
Symbolic-Numerical Algorithms for Solving
the Parametric Self-adjoint 2D Elliptic

Boundary-Value Problem Using High-Accuracy
Finite Element Method

A.A. Gusev1, V.P. Gerdt1,2, O. Chuluunbaatar1,3, G. Chuluunbaatar1,2,
S.I. Vinitsky1,2(B), V.L. Derbov4, and A. Góźdź5
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Abstract. We propose new symbolic-numerical algorithms imple-
mented in Maple-Fortran environment for solving the parametric self-
adjoint elliptic boundary-value problem (BVP) in a 2D finite domain,
using high-accuracy finite element method (FEM) with triangular ele-
ments and high-order fully symmetric Gaussian quadratures with posi-
tive weights, and no points are outside the triangle (PI type). The algo-
rithms and the programs calculate with the given accuracy the eigenval-
ues, the surface eigenfunctions and their first derivatives with respect to
the parameter of the BVP for parametric self-adjoint elliptic differential
equation with the Dirichlet and/or Neumann type boundary conditions
on the 2D finite domain, and the potential matrix elements, expressed
as integrals of the products of surface eigenfunctions and/or their first
derivatives with respect to the parameter. We demonstrated an efficiency
of algorithms and program by benchmark calculations of helium atom
ground state.

Keywords: Parametric elliptic boundary-value problem · Finite
element method · High-order fully symmetric high-order Gaussian
quadratures · Kantorovich method · Systems of second-order ordinary
differential equations

1 Introduction

The adiabatic representation is widely applied for solving multichannel scattering
and bound-state problems for systems of several quantum particles in molecular,
atomic and nuclear physics [6,7,11,14].
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Such problems are described by elliptic boundary value problems (BVPs)
in a multidimensional domain of the configuration space, solved using the
Kantorovich method, i.e., the reduction to a system of self-adjoint ordinary
differential equations (SODEs) using the basis of surface functions of an auxil-
iary BVP depending on the independent variable of the SODEs parametrically
[10,16]. The elements of matrices of variable coefficients of these SODEs includ-
ing the matrix of the first derivatives are determined by the integrals of prod-
ucts of surface eigenfunctions and/or their first derivatives with respect to the
parameter [4].

Thus, the key problem of such a method is to develop effective algorithms and
programs for calculating with given accuracy the surface eigenfunctions and the
corresponding eigenvalues of the auxiliary BVP, together with their derivatives
with respect to the parameter, and the corresponding integrals that present the
matrix elements of the effective potentials in the SODEs [9].

In this paper, we propose new calculation schemes and symbolic-numerical
algorithms implemented in Maple-Fortran environment for the solution of the
parametric 2D elliptic boundary-value problem using high-accuracy finite ele-
ment method (FEM) with triangular elements. For the integration, the new
high-order fully symmetric high-order Gaussian quadratures on a triangle are
performed. We used the symbolic algorithms to generate Fortran routines that
allow the solution of the algebraic eigenvalue problem with high-dimension matri-
ces. The algorithms were implemented in a package of programs that calculate
with the given accuracy eigenvalues, eigenfunctions, and their first derivatives
with respect to the parameter of the parametric self-adjoint elliptic differential
equations with the boundary conditions of the Dirichlet and/or Neumann type in
the 2D finite domain and the integrals of products of the surface eigenfunctions
and their first derivatives with respect to the parameters that express the matrix
elements of the effective potentials in the SODEs. Efficiency of the FEM scheme
is demonstrated by benchmark calculations of Helium atom ground state.

The structure of the paper is the following. In Sect. 2, the 2D FEM schemes
and algorithms for solving the parametric 2D BVP are presented. In Sect. 3,
fully symmetric high-order Gaussian quadratures are constructed. In Sect. 4,
the algorithm for calculating the parametric derivatives of eigenfunctions and
effective potentials is presented. In Sect. 5, the benchmark calculations of 2D
FEM algorithms and programs are analyzed. In the Conclusion we discuss the
results and perspectives.

2 FEM Algorithm for Solving the Parametric 2D BVP

Let us consider a BVP for the parametric self-adjoint 2D PDE in the domain
Ωx, x = (x1, x2) with the piecewise continuous boundary S = ∂Ωx,

(D(x; z)−εi(z)) Φi(x; z) = 0, (1)

D≡D(x; z) = − 1
g0(x)

⎛
⎝

2∑
ij=1

∂

∂xi
gij(x)

∂

∂xj

⎞
⎠ + U(x; z), (2)
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with the mixed Dirichlet/Neumann boundary conditions

(I) : Φ(x; z)|S = 0, (3)

(II) :
∂Φ(x; z)

∂nD

∣∣∣
S
= 0,

∂Φ(x; z)
∂nD

=
2∑

ij=1

(n̂, êi)gij(x)
∂Φ(x; z)

∂xj
. (4)

Here z ∈ Ωz = [zmin, zmax] is a parameter, the functions g0(x) > 0, gij(x) > 0,
and ∂xk

gij(x), U(x; z), ∂zU(x; z) and ∂zΦi(x; z) are continuous and bounded
for x ∈ Ωx; g12(x) = g21(x), g11(x)g22(x) − g212(x) > 0. Also assume that the
BVP (1), (3) has only the discrete spectrum, so that ε(z) : ε1(z) < . . . <
εjmax(z) < . . . is the desired set of real eigenvalues. The eigenfunctions satisfy
the orthonormality conditions

〈Φi|Φj〉 =
∫

Ω

g0(x)Φi(x; z)Φj(x; z)dx=δij , dx = dx1dx2. (5)

The FEM solution of the boundary-value problems (1), (3) is reduced to the
determination of stationary points of the variational functional [1,2]

Ξ(Φm, εm(z)) ≡
∫

Ω

dxg0(x)Φm(x; z) (D − εm(z)) Φ(x; z) = Π(Φm, εm(z)), (6)

where Π ≡ Π(Φm, εm(z)), Φm ≡ Φm(x; z) is the symmetric quadratic functional

Π=
∫

Ω

dx

[ 2∑
ij=1

gij(x)
∂Φm

∂xi

∂Φm

∂xj
+g0(x)Φm(U(x; z)−εm(z))Φm

]
.

The domain Ω(x, y) =
⋃Q

q=1 Δq, specified as a polygon in the plane (x1, x2) ∈
R2, is covered with finite elements, the triangles Δq with the vertices (x11, x21),
(x12, x22), (x13, x23) (here xik ≡ xik;q, i = 1, 2, k = 1, 3, q = 1, Q). On each
of the triangles Δq (the boundary is considered to belong to the triangle), the
shape functions ϕp

l (x1, x2) are introduced. For this purpose we divide the sides of
the triangle into p equal parts and draw three families of parallel straight lines
through the partition points. The straight lines of each family are numbered
from 0 to p, so that the line passing through the side of the triangle has the
number 0, and the line passing through the opposite vertex of the triangle has
the number p.

Three straight lines from different families intersect at one point Al ∈ Δq,
which will be numbered by the triplet (n1, n2, n3), ni ≥ 0, n1+n2+n3 = p, where
n1, n2, and n3 are the numbers of the straight lines passing parallel to the side of
the triangle that does not contain the vertex (x11, x21), (x12, x22), and (x13, x23),
respectively. The coordinates of this point xl = (x1l, x2l) are determined by the
expression (x1l, x2l) = (x11, x21)n1/p + (x12, x22)n2/p + (x13, x23)n3/p.

As shape functions we use the Lagrange triangular polynomials ϕp
l (x) of the

order p that satisfy the condition ϕp
l (x1l′ , x2l′) = δll′ , i.e., equal 1 at one of the

points Al and zero at the other points.
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In this method, the piecewise polynomial functions Np
l (x) in the domain Ω

are constructed by joining the shape functions ϕp
l (x) in the triangle Δq:

Np
l (x) = {ϕp

l (x), Al ∈ Δq; 0, Al �∈ Δq}
and possess the following properties: the functions Np

l (x) are continuous in the
domain Ω; the functions Np

l (x) equal 1 at one of the points Al and zero at the
rest points; Np

l (x1l′ , x2l′) = δll′ in the entire domain Ω. Here l takes the values
l = 1, N .

The functions Np
l (x) form a basis in the space of polynomials of the pth

order. Now, the function Φ(x; z) ∈ Fh
z ∼ H1(Ωx) is approximated by a finite

sum of piecewise basis functions Np
l (x)

Φh(x; z) =
N∑

l=1

Φh
l (z)Np

l (x). (7)

The vector function Φh = {Φh
l (z)}N

l=1 has a generalized first-order partial
derivative and belongs to the Sobolev space H1(Ωx) [13]. After substituting
expansion (7) into the variational functional and minimizing it [1,13], we obtain
the generalized eigenvalue problem

ApΦh = εhBpΦh. (8)

Here Ap is the stiffness matrix; Bp is the positive definite mass matrix; Φh is
the vector approximating the solution on the finite-element grid; and εh ≡ εh(z)
is the corresponding eigenvalue. The matrices Ap and Bp have the form:

Ap={ap
ll′}N

ll′=1, Bp={bp
ll′}N

ll′=1, (9)

where the matrix elements ap
ll′ and bp

ll′ are calculated for triangular elements as

ap
ll′ =

∫

Δq

g0(x)ϕp
l (x; z)ϕp

l′(x; z)U(x; z) dx+
2∑

i,j=1

∫

Δq

gij
∂ϕp

l (x; z)
∂xi

∂ϕp
l′(x; z)
∂xj

dx,

bp
ll′ =

∫

Δq

g0(x)ϕp
l (x; z)ϕp

l′(x; z)dx.

Let us construct the LIP on a triangle Δq with the vertices x̂i = (xi1, xi2, x3d).
For this purpose we introduce the local coordinate system x′ = (x′

1, x
′
2) ∈ R2,

in which the coordinates of the simplex vertices are the following: x̂′
i = (x′

ik =
δik, k = 1, 2). The relation between the coordinates and derivatives is given by
the formula:

xi = x0i +
2∑

j=1

Ĵijx
′
j , x′

i =
2∑

j=1

(Ĵ−1)ij(xj − x0j), i = 1, 2, (10)

∂

∂x′
i

=
2∑

j=1

Ĵji
∂

∂xj
,

∂

∂xi
=

2∑
j=1

(Ĵ−1)ji
∂

∂x′
j

, (11)
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where Ĵij = x̂ji − x̂0i. When constructing the LIP in the local coordinates x′

one has to recalculate the fixed derivatives at the nodes Φr′ of the element Δq

to the nodes Φ′
r′ of the element Δ, using the matrices Ĵ−1, given by cumber-

some expressions. Therefore, the required recalculation is executed based on the
relations (10) and (11) for each finite element Δq at the stage of the formation
of the LIP basis {ϕp

r(x
′)}N

r=1 on the finite element Δ, implemented numerically
using the analytical formulas

∫

Δq

dxg0(x)ϕp
rϕ

p
r′U(x; z) = J

∫

Δ

dx′g0(x′)ϕp
r(x

′; z)ϕp
r′(x′; z)U(x′; z),

∫

Δq

dxgs1s2(x)
∂ϕp

r

∂xs1

∂ϕp
r′

∂xs2

=J

2∑
t1,t2=1

Ĵ−1
s1s2;t1t2

∫

Δ

dx′gs1s2(x
′)

∂ϕp
r(x

′; z)
∂x′

t1

∂ϕp
r′(x′; z)
∂x′

t2

,

where ϕp
r ≡ ϕr(x; z), J = det Ĵ > 0 is the determinant of the matrix Ĵ from

Eq. (10), Ĵ−1
s1s2;t1t2 = (Ĵ−1)t1s1(Ĵ

−1)t2s2 , dx′ = dx′
1dx′

2. In this case, we have
explicit expression for shape functions ϕp

l (z
′
1, z

′
2):

ϕp
l (x

′) =
n1−1∏
n′
1=0

1 − x′
1 − x′

2 − n′
1/p

n1/p − n′
1/p

n2−1∏
n′
2=0

x′
1 − n′

2/p

n2/p − n′
2/p

n3−1∏
n′
3=0

x′
2 − n′

3/p

n3/p − n′
3/p

. (12)

The integrals (10) are evaluated using the 2p-order 2D Gaussian quadrature.
In order to solve the generalized eigenvalue problem (8), the subspace itera-

tion method [1,13] elaborated by Bathe [1] for the solution of large symmetric
banded-matrix eigenvalue problems has been chosen. This method uses the sky-
line storage mode which stores the components of the matrix column vectors
within the banded region of the matrix, and is ideally suited for banded finite-
element matrices. The procedure chooses a vector subspace of the full solution
space and iterates upon the successive solutions in the subspace (for details, see
[1]). The iterations continue until the desired set of solutions in the iteration sub-
space converges to within the specified tolerance on the Rayleigh quotients for
the eigenpairs. If the matrix Ap in Eq. (8) is not positively defined, the problem
(8) is replaced with the following problem:

Ãp Φh = ε̃h Bp Φh, Ãp = Ap − αBp. (13)

The number α (the shift of the energy spectrum) is chosen such that the
matrix Ãp is positive defined. The eigenvector of problem (13) is the same, and
εh = ε̃h + α.

3 Fully Symmetric High-Order Gaussian Quadratures

Let consider the two-dimensional integral on triangular domain 	xy with vertices
(x1, y1), (x2, y2), (x3, y3):

I =
1

S�xy

∫

�xy

f(x, y)dydx (14)
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Table 1. The quadrature rule for p = 15 with np = 52, [n0, n1, n2] = [1, 5, 6], Nw
i is

the number of different permutations of the areal coordinates ( αi, βi, γi).

Nw
i wi αi, βi, γi

1 0.033266408301048 0.333333333333333 0.333333333333333 0.333333333333333

3 0.045542949984995 0.202687173029433 0.398656413485283 0.398656413485283

3 0.018936193317852 0.075705168935176 0.462147415532411 0.462147415532411

3 0.046595625404608 0.555517449279976 0.222241275360011 0.222241275360011

3 0.014390824709404 0.878972401688571 0.060513799155714 0.060513799155714

3 0.000733389561154 0.822518347845233 0.088740826077383 0.088740826077383

6 0.011157489727398 0.016416695030487 0.426971506367034 0.556611798602478

6 0.031443815585368 0.096704376730713 0.328778565825110 0.574517057444176

6 0.014551780499648 0.019017867773827 0.282103601487049 0.698878530739123

6 0.010312560870261 0.015907369998417 0.141176714757054 0.842915915244527

6 0.027717303713350 0.089942179570517 0.180738614626992 0.729319205802489

6 0.002839823398123 0.004434769410597 0.037262719444011 0.958302511145391

where S�xy
is a square of triangular domain 	xy. Using change of variables

x = x1γ + x2α + x3β, y = y1γ + y2α + y3β, γ = 1 − α − β, (15)

we obtain

I =
|J |

S�xy

∫

�αβ

f(α, β)dβdα = 2
∫ 1

0

∫ 1−α

0

f(α, β)dβdα, (16)

where J is a Jacobian and |J | = 2S�xy
, and domain 	αβ is an isosceles right

triangle with vertices (0, 0), (0, 1), (1, 0). The pth ordered fully symmetrical
Gaussian quadrature rules for this integral may be written as

I ≈
np∑
i=1

wif(αi, βi). (17)

We consider fully symmetric rules, where if a point with areal coordinates (α, β, γ)
is used in the quadrature, then all points resulting from the Nw

i permutation of
the areal coordinates are also used, with the same weight wi. Integration points
in a fully symmetric rule can thus belong to one of three different types of point
sets, or orbits, depending on the number of areal coordinates which are equal.
The number of points for such a rule is np = n0 + 3n1 + 6n2. Here n0 is the
number of points which three areal coordinates are equal, i.e., n0 = 0 or 1.
n1 is the number of points which two areal coordinates are equal, i.e., we get
three points which lie on the medians of the triangle. n2 is the number of points
which three areal coordinates are different, i.e., we get six points.

In paper [5], the weights and coordinates of the fully symmetric rules were
presented up to order p = 20 with minimal number of points using the moment
equations. Calculation was performed with double precision accuracy. However,
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Table 2. The quadrature rule for p = 16, np = 58, type [n0, n1, n2] = [1, 7, 6]

Nw
i wi αi, βi, γi

1 0.0415207350648329 0.3333333333333333 0.3333333333333333 0.3333333333333333

3 0.0101046137864021 0.0121739816884923 0.4939130091557539 0.4939130091557539

3 0.0363778998629740 0.1778835483267153 0.4110582258366423 0.4110582258366423

3 0.0253955775082257 0.0671491113178838 0.4664254443410581 0.4664254443410581

3 0.0359208834794810 0.5001385533336064 0.2499307233331968 0.2499307233331968

3 0.0267742614985530 0.6719362487011838 0.1640318756494081 0.1640318756494081

3 0.0136749716214666 0.8476751119345034 0.0761624440327483 0.0761624440327483

3 0.0031626040488014 0.9688994524978406 0.0155502737510797 0.0155502737510797

6 0.0266514412829383 0.1235525166817187 0.3005378086834664 0.5759096746348149

6 0.0089313378511684 0.0119532031311031 0.3372065794794446 0.6508402173894523

6 0.0152078872638436 0.0523853085701298 0.3143393035872713 0.6332753878425989

6 0.0183760532268712 0.0658032190776827 0.1786829962718098 0.7555137846505075

6 0.0080645623746130 0.0117710730623248 0.1921850841541305 0.7960438427835448

6 0.0068098562534747 0.0149594704947242 0.0806342445495042 0.9044062849557716

Table 3. The quadrature rule for p = 18, np = 76, type [n0, n1, n2] = [1, 9, 8]

Nw
i wi αi, βi, γi

1 0.0223535614716711 0.3333333333333333 0.3333333333333333 0.3333333333333333

3 0.0059334988479546 0.0460021789844010 0.4769989105077995 0.4769989105077995

3 0.0165585324593954 0.0730729604309092 0.4634635197845454 0.4634635197845454

3 0.0195910892704527 0.1551748557050338 0.4224125721474831 0.4224125721474831

3 0.0074160344816382 0.1550933080132821 0.4224533459933590 0.4224533459933590

3 0.0174049699198115 0.2365578681901632 0.3817210659049184 0.3817210659049184

3 0.0296996298680842 0.4863851422108091 0.2568074288945954 0.2568074288945954

3 0.0222906281899201 0.6736478731957263 0.1631760634021368 0.1631760634021368

3 0.0134460768460945 0.8559888247875595 0.0720055876062202 0.0720055876062202

3 0.0005486878691143 0.9921639450656871 0.0039180274671564 0.0039180274671564

6 0.0098384904247447 0.0120605799230755 0.4119329978824294 0.5760064221944951

6 0.0262821659985039 0.1420581973687457 0.2846674905460437 0.5732743120852107

6 0.0161450882618767 0.0645759925263757 0.3322842391902052 0.6031397682834191

6 0.0078521623046175 0.0411153725698427 0.2629574865443483 0.6959271408858090

6 0.0066043565050862 0.0091463267009754 0.2594416877532075 0.7314119855458171

6 0.0174843686058097 0.0725930398678583 0.1734580428423163 0.7539489172898254

6 0.0080232785271782 0.0147258776438553 0.1349402463458236 0.8503338760103211

6 0.0042665885840052 0.0124575576578779 0.0477763926862289 0.9397660496558932

some rules have the points outside the triangle and/or negative weights. We
need to use Gaussian quadrature rules with positive weights, and no points are
outside the triangle (so-called PI type).
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The above Gaussian quadrature rules are constructed with Algorithm:

Step 1. Transfer the isosceles right triangular domain 	αβ to the equilateral tri-
angular domain with vertices (−1, 0), (1/2,−√

3/2), (1/2,
√

3/2), which centroid
of triangle located at the origin of the coordinate system.
Step 2. Write the moment equations in polar coordinates [5].
Step 3. Minimize nonlinear moment equation for solving n0 + 2n1 + 3n2 unkno-
wns using the Levenberg–Marquardt algorithm.
Step 4. Transformation of the calculated areal coordinates to the isosceles right
triangular domain 	αβ .

A new high ordered PI type rules that are not listed in the Encyclopedia
of Quadrature Formulas [3,12] are presented in Tables 1, 2, 3 and 4 calculated
by the above algorithm implemented in Maple. In the considered problems, the
maximal number of the nonlinear moment equations equals 44, and the number
of unknowns equals 47 at p = 20. The explicit expressions for Gauss quadratures
weights and areal coordinates with 32 significant digits were calculated, but are
not presented here because of the paper size limitations. Note, the alternative
equilateral triangle quadrature formulas were calculated in [17].

Table 4. The quadrature rule for p = 20, np = 85, type [n0, n1, n2] = [1, 8, 10]

Nw
i wi αi, βi, γi

1 0.0284956488386955 0.3333333333333333 0.3333333333333333 0.3333333333333333

3 0.0142039534279209 0.0474234283023599 0.4762882858488200 0.4762882858488200

3 0.0194408133550425 0.1095872167894353 0.4452063916052824 0.4452063916052824

3 0.0273065929935536 0.4916898571477065 0.2541550714261467 0.2541550714261467

3 0.0190593173083705 0.6282404953903102 0.1858797523048449 0.1858797523048449

3 0.0153240833856847 0.7827490888114787 0.1086254555942607 0.1086254555942607

3 0.0003407707226317 0.8487205009418537 0.0756397495290731 0.0756397495290731

3 0.0046354964939763 0.9218908161548015 0.0390545919225992 0.0390545919225992

3 0.0016717238812827 0.9775115344410667 0.0112442327794667 0.0112442327794667

6 0.0146283618671282 0.2120524546203612 0.3758687560757836 0.4120787893038552

6 0.0172080000328995 0.0546435084561301 0.3335452223628692 0.6118112691810008

6 0.0073409966477119 0.0097859886040601 0.4202306323332298 0.5699833790627102

6 0.0232450825127741 0.1383472868057439 0.3152308903849581 0.5464218228092980

6 0.0070480826238744 0.0106040218922527 0.2811743979692607 0.7082215801384866

6 0.0153834272762777 0.1032538874333241 0.2130007906781420 0.6837453218885339

6 0.0041951209853354 0.0070915889018085 0.1595497908201870 0.8333586202780045

6 0.0114288995104660 0.0449113089652980 0.1997044919178251 0.7553841991168769

6 0.0081140164445318 0.0377602618140266 0.1028511090917952 0.8593886290941782

6 0.0023340281749869 0.0051697211528337 0.0641281242816143 0.9307021545655520
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4 The Algorithm for Calculating the Parametric
Derivatives of Eigenfunctions and Effective Potentials

Taking a derivative of the boundary-value problem (1)–(5) with respect to the
parameter z, we find that ∂zΦi(x; z) is a solution of the following boundary-value
problem with the mixed boundary conditions

(D(x; z)−εi(z))
∂Φi(x; z)

∂z
=−

[
∂

∂z
(U(x; z)−εi(z))

]
Φi(x; z),

∂Φ(x; z)
∂z

∣∣∣∣
S

= 0 or
∂2Φ(x; z)
∂nD∂z

∣∣∣
S
= 0. (18)

The parametric BVP (18) has a unique solution, if and only if it satisfies the
conditions

∂εi(z)
∂z

=
∫

Ω

dxg0(x) (Φi(x; z))
∂U(x; z)

∂z
Φi(x; z), (19)

∫

Ω

dxg0(x)Φi(x; z)
∂Φi(x; z)

∂z
= 0. (20)

Below we present an efficient numerical method that allows the calculation of
∂zΦi(x; z) with the same accuracy as achieved for the eigenfunctions of the BVP
(1)–(5) and the use of it for computing the matrices of the effective potentials
defined as

Hij(z)=Hji(z)=
∫

Ω

dxg0(x)
∂Φi(x; z)

∂z

∂Φj(x; z)
∂z

, (21)

Qij(z)=−Qji(z)=−
∫

Ω

dxg0(x)Φi(x; z)
∂Φj(x; z)

∂z
. (22)

The boundary-value problem (18)–(20) is reduced to the linear system of
inhomogeneous algebraic equations with respect to the unknown ∂Φh/∂z:

L
∂Φh

∂z
≡ (Ap − εhBp)

∂Φh

∂z
= b, b = −

(
∂Ap

∂z
− ∂εh

∂z
Bp

)
Φh. (23)

The normalization condition (5), the condition of orthogonality between the
function and its parametric derivative (20), and the additional conditions (19)
for the solution of (23) read as

(
Φh

)T

BpΦh = 1,

(
∂Φh

∂z

)T

BpΦh = 0,
∂εh

∂z
=

(
Φh

)T ∂Ap

∂z
Φh. (24)

Then the potential matrix elements Hh
ij(z) and Qh

ij(z) (21) can be calculated
using the formulas

Hh
ij(z) =

(
∂Φh

i

∂z

)T

Bp
∂Φh

j

∂z
, Qh

ij(z) = −
(
Φh

i

)T

Bp
∂Φh

j

∂z
. (25)
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Since εh is an eigenvalue of (8), the matrix L in Eq. (23) is degenerate. In this
case, the algorithm for solving Eq. (23) can be written in three steps as follows:

Step k1. Calculate the solutions v and w of the auxiliary inhomogeneous sys-
tems of algebraic equations

L̄v = b̄, L̄w = d, (26)

with the non-degenerate matrix L̄ and the right-hand sides b̄ and d

L̄ss′ =
{

Lss′ , (s − S)(s′ − S) �= 0,
δss′ , (s − S)(s′ − S) = 0,

(27)

b̄s =
{

bs, s �= S,
0, s = S,

ds =
{

LsS , s �= S,
0, s = S,

(28)

where S is the number of the element of the vector BpΦh having the greatest
absolute value.

Step k2. Evaluate the coefficient γ

γ = − γ1
(DS − γ2)

, γ1 = vTBpΦh, γ2 = wTBpΦh, DS = (BpΦh)S . (29)

Step k3. Evaluate the vector ∂zΦ
h

∂Φh
s

∂z
=

{
vs − γws, s �= S,
γ, s = S.

(30)

From the above consideration, it is evident that the computed derivative has the
same accuracy as the calculated eigenfunction.

Let D(x; z) in Eq. (1) be a continuous and bounded positive definite operator
on the space H1 with the energy norm, εi(z), Φi(x, z) ∈ H2 being the exact solu-
tions of Eqs. (1)–(5), and εh

i (z), Φh
i (x; z) ∈ H1 being the corresponding numerical

solutions. Then the following estimates are valid [13]
∣∣εi(z) − εh

i (z)
∣∣ ≤ c1h

2p,
∥∥Φi(x; z) − Φh

i (x; z)
∥∥
0

≤ c2h
p+1, (31)

‖Φi(x; z)‖20 =
∫

Ωx

dxg0(x)Φi(x; z)Φi(x; z), (32)

where h is the largest distance between any two points in Δq, p is the order
of the finite elements, i is the number of the corresponding solutions, and the
constants c1 and c2 are independent of the step h.

The following theorem can be formulated.

Theorem. Let D(x; z) in Eq. (1) be a continuous and bounded positive definite
operator on the space H1 with the energy norm. Also let ∂zU(x; z) be continuous
and bounded for each value of the parameter z. Then for the exact values of
the solutions ∂zεi(z), ∂zΦi(x; z) ∈ H2, Hij(z), Qij(z) from (18)–(21) and the
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corresponding numerical values ∂zε
h
i (z), ∂zΦ

h
i (x; z) ∈ H1, Hh

ij(z), Qh
ij(z) from

(23)–(25), the following estimates are valid:
∣∣∣∣
∂εi(z)

∂z
− ∂εh

i (z)
∂z

∣∣∣∣ ≤ c3h
2p,

∥∥∥∥
∂Φi(x; z)

∂z
− ∂Φh

i (x; z)
∂z

∥∥∥∥
0

≤ c4h
p+1,

∣∣Qij(z) − Qh
ij(z)

∣∣ ≤ c5h
2p,

∣∣Hij(z) − Hh
ij(z)

∣∣ ≤ c6h
2p, (33)

where h is the largest distance between any two points of the finite element
Δq, p is the order of finite elements, i, j are the numbers of the corresponding
solutions, and the constants c3, c4, c5, and c6 are independent of the step h.

The proof is straightforward following the scheme in accordance with [13].

5 Benchmark Calculations of Helium Atom Ground State

In the hyperspheroidal coordinates 0 ≤ R < ∞, 1 ≤ ξ < ∞, −1 ≤ η ≤ 1

r12 =
√

2R√
ξ2 + η2

, r1 =
R(ξ + η)√
2
√

ξ2 + η2
, r2 =

R(ξ − η)√
2
√

ξ2 + η2
(34)

the equation for the wave functions Ψ(R, ξ, η) =
√

ξ2 + η2Φ(R, ξ, η) for S-states
of the Helium atom reads as [15]

[
− 1

R5

∂

∂R
R5 ∂

∂R
− 3

R2
− 1

R2

(ξ2 + η2)2

ξ2 − η2

(
∂

∂ξ
(ξ2 − 1)

∂

∂ξ
+

∂

∂η
(1 − η2)

∂

∂η

)

+
√

2

√
ξ2 + η2

R

(
1 − 8ξ

ξ2 − η2

)
− 2E

]
Φ(R, ξ, η) = 0. (35)

The function Φ(R, ξ, η) satisfies the boundary conditions

lim
R→0

R5 ∂Φ(R, ξ, η)
∂R

= 0, lim
R→∞

R5Φ(R, ξ, η) = 0,

lim
ξ→1

(ξ2 − 1)
∂Φ(R, ξ, η)

∂ξ
= 0, lim

ξ→∞
Φ(R, ξ, η) = 0,

lim
η→±1

(1 − η2)
∂Φ(R, ξ, η)

∂η
= 0, (36)

and is normalized by the condition

8π2

∫ ∞

0

dRR5

∫ ∞

1

dξ

∫ 1

−1

dη
ξ2 − η2

(ξ2 + η2)2
Φ2(R, ξ, η) = 1. (37)

The parametric function φi ≡ φi(ξ, η;R) and the corresponding potential
curves εi(R) are eigensolutions of the 2D BVP having a purely discrete spectrum
[
− ∂

∂ξ
(ξ2−1)

∂

∂ξ
− ∂

∂η
(1−η2)

∂

∂η
+

√
2R

(
ξ2−η2−8ξ

)
√

ξ2+η2
3 −εi(R)

ξ2−η2

(ξ2+η2)2

]
φi = 0(38)
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subject to the following boundary conditions

lim
ξ→1

(ξ2−1)
∂φi(ξ, η; R)

∂ξ
= 0, lim

ξ→∞
φi(ξ, η; R) = 0, lim

η→±1
(1−η2)

∂φi(ξ, η; R)

∂η
= 0,

and the normalization condition
∫ ∞

1

dξ

∫ 1

−1

dη
ξ2 − η2

(ξ2 + η2)2
φ2

i (ξ, η;R) = 1. (39)

In terms of scaled variable and parametric surface functions

ξ =
1 + λ

1 − λ
, 0 ≤ λ < 1, φi(ξ, η;R) =

pi(ξ, η;R)
ξ + 1

≡ pi(λ, η;R)
ξ + 1

, (40)

we rewrite the 2D BVP (38)–(39) in the form
[
− ∂

∂λ
λ(1−λ)2

∂

∂λ
− ∂

∂η
(1−η2)

∂

∂η
+

√
2R(1−λ)

(1+λ)2−(1−λ)2η2−8(1−λ2)√
(1+λ)2+(1−λ)2η2

3

+1−λ−εi(R)(1−λ)2
(1+λ)2−(1−λ)2η2

((1+λ)2+(1−λ)2η2)2

]
pi(λ, η;R) = 0. (41)

The surface functions pi(λ, η;R) satisfy the following boundary and normaliza-
tion conditions

lim
λ→0,1

λ(1−λ)
∂pi(λ, η;R)

∂λ
= 0, lim

η→±1
(1−η2)

∂pi(λ, η;R)
∂η

= 0, (42)

1
2

∫ 1

0

dλ

∫ 1

−1

dη(1−λ)2
(1+λ)2−(1−λ)2η2

((1+λ)2+(1−λ)2η2)2
p2i (λ, η;R) = 1. (43)

The numerical experiments in the finite-element grids have shown a strict
correspondence with the theoretical estimations (31) and (33) for the eigenvalues,
eigenfunctions, and the matrix elements. In particular, we calculated the values
of the Runge coefficients

βl = log2
∣∣∣(σh

l − σ
h/2
l )/(σh/2

l − σ
h/4
l )

∣∣∣ , l = 1, 2, (44)

with absolute errors on three twice condensed grids for their eigenvalues and
eigenfunctions, respectively

σh
1 = |E2h

m (z) − Eh
m(z)|, σh

2 = ‖Φ2h
m (x; z) − Φh

m(x; z)‖0. (45)

The Runge coefficients for six eigenvalues presented in Table 5 equal 7.52 ÷
8.19 and for their parametric derivatives equal 7.46 ÷ 7.76 are nearly similar
and correspond to the theoretical estimates (31) and (33) for the fourth-order
scheme (2p ≈ 8).

The calculations were carried out using the server 2× 4 kernels i7k (i7-3770K
4.5 GHz, 32 GB RAM, GPU GTX680), and the Intel Fortran compiler 17.0. The
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Table 5. Comparison of the transformed potential curves Ej(R) = (εj(R) − 3)/4 and
their first derivative with respect to parameter R with results [9] at jmax = 12. The
mesh points are λ = {0(L)1} and η = {0(L)1}, and R = 7.65 a.u.

j Ej(R) (L = 40) ∂REj(R) (L = 40) Ej(R) [9] ∂REj(R) [9]

1 −63.499 153 248 −15.796 136 178 −63.499 153 256 −15.796 136 189

2 −21.451 891 391 −3.997 429 168 −21.451 886 907 −3.997 431 891

3 −19.082 406 592 −4.142 660 217 −19.082 325 834 −4.142 711 985

4 −13.371 481 961 −3.897 822 460 −13.371 480 623 −3.897 824 374

5 −11.876 679 683 −3.314 363 652 −11.876 677 566 −3.314 347 679

6 −8.898 981 042 −2.705 445 931 −8.897 839 854 −2.705 544 197

j Ej(R) (L = 20) ∂REj(R) (L = 20) Ej(R) (L = 10) ∂REj(R) (L = 10)

1 −63.499 151 482 −15.796 133 881 −63.498 825 358 −15.795 727 590

2 −21.451 891 369 −3.997 429 139 −21.451 886 770 −3.997 423 220

3 −19.082 406 568 −4.142 660 186 −19.082 401 572 −4.142 653 692

4 −13.371 481 948 −3.897 822 446 −13.371 479 034 −3.897 819 472

5 −11.876 679 657 −3.314 363 641 −11.876 674 062 −3.314 361 245

6 −8.898 980 996 −2.705 445 914 −8.898 971 861 −2.705 442 515

Table 6. Matrix elements Hji(R), i, j = 1, ..., 6 at R = 7.65.

.1291804E-1 −.1264117E-1 .7293917E-2 .3763094E-2 −.1051774E-1 −.6007265E-2

−.1264117E-1 .3871021E-1 −.4493495E-2 −.1899806E-1 .2378084E-1 .5400750E-2

.7293917E-2 −.4493495E-2 .3270711E-1 .2565576E-1 .2270581E-1 −.1199926E-1

.3763094E-2 −.1899806E-1 .2565576E-1 .8136326E-1 .9664928E-2 −.2314799E-1

−.1051774E-1 .2378084E-1 .2270581E-1 .9664928E-2 .8335278E-1 .1949047E-1

−.6007265E-2 .5400750E-2 −.1199926E-1 −.2314799E-1 .1949047E-1 .2743837E-1

Table 7. Matrix elements Qji(R), i, j = 1, ..., 6 at R = 7.65.

.37E-15 −.5859058E-1 .2863643E-1 .4422091E-1 .3362249E-1 .1621148E-1

.5859058E-1 .43E-16 .2502732E-1 −.1657796E+0 −.6079201E-1 −.1728211E-1

−.2863643E-1 −.2502732E-1 .36E-15 −.4584596E-1 .1345970E+0 .8980072E-1

−.4422091E-1 .1657796E+0 .4584596E-1 −.12E-15 .2029277E+0 .1556143E-1

−.3362249E-1 .6079201E-1 −.1345970E+0 −.2029277E+0 .92E-16 .1142082E+0

−.1621148E-1 .1728211E-1 −.8980072E-1 −.1556143E-1 −.1142082E+0 .13E-15

computing time for the considered examples with 10−12 accuracy on the uniform
grids λ = {0(L)1}, η = {0(L)1} at L = 10, 20, 40 is 0.38, 5.08, and 41.21 s,
respectively. The matrix elements Qij(R) and Hij(R) are presented in Tables 6
and 7. As an example eigenfunctions and their parametric derivatives are shown
in Figs. 1 and 2.
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Fig. 1. The eigenfunction p1(λ, η; R) and its parametric derivative ∂Rp1(λ, η; R) at
R = 7.65.

Fig. 2. The eigenfunction p4(λ, η; R) and its parametric derivative ∂Rp4(λ, η; R) at
R = 7.65.

We seek for the solution of the BVP (35)–(37) by Kantorovich expansion

Φ(R, ξ, η) =
jmax∑
j=1

φj(ξ, η;R)χj(R) (46)
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over the eigenfunctions φj(ξ, η;R) of the parametric 2D BVP having a purely
discrete spectrum Ej(R) = (εj(R) − 3)/R2, j = 1, 2, .... Substituting expansion
(46) into the 3D BVP Eqs. (35)–(37), we get the 1D BVP for a finite set of jmax

coupled SOODEs for χ(R) = {χ1(R), ..., χN (R)}T

(
− 1

R5
I

d

dR
R5 d

dR
+V(R)+Q(R)

d

dR
+

1
R5

dR5Q(R)
dR

−2E I
)

χ(R) = 0,

with the boundary and normalization conditions

lim
R→0

R5 dχ(R)
dR

= 0, lim
R→∞

R5χ(R) = 0, 8π2

∫ ∞

0

dRR5(χ(R))T χ(R) = 1.

The solution of this BVP with the help of KANTBP program [8] on the non-
uniform grids R = {0(50), 5, (75), 20} using calculated Ej(R), Vij(R) = Hij(R),
Vjj(R) = Hjj(R) + Ej(R), Qij(R), i, j = 1, ..., 12 gives us the energy of Helium
atom ground state E1 = −2.90372430 a.u. with 8 significant digits.

6 Conclusion

We have elaborated new calculation schemes, algorithms, and the program for
solving the parametric 2D elliptic BVP using the high-accuracy FEM with tri-
angular elements. The program calculates the potential matrix elements, the
integrals of the eigenfunctions multiplied by their first derivatives with respect
to the parameter. The parametric eigenvalues (potential curves) and the matrix
elements computed by the program can be used for solving the bound-state
and multi-channel scattering problems for a system of the coupled second-order
ODES with using the Kantorovich method. We demonstrated the efficiency of
the proposed finite element schemes, algorithms, and codes by benchmark cal-
culations of BVPs of helium atom ground state.

The work was partially supported by the Russian Foundation for
Basic Research (grants Nos. 16-01-00080 and 17-51-44003 Mong a) and the
Bogoliubov-Infeld program. The reported study was funded by the Agreement
N 02.03.21.0008 dated 24.04.2016 between the MES of the RF and RUDN
University.
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