (upper panel) and
Δ (lower panel) for constructing the basis of HIP [pκmaxκ

′]: [131], [141], [231], [152].
The squares are the points ξ′

r, where the values of the functions and their derivatives
are fixed according to the conditions (13), (16); the solid (dashed) arrows begin at the
points η′

s, where the values of the first (second) derivative in the direction of the normal
in the physical coordinates are fixed, according to the condition (17), respectively; the
circles are the points ζ′

s, where the values of the functions are fixed according to the
condition (18)

The integrals that enter the variational functional (5) on the domain Ωh(z) =⋃Q
q=1 Δq, are expressed via the integrals, calculated on the element Δq, and

recalculated to the local coordinates z′ on the element Δ,
∫

Δq

dzg0(z)ϕκ
r (z)ϕκ′′

r′ (z)U(z) = J

∫

Δ

dz′g0(z(z′))ϕκ
r (z′)ϕκ′′

r′ (z′)U(z(z′)), (11)

∫

Δq

dzgs1s2(z)
∂ϕκ

r (z)

∂zs1

∂ϕκ′′
r′ (z)

∂zs2

= J

d∑
t1,t2=1

Ĵ−1
s1s2;t1t2

∫

Δ

dz′gs1s2(z(z′))
∂ϕκ

r (z′)
∂z′

t1

∂ϕκ′′
r′ (z′)
∂z′

t2

,

where J = det Ĵ > 0 is the determinant of the matrix Ĵ from Eq. (8),
Ĵ−1

s1s2;t1t2 = (Ĵ−1)t1s1(Ĵ
−1)t2s2 , dz′ = dz′

1 . . . dz′
d, and ϕκ

r (z′) = {ϕ̌κ
r (z′), Qs(z′)}

from Eq. (20).

3.1 Lagrange Interpolation Polynomials

In the local coordinates, the LIP ϕr(z
′) is equal to one at the node point ξ′

r

characterized by the numbers [n0, n1, . . . , nd], and zero at the remaining node
points ξ′

r′ , i.e., ϕr(ξ
′
r′) = δrr′ , are determined by Eq. (7) at H(0; z′) = 1 − z′

1 −
. . . − z′

d, H(i; z′) = z′
i, i = 1, . . . , d:
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Table 1. Characteristics of the HIP bases (20) at d = 2

[pκmaxκ′] [131] [141] [231] [152] [162] [241] [173]

p′ κmax(p + 1) − 1 5 7 8 9 11 11 13

Nκmaxp′ (p + 1)(p + 2)κmax(κmax + 1)/4 18 30 36 45 63 60 84

N1p′ (p′ + 1)(p′ + 2)/2 21 36 45 55 78 78 105

K p(p + 1)κmax(κmax − 1)/4 3 6 9 10 15 9 21

T1(1) 3p 3 3 6 3 3 6 3

T1(2) 9p 9 9 18 9 9 18 9

N(AP1) Nκmaxp′ 18 30 36 45 63 60 84

N(AP2) T1(κ′) 3 3 6 9 9 6 18

N(AP3) K − T1(κ′) 0 3 3 1 6 12 3

Restriction of derivative order κ′ : 3pκ′(κ′ + 1)/2 ≤ K

ϕr(z
′) =

⎛
⎝

d∏
i=1

ni−1∏
n′

i=0

z′
i − n′

i/p

ni/p − n′
i/p

⎞
⎠

⎛
⎝

n0−1∏
n′
0=0

1 − z′
1 − . . . − z′

d − n′
0/p

n0/p − n′
0/p

⎞
⎠ . (12)

Setting the numerators in Eq. (12) equal to zero yields the families of equa-
tions for the straight lines, directed “horizontally”, “vertically”, and “diago-
nally” in the local coordinate system of the element Δ, which is related by
the affine transformation with the “oblique” family of straight lines of the ele-
ment Δq. In Fig. 1, an example is presented that illustrates the construction
of the LIP at d = 2, r, r′ = 1, . . . , (p + 1)(p + 2)/2, p = 5 on the element Δ
in the form of a rectangular triangle with the vertices ẑ′

0 = (ẑ′
01, ẑ

′
02) = (0, 0),

ẑ′
1 = (ẑ′

11, ẑ
′
12) = (1, 0), ẑ′

2 = (ẑ′
21, ẑ

′
22) = (0, 1).

The piecewise polynomial functions Pl̄(z) forming the finite-element basis
{Pl̄(z)}P

l̄=1
, which are constructed by joining the LIP ϕr(z) of Eq. (7), obtained

from Eq. (12) by means of the transformation (9), on the finite elements Δq:

Pl(z) = {ϕl(z), Al ∈ Δq; 0, Al 
∈ Δq} ,

are continuous, but their derivatives are discontinuous at the boundaries of the
elements Δq.

3.2 Algorithm for Calculating the Basis of Hermite Interpolating
Polynomials

Let us construct the HIP of the order p′ by joining of which the piecewise poly-
nomial functions (27) with the continuous derivatives up to the given order κ′

can be obtained.

Step 1. Auxiliary Polynomials (AP1). To construct HIP in the local coor-
dinates z′, let us introduce the set of auxiliary polynomials (AP1)
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ϕκ1...κd
r (ξ′

r) = δrr′δκ10 . . . δκd0,
∂μ1...μdϕ

κ1...κd
r (z′)

∂z′
1

μ1 . . . ∂z′
d

μd

∣∣∣∣
z′=ξ′

r′

= δrr′δκ1μ1 . . . δκdμd , (13)

0 ≤ κ1 + κ2 + . . . + κd ≤ κmax − 1, 0 ≤ μ1 + μ2 + . . . + μd ≤ κmax − 1.

Here at the node points ξ′
r, defined according to (6), in contrast to LIP, the

values of not only the functions themselves, but of their derivatives to the order
κmax − 1 are specified. AP1 are given by the expressions

ϕκ1κ2...κd
r (z′) = wr(z

′)
∑

μ∈Δκ

aκ1...κd,μ1...μd
r (z′

1 − ξ′
r1)

μ1 × . . . × (z′
d − ξ′

rd)μd , (14)

wr(z
′) =

⎛
⎝ d∏

i=1

ni−1∏
n′

i=0

(z′
i − n′

i/p)κmax

(ni/p − n′
i/p)κmax

⎞
⎠
⎛
⎝n0−1∏

n′
0=0

(1 − z′
1 − . . . − z′

d − n′
0/p)κmax

(n0/p − n′
0/p)κmax

⎞
⎠ ,

wr(ξ
′
r) = 1,

where the coefficients aκ1...κd,μ1...μd
r are calculated from recurrence relations

obtained by substitution of Eq. (14) into conditions (13),

aκ1...κd,μ1...μd
r =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0, μ1 + . . . + μd ≤ κ1 + . . . + κd, (μ1, . . . , μd) �= (κ1, . . . , κd),
d∏

i=1

1
μi!

, (μ1, . . . , μd) = (κ1, . . . , κd);

− ∑
ν∈Δν

(
d∏

i=1

1
(μi−νi)!

)
g

μ1−ν1,...,μd−νd
r (ξ′

r)a
κ1...κd,ν1...νd
r ,

μ1 + . . . + μd > κ1 + . . . + κd;

(15)

gκ1κ2...κd(z′) =
1

wr(z′)
∂κ1κ2...κdwr(z

′)
∂z′

1
κ1∂z′

2
κ2 . . . ∂z′

d
κd

.

For d > 1 and κmax > 1, the number Nκmaxp′ of HIP of the order p′ and the
multiplicity of nodes κmax are smaller than the number N1p′ of the polynomials
that form the basis in the space of polynomials of the order p′ (e.g., the LIP
from (12)), i.e., the polynomials satisfying Eq. (13) are determined not uniquely.

Table 2. The HIP p = 1, κmax = 3, κ′ = 1, p′ = 5 (the Argyris element [5,6,14])

AP1 : ξ1 = (0, 1), ξ2 = (1, 0), ξ3 = (0, 0)

ϕ0,0
1 = z32(6z

2
2 − 15z2 + 10) ϕ0,0

2 = z31(6z
2
1 − 15z1 + 10) ϕ0,0

3 = z30(6z
2
0 − 15z0 + 10)

ϕ0,1
1 = −z32(z2 − 1)(3z2 − 4) ϕ0,1

2 = −z31z2(3z1 − 4) ϕ0,1
3 = −z30z2(3z0 − 4)

ϕ1,0
1 = −z1z32(3z2 − 4) ϕ1,0

2 = −z31(z1 − 1)(3z1 − 4) ϕ1,0
3 = −z30z1(3z0 − 4)

ϕ0,2
1 = z32(z2 − 1)2/2 ϕ0,2

2 = z31z22/2 ϕ0,2
3 = z30z22/2

ϕ1,1
1 = z1z32(z2 − 1) ϕ1,1

2 = (z1 − 1)z31z2 ϕ1,1
3 = z30z1z2

ϕ2,0
1 = z21z32/2 ϕ2,0

2 = z31(z1 − 1)2/2 ϕ2,0
3 = z30z21/2

AP2 : η1 = (0, 1/2), η2 = (1/2, 0), η3 = (1/2, 1/2)

Q1 = 16z20z1z22/f11 Q2 = 16z20z21z2/f22 Q3 = −8z0z21z22/f01
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Step 2. Auxiliary Polynomials (AP2 and AP3). For unique determination
of the polynomial basis let us introduce K = N1p′−Nκmaxp′ auxiliary polynomials
Qs(z) of two types: AP2 and AP3, linearly independent of AP1 from (14) and
satisfying the following conditions at the node points ξ′

r′ of AP1:

Qs(ξ′
r′) = 0,

∂κ′
1κ′

2...κ′
dQs(z′)

∂z′
1
μ1∂z′

2
μ2 . . . ∂z′

d
μd

∣∣∣∣
z′=ξ′

r′

= 0, s = 1, . . . ,K, (16)

0 ≤ κ1 + κ2 + . . . + κd ≤ κmax − 1, 0 ≤ μ1 + μ2 + . . . + μd ≤ κmax − 1.

Note that to provide the continuity of derivatives the part of polynomials referred
to as AP2 must satisfy the condition

∂kQs(z′)
∂nk

i(s)

∣∣∣∣
z′=η′

s′

= δss′ , s, s′ = 1, . . . , T1(κ′), k = k(s′), (17)

where η′
s′ = (η′

s′1, . . . , η
′
s′d) are the chosen points lying on the faces of vari-

ous dimensionalities (from 1 to d − 1) of the d-dimensional simplex Δ and not
coincident with the nodal points of HIP ξ′

r, where (13) is valid, ∂/∂ni(s) is the
directional derivative along the vector ni, normal to the corresponding ith face
of the d-dimensional simplex Δq at the point ηs′ in the physical coordinate sys-
tem, which is recalculated to the point η′

s′ of the face of the simplex Δ in the
local coordinate system using relations (8)–(10), e.g., for d = 2 see Eq. (25). Cal-
culating the number T1(κ) of independent parameters required to provide the
continuity of derivatives to the order κ, we determine its maximal value κ′ that
can be obtained for the schemes with given p and κmax and, correspondingly,
the additional conditions (17).

T2 = K − T1(κ′) parameters remain independent and, correspondingly, T2

additional conditions are added, necessary for the unique determination of the
polynomials referred to as AP3,

Qs(ζ ′
s′) = δss′ , s, s′ = T1(κ′) + 1, . . . ,K, (18)

where ζ ′
s′ = (ζ ′

s′1, . . . , ζ
′
s′d) ∈ Δ are the chosen points belonging to the simplex

without the boundary, but not coincident with the node points of AP1 ξ′
r.

The auxiliary polynomials AP2 are given by the expression

Qs(z′) =

(
d∏

t=0

z′
t
kt

) ∑
j1,...,jd

bj1,...,jd;sz
′
1
j1 ...z′

d
jd , z′

0 = 1 − z′
1 − ... − z′

d, (19)

where kt = 1, if the point ηs, in which the additional conditions (17) are specified,
lies on the corresponding face of the simplex Δ, i.e., H(t, ηs) = 0, and kt = κ′,
if H(t, ηs) 
= 0. The auxiliary polynomials AP3 are given by the expression
(19) at kt = κ′. The coefficients bj1,...,jd;s are determined from the uniquely
solvable system of linear equations, obtained as a result of the substitution of
the expression (19) into conditions (16)–(18).
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Table 3. The HIP p = 1, κmax = 4, κ′ = 1, p′ = 7

AP1 : ξ1 = (0, 1), ξ2 = (1, 0), ξ3 = (0, 0)

ϕ0,0
1 = −z42P0(z3) ϕ0,0

2 = −z41P0(z1) ϕ0,0
3 = −z40P0(z0)

ϕ0,1
1 = z42(z2 − 1)P1(z2) ϕ0,1

2 = z41z2P1(z1) ϕ0,1
3 = z40z2P1(z0)

ϕ1,0
1 = z1z42P1(z2) ϕ1,0

2 = z41(z1 − 1)P1(z1) ϕ1,0
3 = z40z1P1(z0)

ϕ0,2
1 = −z42(z2 − 1)2(4z2 − 5)/2 ϕ0,2

2 = −(1/2)z41z22(4z1 − 5) ϕ0,2
3 = −z40z22(4z0 − 5)/2

ϕ1,1
1 = −z1z42(z2 − 1)(4z2 − 5) ϕ1,1

2 = −z41z2(z1 − 1)(4z1 − 5) ϕ1,1
3 = −z40z1z2(4z0 − 5)

ϕ2,0
1 = −z21z42(4z2 − 5)/2 ϕ2,0

2 = −z41(z1 − 1)2(4z1 − 5)/2 ϕ2,0
3 = −z40z21(4z0 − 5)/2

ϕ0,3
1 = z42(z2 − 1)3/6 ϕ0,3

2 = z41z32/6 ϕ0,3
3 = z40z32/6

ϕ1,2
1 = z1z42(z2 − 1)2/2 ϕ1,2

2 = z41z22(z1 − 1)/2 ϕ1,2
3 = z40z1z22/2

ϕ2,1
1 = z21z42(z2 − 1)/2 ϕ2,1

2 = z41z2(z1 − 1)2/2 ϕ2,1
3 = z40z21z2/2

ϕ3,0
1 = z31z42/6 ϕ3,0

2 = z41(z1 − 1)3/6 ϕ3,0
3 = z40z31/6

AP2 : η1 = (0, 1/2), η2 = (1/2, 0), η3 = (1/2, 1/2)

Q1 = 8z1z22z20(12z
2
1 − 7z1 − 8z1z2 − 8z22 + 8z2)/f11

Q2 = −8z21z2z20(8z
2
1 + 8z1z2 − 8z1 + 7z2 − 12z22)/f22

Q3 = 4z21z22z0(12z22 − 17z2 + 5 − 17z1 + 32z1z2 + 12z21)/f01

AP3 : ζ4 = (1/4, 1/2), ζ5 = (1/2, 1/4), ζ6 = (1/4, 1/4)

Q4 = 1024z20z21z22(4z2 − 1) Q5 = 1024z20z21z22(4z1 − 1) Q6 = 1024z20z21z22(4z0 − 1)

P0(zj) = (20z3j − 70z2j + 84zj − 35) , P1(zj) = (10z2j − 24zj + 15)

Step 3. As a result, we get the required set of basis HIP

ϕκ
r (z′) = {ϕ̌κ

r (z′), Qs(z′)}, κ = κ1, . . . , κd, (20)

composed of the polynomials Qs(z′) of the type AP2 and AP3, and the polyno-
mials ϕ̌κ

r (z′) of the type AP1 that satisfy the conditions

ϕ̌κ1...κd
r (ξ′

r) = δrr′δκ10 . . . δκd0,
∂μ1...μd ϕ̌

κ1...κd
r (z′)

∂z′
1

μ1 . . . ∂z′
d

μd

∣∣∣∣
z′=ξ′

r′

= δrr′δκ1μ1 . . . δκdμd , (21)

0 ≤ κ1 + κ2 + . . . + κd ≤ κmax − 1, 0 ≤ μ1 + μ2 + . . . + μd ≤ κmax − 1;

∂kϕ̌κ1...κd
r (z′)
∂nk

i(s)

∣∣∣∣
z′=η′

s′

= 0, s′ = 1, . . . , T1(κ
′), k = k(s′), (22)

ϕ̌κ1...κd
r (ζ′

s′) = 0, s′ = T1(κ
′) + 1, . . . , K, (23)

and are calculated using the formulas

ϕ̌κ
r (z′) = ϕκ

r (z′) −
K∑

s=1

cκ;r;sQs(z′), cκ;r;s =

⎧⎨
⎩

∂kϕκ
r (z

′)
∂nk

i(s)

∣∣∣∣
z′=η′

s

, Qs(z′)∈AP2,

ϕκ
r (ζs), Qs(z′)∈AP3.

(24)

Step 4. The AP1 ϕ̌κ
r (z′) from (20), where κ denotes the directional derivatives

along the local coordinate axes, are recalculated using formulas (10) into ϕ̌κ
r (z′),

specified in the local coordinates, but now κ denotes already the directional
derivatives along the physical coordinate axes.
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Table 4. The HIP p = 2, κmax = 3, κ′ = 1, p′ = 8

AP1 : ξ1 = (0, 1), ξ2 = (1/2, 1/2), ξ3 = (1, 0), ξ4 = (0, 1/2), ξ5 = (1/2, 0), ξ6 = (0, 0)

ϕ0,0
1 = z32(2z2 − 1)3S0(z2) ϕ0,0

3 = z31(2z1 − 1)3S0(z1) ϕ0,0
6 = z30(2z0 − 1)3S0(z0)

ϕ0,1
1 = −z32(z2 − 1)S1(z2) ϕ0,1

3 = −z31z2S1(z1) ϕ0,1
6 = −z30z2S1(z0)

ϕ1,0
1 = −z1z32S1(z2) ϕ1,0

3 = −z31(z1 − 1)S1(z1) ϕ1,0
6 = −z30z1S1(z0)

ϕ0,2
1 = z32(z2 − 1)2(2z2 − 1)3/2 ϕ0,2

3 = z31(2z1 − 1)3z22/2 ϕ0,2
6 = z30z22(2z0 − 1)3/2

ϕ1,1
1 = z32(2z2 − 1)3z1(z2 − 1) ϕ1,1

3 = z31z2(z1 − 1)(2z1 − 1)3 ϕ1,1
6 = z30z1z2(2z0 − 1)3

ϕ2,0
1 = z32(2z2 − 1)3z21/2 ϕ2,0

3 = z31(z1 − 1)2(2z1 − 1)3/2 ϕ2,0
6 = z30z21(2z0 − 1)3/2

ϕ0,0
2 = 64z31z32S2(z0) ϕ0,0

4 = 64z30z32S2(z1) ϕ0,0
5 = 64z30z31S2(z2)

ϕ0,1
2 = 32z31z32S3(z2, z0) ϕ0,1

4 = 32z30z32S3(z2, z1) ϕ0,1
5 = 64z30z31z2(6z2 + 1)

ϕ1,0
2 = 32z31z32S3(z1, z0) ϕ1,0

4 = 64z30z1z32(6z1 + 1) ϕ1,0
5 = 32z30z31S3(z1, z2)

ϕ0,2
2 = 8z31z32(2z2 − 1)2 ϕ0,2

4 = 8z30z32(2z2 − 1)2 ϕ0,2
5 = 32z30z31z22

ϕ1,1
2 = 16z31z32(2z1 − 1)(2z2 − 1) ϕ1,1

4 = 32z30z1z32(2z2 − 1) ϕ1,1
5 = 32z30z31z2(2z1 − 1)

ϕ2,0
2 = 8z31z32(2z1 − 1)2 ϕ2,0

4 = 32z30z21z32 ϕ2,0
5 = 8z30z31(2z1 − 1)2

AP2 : η1 = (0, 1/4), η2 = (0, 3/4), η3 = (1/4, 0), η4 = (3/4, 0), η5 = (1/4, 3/4), η6 = (3/4, 1/4)

Q1 = (512/9)z20z1z22(2z0 − 1)(2z2 − 1)(4z0 − 1)/f11

Q2 = −(512/9)z20z1z22(2z0 − 1)(2z2 − 1)(4z2 − 1)/f11

Q3 = −(512/9)z20z21z2(2z0 − 1)(2z1 − 1)(4z0 − 1)/f22

Q4 = −(512/9)z20z21z2(2z0 − 1)(2z1 − 1)(4z1 − 1)/f22

Q5 = (256/9)z0z21z22(2z1 − 1)(2z2 − 1)(4z2 − 1)/f01

Q6 = (256/9)z0z21z22(2z1 − 1)(2z2 − 1)(4z1 − 1)/f01

AP3 : ζ7 = (1/4, 1/2), ζ8 = (1/2, 1/4), ζ9 = (1/4, 1/4)

Q7 = 4096z20z21z22(2z0 − 1)(2z1 − 1)

Q8 = 4096z20z21z22(2z0 − 1)(2z2 − 1)

Q9 = 4096z20z21z22(2z1 − 1)(2z2 − 1)

S0(zj) = (48z22 − 105z2 + 58) , S1(zj) = (2zj − 1)3(9zj − 10),

S2(zj) = (24z2j − 12z0z1z2/zj + 4), S3(zi, zj) = (2zi − 1)(6zj + 1)

Step 5. The final transition to the physical coordinates is implemented by
means of transformation (9).

3.3 Example: HIP for d = 2

For d = 2, the order p′ of the polynomial with respect to the tangential variable
t at the boundary of the triangle ∂κ′+1

∂nκ′∂t
,. . . , ∂κmax

∂nκ′∂tκmax−κ′−1 . Thus, since the
triangle has three sides, the unique determination of the derivatives to the order
of κ′ at the boundary requires T1(κ′) = 3p+. . .+3κ′p = 3pκ′(κ′+1)/2 parameters
and, correspondingly, the additional conditions (17).

For example, if p = 1 and κmax = 4, then there are K = 6 additional
conditions for the determination of AP2 and AP3. The order p′ = 7 of the
polynomial in the tangential variable t at the boundary of the triangle coincides
with the order of the polynomial of two variables, and its unique determination
requires p′ + 1 = 8 parameters. The first-order derivative κ′ = 1 in the variable
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Table 5. The HIP p = 1, κmax = 5, κ′ = 2, p′ = 9

AP1 : ξ1 = (0, 1), ξ2 = (1, 0), ξ3 = (0, 0)

ϕ0,0
1 = z5

2T0(z2) ϕ0,0
2 = z5

1T0(z1) ϕ0,0
3 = z5

0T0(z0)

ϕ0,1
1 = −z5

2(z2 − 1)T1(z2) ϕ0,1
2 = −z5

1z2T1(z1) ϕ0,1
3 = −z5

0z2T1(z0)

ϕ1,0
1 = −z1z5

2T1(z2) ϕ1,0
2 = −z5

1(z1 − 1)T1(z1) ϕ1,0
3 = −z5

0z1T1(z0)

ϕ0,2
1 = z5

2(z2 − 1)2T2(z2)/2 ϕ0,2
2 = z5

1z2
2T2(z1)/2 ϕ0,2

3 = z5
0z2

2T2(z0)/2

ϕ1,1
1 = z1z5

2(z2 − 1)T2(z2) ϕ1,1
2 = z5

1z2(z1 − 1)T2(z1) ϕ1,1
3 = z5

0z1z2T2(z0)

ϕ2,0
1 = z2

1z5
2T2(z2)/2 ϕ2,0

2 = z5
1(z1 − 1)2T2(z1)/2 ϕ2,0

3 = z5
0z2

1T2(z0)/2

ϕ0,3
1 = −z5

2(z2 − 1)3(5z2 − 6)/6 ϕ0,3
2 = −z5

1z3
2(5z1 − 6)/6 ϕ0,3

3 = −z5
0z3

2(5z0 − 6)/6

ϕ1,2
1 = −z1z5

2(z2 − 1)2(5z2 − 6)/2 ϕ1,2
2 = −z5

1z2
2(z1 − 1)(5z1 − 6)/2 ϕ1,2

3 = −z5
0z1z2

2(5z0 − 6)/2

ϕ2,1
1 = −z2

1z5
2(z2 − 1)(5z2 − 6)/2 ϕ2,1

2 = −z5
1z2(z1 − 1)2(5z1 − 6)/2 ϕ2,1

3 = −z5
0z2

1z2(5z0 − 6)/2

ϕ3,0
1 = −z3

1z5
2(5z2 − 6)/6 ϕ3,0

2 = −z5
1(z1 − 1)3(5z1 − 6)/6 ϕ3,0

3 = −z5
0z3

1(5z0 − 6)/6

ϕ0,4
1 = z5

2(z2 − 1)4/24 ϕ0,4
2 = z5

1z4
2/24 ϕ0,4

3 = z5
0z4

2/24

ϕ1,3
1 = z1z5

2(z2 − 1)3/6 ϕ1,3
2 = z5

1z3
2(z1 − 1)/6 ϕ1,3

3 = z5
0z1z3

2/6

ϕ2,2
1 = z2

1z5
2(z2 − 1)2/4 ϕ2,2

2 = z5
1z2

2(z1 − 1)2/4 ϕ2,2
3 = z5

0z2
1z2

2/4

ϕ3,1
1 = z3

1z5
2(z2 − 1)/6 ϕ3,1

2 = z5
1z2(z1 − 1)3/6 ϕ3,1

3 = z5
0z3

1z2/6

ϕ4,0
1 = z4

1z5
2/24 ϕ4,0

2 = z5
1(z1 − 1)4/24 ϕ4,0

3 = z5
0z4

1/24

AP2 : η1 = (0, 1/2), η2 = (1/2, 0), η3 = (1/2, 1/2), η4 = (0, 1/3), η5 = (0, 2/3),

η6 = (1/3, 0), η7 = (2/3, 0), η8 = (1/3, 2/3), η9 = (2/3, 1/3)

Q1 = 256z3
0z1z3

2((3z1z2 − 5z2
1 − z2

2 + z2)f11 − 4z1(z2 − z0)f12)/f2
11

Q2 = 256z3
0z3

1z2((3z1z2 − 5z2
2 − z2

1 + z1)f22 + 4z2(z1 − z0)f21)/f2
22

Q3 = 128z0z3
1z3

2((7z2
0 − 2z0 − z1z2)f01 + 2z0(z1 − z2)f02)/f2

01

Q4 = (729/16)z3
0z2

1z3
2(3z0 − 1)/f2

11

Q5 = (729/16)z3
0z2

1z3
2(3z2 − 1)/f2

11

Q6 = (729/16)z3
0z3

1z2
2(3z0 − 1)/f2

22

Q7 = (729/16)z3
0z3

1z2
2(3z1 − 1)/f2

22

Q8 = (729/64)z2
0z3

1z3
2(3z2 − 1)/f2

01

Q9 = (729/64)z2
0z3

1z3
2(3z1 − 1)/f2

01

AP3 : ζ10 = (1/3, 1/3) Q10 = 19683z3
0z3

1z3
2

T0(zj) = (70z4
j − 315z3

j + 540z2
j − 420zj + 126)

T1(zj) = (35z3
2 − 120z2

2 + 140z2 − 56), T2(zj) = (15z2
j − 35zj + 21)

normal to the boundary will be a polynomial of the order p′ − κ′ = 6, and
its unique determination will require p′ − κ′ + 1 = 7 parameters. However, it is
determined by only p′ −κ′(p+1) = 6 parameters: the mixed derivatives ∂

∂n , ∂2

∂n∂t

and ∂3

∂n∂t2 , specified at two vertices. The missing parameter can be determined
by specifying the directional derivative along the direction, non-parallel to the
triangle boundary, at one of the points on its side (e.g., in the middle of the
side). Thus, for p = 1 and κmax = 4, one can construct HIP with the fixed values
of the first derivative on the boundary of the triangle, and 6− 3 = 3 parameters
remain free.

The second-order derivative κ′ = 2 in the variable normal to the boundary
is a polynomial of the order p′ − κ′ = 5, and its unique determination requires
p′ − κ′ + 1 = 6 parameters. However, it is determined by only p′ − κ′(p + 1) = 4
parameters: the mixed derivatives ∂2

∂n2 and ∂3

∂n2∂t specified at two vertices of the
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triangle. Thus, the unique determination of the second derivative will require 6
parameters. This fact means that using this algorithm for p = 1 and κmax = 4,
it is impossible to construct the FEM scheme with continuous second derivative.
In this case, one should use the scheme with κmax > 4, e.g., denoted as [152]
in Table 1 and Fig. 2. Then the three remaining free parameters are used to
construct AP3. Note that it is possible to construct the schemes providing the
continuity of the second derivatives at some boundaries of the finite elements.
This case is not considered in the present paper.

For d = 2, the derivatives ∂/∂ni along the direction ni, perpendicular to the
appropriate face i = 0, 1, 2 in the physical coordinate system are given in terms
of the partial derivatives ∂/∂z′

j , j = 1, 2 in the local coordinate system Δ, using
(8)–(10), by the expressions

∂

∂ni
= fi1

∂

∂z′
1

+ fi2
∂

∂z′
2

, i = 1, 2,
∂

∂n0
= (f01 + f02)

∂

∂z′
1

+ (f01 − f02)
∂

∂z′
2

, (25)

where fij = fij(ẑ0, ẑ1, ẑ2) are the functions of the coordinates of vertices ẑ0, ẑ1, ẑ2
of the triangle Δq in the physical coordinate system

f11 = J−1R(ẑ2, ẑ0), f12 = − (ẑ12 − ẑ02)(ẑ22 − ẑ02) + (ẑ21 − ẑ01)(ẑ11 − ẑ01)

JR(ẑ2, ẑ0)
,

f22 = J−1R(ẑ1, ẑ0), f21 = − (ẑ12 − ẑ02)(ẑ22 − ẑ02) + (ẑ21 − ẑ01)(ẑ11 − ẑ01)

JR(ẑ1, ẑ0)
,

f01 = −(2J)−1R(ẑ2, ẑ1), f02 =
(ẑ11 − ẑ01)2 + (ẑ12 − ẑ02)2 − (ẑ22 − ẑ02)2 − (ẑ21 − ẑ01)2

2JR(ẑ2, ẑ1)
,

J = (ẑ11 − ẑ01)(ẑ22 − ẑ02) − (ẑ12 − ẑ02)(ẑ21 − ẑ01), (26)
R(ẑj , ẑj′ ) = ((ẑ1j − ẑ1j′ )2 + (ẑ2j − ẑ2j′ )2)1/2.

The implementation of conditions (13), (16), (17), and (18), using which the
basis HIP were constructed, is schematically shown for d = 2 in Fig. 2. The
characteristics of the polynomial basis of HIP on the element Δ at d = 2 are
presented in Table 1.

Tables 2, 3, 4 and 5 present the results of executing the Algorithm from
Sect. 3.2 for the HIP (p = 1, κmax = 3, κ′ = 1, p′ = 5), (p = 1, κmax = 4,
κ′ = 1, p′ = 7), (p = 2, κmax = 3, κ′ = 1, p′ = 8) and (p = 1, κmax = 5, κ′ = 2,
p′ = 9): AP1 ϕk

r (z′), AP2 and AP3 Qk
s(z′), and the corresponding coefficients

cκ;r;s are calculated using Eq. (24). The notations are as follows: ξr, ηs, ζs are the
coordinates of the nodes, in which the right-hand side of Eqs. (21), (17) or (18)
equals one, z0 = 1 − z1 − z2, fij is found from formulas (26), the arguments of
functions and the primes at the notations of independent variables are omitted.
The explicit expressions for the HIPs (p = 1, κmax = 6, κ′ = 2, p′ = 11), (p = 2,
κmax = 4, κ′ = 1, p′ = 11), and (p = 1, κmax = 7, κ′ = 3, p′ = 13) were calculated
too, but are not presented here because of the paper size limitations (one can
receive it with request to authors or using program TRIAHP implemented in
Maple which will be published in the library JINRLIB). The calculations were
carried out using the computer Intel Pentium CPU 987, ×64, 4 GB RAM, the
Maple 16. The computing time for the considered examples did not exceed 6 s.
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Remark 1. At κ′ = 1 on uniform grids, one can make use of the basis with
continuous first derivative consisting of the reduced HIP ϕ̌k

r (z′) and Qs(z′) for
f01 = f11 = f22 = 1. In this case, the derivatives of such polynomials along the
direction normal to the boundary generally do not satisfy conditions (17).

Fig. 3. (a) The mesh on the domain Ωh(z) =
⋃Q

q=1 Δq of the triangle membrane

composed of triangle elements Δq (b) the profiles of the fourth eigenfunction Φh
4 (z)

with Eh
4 = 3 + 1.90 · 10−17 obtained using the LIP of the order p′ = p = 8

Fig. 4. The error ΔEh
4 of the eigenvalue Eh

4 versus the number of elements n and the
length of the vector N

3.4 Piecewise Polynomial Functions

The piecewise polynomial functions Pl(z) with continuous derivatives to the
order κ′ are constructed by joining the polynomials ϕκ

r (z) = {ϕ̌κ
r (z), Qs(z)}

from (20), obtained using the Algorithm on the finite elements Δq ∈ Ωh(z) =⋃Q
q=1 Δq:
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Pl′(z) =
{

±ϕκ
l(l′)(z), Al(l′) ∈ Δq; 0, Al(l′) 
∈ Δq

}
, (27)

where the sign “−” can appear only for AP2, when it is necessary to join the
normal derivatives of the odd order.

The expansion of the sought solution Φm(z) in the basis of piecewise poly-
nomial functions Pl′(z), Φh

m(z) =
∑N

l′=1 Pl′(z)Φh
l′m and its substitution into the

variational functional (5) leads to the generalized algebraic eigenvalue prob-
lem, (A − BEh

m)Φh
m = 0, solved using the standard method (see, e.g., [3]).

The elements of the symmetric matrices of stiffness A and mass B comprise
the integrals like Eq. (5), which are calculated on the elements in the domain
Δq ∈ Ωh(z) =

⋃Q
q=1 Δq, recalculated into the local coordinates on the

element Δ.
The deviation of the approximate solution Eh

m, Φh
m(z) ∈ Hκ′+1≥1

2 (Ωh) from
the exact one Em, Φm(z) ∈ H2

2(Ω) is theoretically estimated as [6,20]
∣∣Em − Eh

m

∣∣ ≤ c1h
2p′

,
∥∥Φm(z) − Φh

m(z)
∥∥
0

≤ c2h
p′+1, (28)

where ‖Φi(z)‖20 =
∫

Ω
g0(z)dzΦi(z)Φi(z), h is the maximal size of the finite ele-

ment Δq, p′ is the order of the FEM scheme, m is the number of the eigenvalue,
c1 and c2 are coefficients independent of h.

4 Results and Discussion

As an example, let us consider the solution of the discrete-spectrum problem (1)–
(4) at d = 2, g0(z) = gij(z) = 1, and V (z) = 0 in the domain Ωh(z) = ∪Q

q=1Δq

in the form of an equilateral triangle with the side 4π/3 under the boundary
conditions of the second kind (3) partitioned into Q = n2 equilateral triangles Δq

with the side h = 4π/3n. The eigenvalues of this problem having the degenerate
spectrum [16,18] are the integers Em = m2

1+m2
2+m1m2 = 0, 1, 1, 3, 4, 4, 7, 7, . . .,

m1,m2 = 0, 1, 2, . . .. Figure 3 presents the finite-element mesh with the LIP of
the eighth order and the profile of the fourth eigenfunction Φh

4 (z). Figure 4 shows
the errors ΔEm = Eh

m −Em of the eigenvalue Eh
4 (z) depending on the number n

(the number of elements being n2) and on the length N of the vector Φh
m of the

algebraic eigenvalue problem for the FEM schemes from the fifth to the ninth
order of accuracy: using LIP with the labels [pκmaxκ

′] = [510], . . . , [910], and
using HIP with the labels [131], [141], [231] and [152] from Table 1, conserving
the continuity of the first and the second derivative of the approximate solution,
respectively.

As seen from Fig. 4, the errors of the eigenvalue ΔEh
4 (z) of the FEM schemes

of the same order are nearly similar and correspond to the theoretical estimates
(28), but in the FEM schemes conserving the continuity of the first and the
second derivatives of the approximate solution, the matrices of smaller dimension
are used that correspond to the length of the vector N smaller by 1.5–2 times
than in the schemes with LIP that conserve only the continuity of the functions
themselves at the boundaries of the finite elements. The calculations were carried
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out using the computer 2× Xeon 3.2 GHz, 4 GB RAM, the Intel Fortran 77 with
quadruple precision real*16, with 32 significant digits. The computing time for
the considered examples did not exceed 3 min.

5 Conclusion

We presented a symbolic-numeric algorithm, implemented in the Maple system
for analytical calculation of the basis of Hermite interpolation polynomials of
several variables, which is used to construct a FEM computational scheme of
high-order accuracy. The scheme is intended for solving the eigenvalue problem
for the elliptic partial differential equation in a bounded domain of multidimen-
sional Euclidean space. The procedure provides the continuity not only of the
approximate solution itself, but also of its derivatives to a given order. By the
example of the exactly solvable problem for the triangle membrane it is shown
that the errors for the eigenvalue are nearly the same for the FEM schemes of
the same order and correspond to the theoretical estimates. To achieve the given
accuracy of the approximate solution the FEM schemes with HIP, providing the
continuity of the first and the second derivatives of the approximate solutions
the required matrices have smaller dimension, corresponding to the length of the
vector N smaller by 1.5–2 times than for the schemes with LIP, providing only
the continuity of the approximate solution itself at the boundaries of the finite
elements.

The FEM computational schemes are oriented at the calculations of the spec-
tral and optical characteristics of quantum dots and other quantum mechanical
systems. The implementation of FEM with HIP in the space with d ≥ 2 and the
domains different from a polyhedral domain will be presented elsewhere.
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