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Abstract. We propose new symbolic-numerical algorithms imple-
mented in Maple-Fortran environment for solving the self-adjoint
elliptic boundary-value problem in a d-dimensional polyhedral finite
domain, using the high-accuracy finite element method with multivari-
ate Lagrange elements in the simplexes. The high-order fully symmetric
PI-type Gaussian quadratures with positive weights and no points out-
side the simplex are calculated by means of the new symbolic-numerical
algorithms implemented in Maple. Quadrature rules up to order 8 on
the simplexes with dimension d = 3 — 6 are presented. We demonstrate
the efficiency of algorithms and programs by benchmark calculations of
a low part of spectra of exactly solvable Helmholtz problems for a cube
and a hypercube.
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1 Introduction

The progress of modern computing power offers more possibilities for setting and
numerical solution of multidimensional elliptic boundary-value problems (BVPs)
with high accuracy. 3D BVPs have wide applications in such areas as vibrating
membrane, electromagnetic radiation, motion of thermal neutrons in the reac-
tor, seismology, and acoustics, see, e.g., [4], while multidimensional BVPs have
applications in nuclear physics, see, e.g., [7]. For this purpose, novel numerical
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methods of high accuracy order are being developed. When reducing the bound-
ary value problem to an algebraic one in the finite element method (FEM) of
the order p, one of the problems is the calculation of integrals on a finite element
(we consider only simplicial finite elements) containing the products of two basis
functions of Lagrange or Hermite interpolation polynomials of the order p by
the coefficients for the unknown functions [5,9]. There are three possible ways
to calculate the integrals:

(i) using analytical calculation, which is possible for a limited number of cases;
(ii) using quadrature formulas with products of two basic functions used as a
weight function;
(iii) using quadrature formulas with a single weight function.

It is well known [20] that as a result of applying the pth order FEM to the
solution of the discrete spectrum problem for the elliptic (Schrédinger) equation,
the eigenfunction and the eigenvalue are determined with an accuracy of the
order p+ 1 and 2p provided that all intermediate quantities are calculated with
sufficient accuracy. It follows that for the realization of the FEM of the order
p in the third case, the integrals must be computed at least with an accuracy
of the order 2p, depending on the problem considered. The most economical
calculation of such integrals is achieved using the quadratures of Gaussian type.
In the one-dimensional case, the nodes and the quadrature Gaussian weights
are expressed analytically; in the two-, three- and four-dimensional case, the
high-order quadrature formulas are determined numerically [2,6,8,10,17-19,21].
Note that for multidimensional integrals, numerous quadrature formulas of the
Newton—Cotes and third-order Gaussian type are known, too (see Ref. [1]).

The paper presents a new method for constructing fully symmetric multidi-
mensional Gaussian-type quadratures on a standard simplex. The main idea of
the method is replacing the coordinates of nodes with their symmetric combina-
tions obtained using the Vieta theorem, which simplifies the system of nonlinear
algebraic equations. The construction of the desired systems of equations is per-
formed analytically using an original algorithm implemented in Maple [13]. The
derived systems up to the sixth order are solved using the built-in procedure
PolynomialSystem, implementing the technique of Grébner bases, and the sys-
tems of higher order are solved using the developed symbolic-numerical algorithm
based on numerical methods, implemented in Maple-Fortran environment. We
demonstrate the efficiency of algorithms and programs by benchmark calcula-
tions of the lower part of spectra in exactly solvable Helmholtz problems for a
cube and a hypercube.

The paper is structured as follows. In Sects. 2 and 3, the FEM schemes and
algorithms for solving the d-dimensional BVP are presented. In Sect. 4, the algo-
rithms for constructing the d-dimensional fully symmetric Gaussian quadratures
are presented. In Sect.5, the benchmark calculations of the exactly solvable
Helmholtz problems for the cube and hypercube are presented. In Conclusion,
we discuss the results and perspectives.
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2 Setting of the Problem

Consider a self-adjoint boundary-value problem for the elliptic differential equa-
tion of the second order:

0
z)afzj +V(z)— E)@(z) =0. (1)

(- B = -

For the principal part coefficients of Eq. (1), the condition of uniform ellipticity
holds in the bounded domain z = (21,...,24) € 2 of the Euclidean space R9,
i.e., the constants u > 0, v > 0 exist such that p&? < 22:1 gij(2)&&; < V€2,

£ = Z?Zl €2, V¢, € R. The left-hand side of this inequality expresses the
requirement of ellipticity, while the right-hand side expresses the boundedness of
the coefficients g;;(2). It is also assumed that go(z) > 0, g;i(2) = ¢:j(2) and V (2)
are real-valued functions, continuous together with their generalized derivatives
to a given order in the domain z € 2 = 2 U 942 with the piecewise continuous
boundary S = 9f2, which provides the existence of nontrivial solutions obeying
the boundary conditions [5] of the first kind

P(z)|s =0, (2)
or the second kind
09 (z) 0B(2) . . 09 (z)
=0 = i)9ij(2) ——— 3
g a0 g = 200 3)
where ag%(z) is the derivative along the conformal direction, n is the outer

normal to the boundary of the domain S = 042, é; is the unit vector of z =
Zle é;zi, and (7, é;) is the scalar product in R

For a discrete spectrum problem, the functions @,,(z) from the Sobolev space
H32H (), &,,(2) € H3=(2), corresponding to the real eigenvalues E: B <
By, <...<E, <...satisfy the conditions of normalization and orthogonality

(P (2)| P (2)) = /Q dzg0(2)Pm (2) P (2) = Oy, dz=dzy...dzq. (4)

The FEM solution of the boundary-value problems (1)—(4) is reduced to the
determination of stationary points of the variational functional [3,5]

S, B / d200(2) P (2) (D — Epp) B(2) = (S, En),  (5)

where IT(®, E) is the symmetric quadratic functional

d

10.5) = [ 2| 3 0 5 4 a0V ) - By

ij=1
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3 FEM Calculation Scheme

In FEM, the domain 2 = 2;,(2) = UqQ=1 Ag, specified as a polyhedral domain,
is covered with finite elements, in the present case, the simplexes A, with d 41

vertices 2, = (%1, %i2,...,%i4), ¢ = 0,...,d. Each edge of the simplex 4, is
divided into p equal parts, and the families of parallel hyperplanes H (i, k) are
drawn, numbered with the integers k = 0, . .., p, starting from the corresponding

face (see also [5]). The equation of the hyperplane is H (i, k): H(i;2) — k/p =0,
where H(i;z) is a linear function of z.
The node points of hyperplanes crossing A, are enumerated with the sets

of integers [ng,...,nq4], n; > 0, ng + ...+ ng = p, where n;, i = 0,1,...,d are
the numbers of hyperplanes, parallel to the simplex face, not containing the ith
vertex Z; = (Z1,...2iq). The coordinates &. = (&41,...,&q) of the node point

A, € Ay are calculated using the formula

ni

o A n o . R Ng
&1y 6rd) = (201,---72001)?0 + (21155 214) — » +... 4+ (Za1, -+, 2da)

o (6)

from the coordinates of the vertices Z; = (£;1,..., 2;j4). Then the Lagrange inter-
polation polynomials (LIP) ¢P(z) are equal to one at the point A, with the
coordinates & = (&71,...,&rd), characterized by the numbers [ng,n1,...,nq|,
and equal to zero at the remaining points &, i.e., P(§) = Oy, have the
form

d n;—1
I —ni/p
H)nH gr —n’/p (7)

As shape functions in the simplex A, we use the multivariate Lagrange inter-
polation polynomials ¢} (z) of the order p that satisfy the condition ¢} (x1y/, z21/)
= Oy, i.e., equal 1 at one of the points A; and zero at the other points. In this
method, the piecewise polynomial functions N/ (z) in the domain {2 are con-
structed by joining the shape functions ¢7(z) in the simplex A,:

Ni(z) ={gi(2), A1 € Ag;0, Ay & Ay}

and possess the following properties: the functions N/ (z) are continuous in the
domain £2; the functions N/ (z) equal 1 at one of the points A; and zero at the
rest of the points; Nlp(zl/) = 0y in the entire domain (2. Here [ takes the values
l=1,...,N.

The functions N} (z) form a basis in the space of polynomials of the pth order.
Now, the function ®(z) € H!(£2) is approximated by a finite sum of piecewise
basis functions N/ (z):

N
=Y OINF(2). (8)
=1
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Table 1. The orbits and their number of permutations for d = 3,4, 5, 6.

d=3 d=4 d=5 d=6

Orbits | Perm. | Orbits | Perm. | Orbits | Perm. | Orbits |Perm. |Orbits|Perm.|Orbits |Perm.
Sa 1 Ss 1 Se 1 S3111 120 S7 1 S4111 210
S31 4 Sa1 5 |Ss1 6 So211 180 | Se1 7 | S3211 420

Sa9 6 S32 10 S0 15 S21111 | 360 Sso 21 S2991 630
Sa11 |12 S311 20 | Ss3 20 S111111 (720 | S43 35 | S31111 840

S1111 |24 S221 30 |Sa11 |30 Ss11 42 | Sa2111 1260
S2111 | 60 | S321 60 Sa21 |105 | Sa211111 2520
S11111 {120 | S222 90 Szz1 140 | S1111111 5040

S329 210

After substituting expansion (8) into the variational functional (5) and minimiz-
ing it [3,20], we obtain the generalized eigenvalue problem

APP" = "B, (9)

Here AP is the symmetric stiffness matrix; B? is the symmetric positive definite
mass matrix; @ is the vector approximating the solution on the finite-element
grid; and " is the corresponding eigenvalue. The matrices A? and BP have the
form:

A? = {aj Y=y, BY = {bj hiy—1, (10)

where the matrix elements al), and b}, are calculated for simplex elements as

4 P(2) 0% (2
d=3 [ @22 o [ et e s

ij=1 a

by = / 90(2)¢7 ()i (2)dz. (11)

v

The economical implementation of FEM is the following.

The calculations, including those of FEM integrals for mass and stiffness
matrices at each subdomain A, are performed in the local (reference) system of
coordinates x, in which the coordinates of the simplex vertices are the following;:
SE’J‘ = (.’fﬁjl,...,.’fﬁjd), .’i‘jk :(Sjk,j:(),...,d, k=1,...,d.

Let us construct the Lagrange interpolation polynomial (LIP) on an arbitrary
d-dimensional simplex A, with vertices 2, = (£i1, 2i2,..., %), ¢ = 0,...,d. For
this purpose, we introduce the local system of coordinates x = (1, 22,...,24) €
R?, in which the coordinates of the simplex vertices are #;. The relation between
the coordinates is given by the formula:

d
Zi:20i+zjijxja Jij :ZA’ji—QOi, i=1,...,d. (12)
Jj=1
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Table 2. Quadrature rule on tetrahedra.

Orbit | Weight

Abscissas

14-points 4-order rule

S31 |0.0801186758957551214557967806191 | 0.0963721076152827180679867982109
S31 0.1243674424942431317471251193937 | 0.3123064218132941261147265437508
S22 |0.0303425877400011645313853999915 | 0.0274707886853344957750132954191

14-points 5-order rule

S31 0.0734930431163619495437102054863 | 0.0927352503108912264023239137370
S31 |0.1126879257180158507991856523333 | 0.3108859192633006097973457337635
Sa2  0.0425460207770814664380694281203 | 0.0455037041256496494918805262793

24-points 6-order rule

S3110.0399227502581674920996906275575 | 0.2146028712591520292888392193863
S310.0100772110553206429480132374459 | 0.0406739585346113531155794489564
S31 |0.0553571815436547220951532778537 | 0.3223378901422755103439944707625
Sa11 |0.0482142857142857142857142857143 | 0.0636610018750175252992355276057

0.6030056647916491413674311390609

35-points 7-order rule

Sa 0.0954852894641308488605784361172 | 0.2500000000000000000000000000000
S310.0423295812099670290762861707986 | 0.3157011497782027994234299995933
Sa2 0.0318969278328575799342748240829 | 0.0504898225983963687630538229866
S211 |0.0372071307283346213696155611915 | 0.1888338310260010477364311038546

0.5751716375870000234832415770223
S211 |0.0081107708299033415661034334911 | 0.0212654725414832459888361014998

0.8108302410985485611181053798482

46-points 8-order rule

S31 |0.0063972777406656176515049738764 | 0.0396757518582111225277078936298
S31 0.0401906214382288067038698161802 | 0.3144877686588789672386516888007
S31 0.0243081692121760770795396363192 | 0.1019873469010702748038937565346
S31 | 0.0548586277637264928464254253584 | 0.1842037697228154771186065671874
Sa2 |0.0357196747563309013579348149829 | 0.0634363951662790318385035375295
S211 |0.0071831862652404057248973769332 | 0.0216901288123494021982001218658

0.7199316530057482532021892796203
S211 |0.0163720776383284788356885983306 | 0.2044800362678728018101543629799

0.5805775568740886759781950895673

The inverse transformation and the relation between the differentiation operators

are given by the formulas

wi =Y (T2 = 205), 5 -

d

j=1

d
- = Z(J_l)jia?j~
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Table 3. Quadrature rule on d = 4 dimensional simplex.

Orbit | Weight

Abscissas

20-points 4-order rule

Sq1

0.0379539224206539610831511760634

0.0784224645320084412701860095372

Sq1

0.0681384495140965073072374189421

0.2449925002516506829747267241998

S32

0.0469538140326247658048057024973

0.0657807054017604429326659923627

30-points 5-order rule

Sq1

0.0492516801753157409383956672833

0.0853466308308594082516329452526

Sq1

0.0325114606587393649369493738878

0.2369600116614607056460832163398

S32

0.0175327109958004508766635908927

0.0412980141318484010482052159450

S32

0.0415857185871719961856638885218

0.2997443384790352862963354895649

56-points 6-order rule

Ss

0.0732792367435547721884408088550

0.2000000000000000000000000000000

Sq1

0.0047429121713183739117905941798

0.0417033817484816144703679735243

S32

0.0371671124025330069869448829255

0.2956227971470980491911963343462

S311

0.0133362480184817717166547744056

0.1543949248731168427369921195673
0.5227506462276968325151584695712

S311

0.0132305059002443927025030951440

0.0478156751378274921515148624255
0.2819739419928806028716278777811

76-points T-order rule

Ss

0.0282727667597935101461654674137

0.2000000000000000000000000000000

Sq1

0.0171637920155537955591265968365

0.2494020893093779695674000557470

S32

0.0084262904177368737487641566458

0.0390279956601069690478223468028

S32

0.0151633627560453145809862914879

0.1283114044638121921594658569279

Ss11

0.0041099348414815560204478025486

0.0338474709865642635279969618386
0.7462624286813390611020624803775

Sa21

0.0189271014864994836117247005365

0.0448337964557961849763900084527
0.2098710857162324764262981778162

110-points 8-order rule

Sa1

0.0209889631062033488284471858741

0.1064160632601420588468274348524

Sq1

0.0025569304299619087111133529054

0.0405432824126613113549340882657

S32

0.0153364140237452308225281532013

0.0553205204859791157778648564000

S32

0.0143413703554045577679712361587

0.1329849247207488765271172398305

S32

0.0219839063571691797013874119590

0.2921649623679039933512390863408

S311

0.0036998351176104420717284969383

0.0333398788668747287190327986033
0.6960284779140254845117282473257

S311

0.0102875153954967332446050836803

0.1749055465990825034189472406388
0.4713583394803434080155451322627

Sa21

0.0028635538231280174352219226847

0.2139955562978852147651302856947
0.0055794471455235244097015787040

203
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Table 4. Quadrature rule on d = 5 dimensional simplex.

Orbit | Weight

Abscissas

27-points 4-order rule

Se

0.2380952380952380952380952380952

0.1666666666666666666666666666667

Ss1

0.0476190476190476190476190476190

0.0833333333333333333333333333333

S33

0.0238095238095238095238095238095

0.3110042339640731077939538617922

37-points 5-order rule

Se

0.1537202203084293617727126367247

0.1666666666666666666666666666667

Ss1

0.0289106224493151615615928162885

0.0750000000000000000000000000000

S42

0.0272301053298578547025239158396

0.0620931177937680448262436473512

S42

0.0176242976698541232213247818634

0.2494113069849930171206590075161

102-points 6-order rule

Ss1

0.0220609777699918416385171809216

0.0936784796657907179507883184494

Ss1

0.0010288939840293747752001192602

0.0270566434340766625713558698570

Sq2

0.0156264172618719457418380080610

0.0653950986037339179722692404805

Sq2

0.0278282494445825546266341924031

0.2298844181626658901051213339390

S321

0.0034940128146509199331768865324

0.0182868036924305667708203585711
0.1963426392615138866458359282858

137-points 7-order rule

Ss1

0.0251079912995851246690568379932

0.1962505998027202386302784835916

Ss1

0.0268181773072546325688248594140

0.1073064529494792948889112833415

Sq2

0.0088856106397381008037487732556

0.0499693465734168548516130660759

S33

0.0155965105537609568596496409074

0.2812294050576655725449341659515

Sa11

0.0013215130252633881273492640567

0.0287356582492413683812555969369
0.7243025794534749187969716773294

S321

0.0033930537821628193917167912812

0.1573270862326151676898601262299
0.0036548286115748769147071291765

257-points 8-order rule

Ss1

0.0176303711895221798359615170829

0.1062079269440531427851821818230

Ss1

0.0022261212103870366035563829745

0.0445128753938546747539305403018

S42

0.0166747305797216127029493671085

0.2215271654487921945556436076078

Ss3

0.0039660204626209654516270279365

0.0287362439702382298273521354305

Sq11

0.0013712761289024193505102030670

0.0302807316628161184245512327246
0.5742625240747101119061964222732

S321

0.0009261971752463936292941257741

0.0178653742410041824343316617132
0.1599485035546596050768099856676

S321

0.0048311921097760693226621205033

0.0971175464224689537586197747871
0.3509135920039025566598219642999

S321

0.0027473006113980140692238444274

0.1542598417836536904457879818959
0.0175301902661063495789625995714
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Table 5. Quadrature rule on d = 6 dimensional simplex.

Orbit | Weight

Abscissas

43-points 4-order rule

S7

0.1668996242406426424065553487802

0.1428571428571428571428571428571

Se1

0.0271661981514270076903673620086

0.0712015434701090173255254362504

Sy3

0.0183696282485533801074535176331

0.0378762710421960021962053657298

64-points 5-order rule

St

0.1055608940320069322326417879346

0.1428571428571428571428571428571

Se1

0.0242990419532018650013794612051

0.0715539250843990305857473101707

Ss2

0.0117134616879203157617441588591

0.0506772832103077178123184150643

S43

0.0136675176242643823360307042168

0.2304358521244036512024566237956

175-points 6-order rule

Se1

0.0004610493156525528548408228337

0.0250990960487081544700908516534

Se1

0.0130199167458605046501306895616

0.1640882485030238802990581503886

Ss2

0.0020306497109021799567911952305

0.0278440785001665193354091212251

Sy3

0.0162220926263431272900952737070

0.0542711738847223476721544566326

S421

0.0028115843020805082211357117490

0.1203196589728741910526848418155
0.0037549817118180216976885119286

266-points 7-order rule

Se1

0.0103583726453788825261551030659

0.1655537069170340713573624387430

Ss2

0.0127946542771734405339991326892

0.0800416917413849453828158790868

Ss2

0.0038665797691560684680540249746

0.0462060207372654835707639356206

Sy3

0.0068482273738159415062980403942

0.2251626772370571673652419443913

S43

0.0013006546667652760792540506406

0.0140208383611713481747343760562

Ss11

0.0005321899098570485728489000218

0.0246678063639990490447074776734
0.1759636130065151239491183217936

S421

0.0025718345607151378830459140997

0.1242831811867119456481842408470
0.0063723131014287473559192490677

553-points 8-order rule

Se1

0.0119576998439189095322140668380

0.1646768753323421340942870425551

Se1

0.0170033855208889021739988777538

0.1010702610627718250051913258275

Se1

0.0015763271020889357220309420300

0.0445013301458845571180677283528

S43

0.0029960134851163901478666677698

0.0444259533505434743654069329655

Sy3

0.0057810264432097073309950803359

0.221105127160745266073956 7583653

Ss11

0.0007096981072933306194796057518

0.0303842211182356803799849235650
0.2575978419615841769164822870809

S421

0.0003172772160146728270743668040

0.0126686383758556644736172343255
0.2101770124793451029895811597503

S421

0.0015276586289853906949163952851

0.1232675348992300327954722629436
0.0050316009864769548591929730662

S322

0.0012167434809951561924521816620

0.0955868297374816410778226310866
0.3377885686906383657970155568362

205
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The integrals that enter the variational functional (5) on the domain 2;,(2) =

U?Zl Ay, are expressed via the integrals, calculated on the element A,, and
recalculated to the local coordinates x on the element A,

/A dzgo(Z)@i’(Z)wff(Z)V(Z)=J/ dgo(2(x)) ] (x)ey, (2)V (2(x)), (13)

q A

07 (2) 0y (2)
/A ngSls2 (Z) aZSI 8252

Ol (x) L, (x
IS S /A Qg (2(a)) 2202) 020 (@)

thotae1 thl (‘3xt2

q

where J = det J>0 is the determinant of the matrix .J from Eq. (12), JS_1 saitits =
(J_l)tlsl(J_l)t2527 dr =dx; ...dxg.

In the local coordinates, the LIP ¢P(z) is equal to one at the node point &,
characterized by the numbers [ng, n1,...,nq], and zero at the remaining node
points &/, i.e., p,.(£.) = 0, are determmed by Eq.(7) at H(0;2) =1—21—...—
zq, H(1; z)—x“1—1 ,d:

d n;—1

no—1
=111 = "i“’n““ —ramelp gy

1o /P —nifp no/p—no/p

Integrals (13) are evaluated using the Gaussian quadrature of the order 2p.
Let &, and ®@,,(2) be exact solutions of Eq.(9) and " and ®" be the
corresponding numerical solutions. Then the following estimations are valid [20]

lem — eml| < calem h®, [P (2) = Ppllo < col Em|A7H, (15)

where [|a(2)]|3 = (a(2)|a(z)), h is the maximal step of the finite-element grid, m
is the number of the corresponding solution, and the positive constants ¢; and
co do not depend on the step h.

To solve the generalized eigenvalue problem (9), we choose the subspace iter-
ation method [3,20] elaborated by Bathe [3] for the solution of large symmetric
banded-matrix eigenvalue problems. This method uses the skyline storage mode
which stores the components of the matrix column vectors within the banded
region of the matrix, and is ideally suited for banded finite-element matrices.

4 Construction of the d-dimensional Quadrature
Formulas

Let us construct the d-dimensional p-ordered quadrature formula

/sz \A|ij (z), =(z1,...,24), dz=dz ...dzq, (16)

q



Algorithms for Solving Elliptic Boundary-Value Problems 207

for integration over the d-dimensional simplex A, with vertices 2; = (2.1, 2i2, - . -,
%), 1 =0,..., d, which is exact for all polynomials of the variables z1,..., 24
of degree not exceeding p, where n; is the number of nodes that is determined
during the calculation process. In Eq. (16), w;, j = 1,...,n; are the weights and
zj = (zj1,%52, - ., %jq) are the coordinates of nodes. |A4| denotes the volume of
A,. For each node z;, instead of sets of d coordinates we use the sets of d + 1
barycentric coordinates (BC) (zjo,zj1,...,%jq):

Zj :$j020+-~-+17jd5d, Ij0+---+mjd: 1. (17)

For this purpose, we introduce the local coordinate system x = (1, 22,...,2q)
and (12). Therefore, without loss of generality, we construct the d-dimensional
p-ordered quadrature formula (16) on the standard simplex A with vertices
;= (Tj1,.--,%5d), Tjk = Ojk, j = 0,...,d, k = 1,...,d, which is exact for
all polynomials of the variables z1,...,z4 of degree not exceeding p:

/ dxV (x = ij (@jos -y Tjd)- (18)
A
Since the following formula is valid for all permutations (lg,. .., lq) of (ko,. .., kq):

d 1
/ da:mlll...xild(l—mf...fxd)lo :41_[71:3]%. )
A (d+2i:0 ki>!

we consider the fully symmetric Gaussian quadratures

/Asz d'ij Z V(Zjo0, Tjr1,- - s Tjgd), (19)

-Jd
where the internal summation by jo, ..., jq is carried out over the different per-
mutations of (z;o, z;1,...,%;q). Table 1 presents the orbits and the corresponding

number of different permutations for d = 3,4, 5, 6. Here, for example, the orbit
S331 at d = 6 contains BC («, o, o0, 3,5, 8,7), « # B # v, a #7v,3a+38+y=1
and their different 140 permutations.

Substituting a monomial of the order not exceeding p in Eq. (19) instead
of V(x), we arrive at a system of nonlinear algebraic equations, that using the
Vieta theorem reduces to the form:

1 I
/Adxsl;séf X ..o X s = 7 Zw]QJ stjg X ... X s]ffﬁll, (20)
212 + 3[3 + ...+ (d + 1)ld+1 S p, (21)

where

d d
Z TiTj, ..., Sdt1 = qu (22)
=0

i=0,j#i



208 A. A. Gusev et al.

Sji, t =2,...,d+1, are their values in the BC (xjo, xj1, - .., q), and Q; is the
number of different permutation of the BC. As in Ref. [15], instead of Eq. (22),
we can use

sp=» al, j=2...d+1 (23)

The number of all [; > 0 solutions of Eq. (21) provides the minimal num-
ber of independent nonlinear equations for the quadrature formula of the order
p. It means that we can obtain a set of independent polynomials by adding
new polynomials when increasing the order p. Below the first few independent
polynomials of the order not exceeding p < 6 for d > 5 are presented:

Vi(z) = s, for p =1,
Va(z) = 52, for p =2,

Vi(x) = s3, for p = 3, (24)
‘/21(1'):83,‘/5(1')284, fOI‘p:4,
Vs(z) = sas3, V7(x) = s5, for p =5,

Va(x) = 83, Vo(z) = 82, Vip(x) = 5284, V11(x) = s6, for p = 6.

We consider fully symmetric rules with positive weights, and no points are
outside the simplex (the so-called PI-type).

The n,-points p-order quadrature rules are constructed with Algorithm 1 [21]
implemented by us in Maple and Fortran:

— for each decomposition n, do

repeat
1. Randomly choose an initial guess for the unknowns n;.
2. Find a least square solution to Egs. (20), (21) using a quasi-Newton
algorithm.
3. If a PI-type solution is found satisfying Eqgs. (20), (21), with sufficient
accuracy, go to Step 4.
until maximum number of initial guesses tried.
— end for
— Stop.
— 4. Minimize the nonlinear equation for unknowns n; using the Levenberg—
Marquardt algorithm with high accuracy [12,14].

The Levenberg—Marquardt Algorithm 2:
Let f(x) be twice differentiable with respect to the variable x = (z1,...,2p).
We consider the minimization
i . 25
Jnin f(x) (25)
1. Start with an initial value xg, in .S, an initial damping parameter Ay, and a
scaling parameter p. For £ > 0 do the following:
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2. Determine a trial iterate y, using
y = xi — (Hy(xp) + A diag(Hy(x1))) ™ Vf(xa), (26)

with A = A\gp~ L.

3. If f(y) < f(xx), where y is determined in Step 2, then set x4 = y and
Akt1 = MApp L. Return to Step 2, replace k with k + 1, and compute a new
trial iterate.

4. If f(y) > f(xx) in Step 3, determine a new trial iterate, y, using (26) with
A=Ak

5 If f(y) < f(xx), where y is determined in Step 4, then set xx411 = y and
Ak+1 = Ag. Return to Step 2, replace k with k£ + 1, and compute a new trial
iterate.

6. If f(y) > f(xx) in Step 5, then determine the smallest value of m so that when
a trial iterate y is computed using (26) with A = App™, then f(y) < f(xx).
Set xip+1 =y and A\p41 = Agp™. Return to Step 2, replace k with k + 1, and
compute a new trial iterate.

7. Terminate the algorithm when ||V f(xx)|| < €, where € is the specified toler-
ance.

In the above Algorithm 2, V f(x), Hy(x) are the gradient vector and the Hes-
sian matrix functions of f(x), respectively. diag(Hs(x)) is the diagonal matrix
of the Hessian matrix function Hy(x).

The weights (W) and the BC of PI-type rules of order p are presented in
Tables 2, 3, 4 and 5. Here, for example, for the orbit S42; at d = 6 contains the
BC (o, o, 0, 3, 3,7), @ # B # v, a # v and their different 105 permutations.
We present « in the first line and 3 in the second line, since « is expressed in
terms of «, 0, i.e., v = 1 — 4a — 2(6. The rules of the fifth and sixth order on
tetrahedra coincide with the results of Ref. [2]. We believe that at least some of
the rules presented in this paper are new. But we can not guarantee that the
presented numbers of points of high-order quadrature rules are minimal. Note
that up to the order p = 6 W and BC were calculated using Maple with 32
significant digits. For p > 6, W and BC were calculated using Fortran with 10
significant digits (the first three steps of Algorithm 1). These calculations were
performed using the Central Information and Computer Complex, and HybriLIT
heterogeneous computing cluster at JINR. Starting from the approximate values
found with the Fortran code, W and BC were then calculated in Maple with 32
significant digits.

5 BVP for Helmholtz Equation in a d-dimensional
Hypercube

For benchmark calculations, we use the BVP for the Helmholtz equation (HEQ)
with the boundary condition (II) in a d-dimensional hypercube with the edge
length 7. Since the variables are separated, the eigenvalues E,, = Ey,, ... m, are
sums of squared integers, E,, = Ep,.  m, = m3 + ... +m3 mp = 0,1,...,
k=1,...,d.
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I ™
(LD 0,000  (0.0,0)
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Fig.1. (a) Division of a 3D cube into 3! = 6 equal tetrahedrons (T1,...,T6). (b)
The error APg(z1, 22,23) = |€15§ (21, 22, 23) — Ps(z1, 22, 23)| for the eighth eigenfunction
DL (21, 20, 23) at fixed z3 = /9, calculated using FEM with third-order LIPs versus
the exact eigenfunction @s(z1, 22, 23) corresponding to the eigenvalue Eg = 3. Here the
cube is divided into 2% cubes, each comprised of 6 tetrahedrons. The isolines marked 1
correspond to the values of Adg(z1, 22, 23) = APF** /10, the isolines marked 2 corre-
spond to the values of A®g(z1, 22, 23) = 2AP5**/10,..., at APF** ~ 0.018.

Assertion (see also [16]). The hypercube is divided into d! equal simplices. The
vertices of each simplex are located on broken lines composed of d mutually
perpendicular edges, and the extreme vertices of all polygons are located on one
of the diagonals of the hypercube (for d = 3 see Fig. 1a).

Algorithm 3.

Input. A single d-dimensional hypercube with vertices the coordinates of
which are either 0 or 1 in the Euclidean space R%. The chosen diagonal of the
hypercube connects the vertices with the coordinates (0,...,0) and (1,...,1).
Output. z,?) = (z,(jl), o z,(jd)), the coordinates of the ith simplex.

Local. The coordinates of the vertices of the polygonal line are z;, = (2k1, .
de), kZO,,d

1. For all ¢ = (i1, ...,iq), the permutations of the numbers (1,...,d):

1.1. Forallk=0,....dand s =1,...,d: 2", = {1,i, < k,;0,i, > k}

1.2. If de‘c(z',(js))zsz1 = —1 then z,(;d) o z,igfl.

3D HEQ for the cube. In Fig. 1b, we show the error APg(z1, 29, z3) for the
eighth eigenfunction ®f (21, 22, 23) at fixed 23 = 7/9, calculated using FEM with
third-order LIPs versus the exact eigenfunction ®g(z1, 22, 2z3) corresponding to
the eigenvalue Eg = 3. In Fig. 2a, we also show the maximal error A®g?* for
the exact eighth eigenfunction ®g(z1, 22, 23) calculated using FEM with LIPs of
the orders p = 3,4,5 versus the number N of piecewise basis functions N/ (z)
in the expansion (8). In Fig.2b, we show the error of eigenvalues of the 3D
BVP for the HEQ at d = 3 with the boundary condition (II) using the FEM
scheme with 3D LIP of the order p = 6. As seen from Fig. 2, the errors of the
eigenfunctions and eigenvalues lie on parallel lines in the double logarithmic scale

ey
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Fig. 2. (a) The maximal error A®F** = max,, € (0,7),22 € (0,7),2z3 € (0,7)]

@g(zl,ZQ,z;:,) — Pg(z1,22,23)| for the exact eighth eigenfunction ®g(z1,22,23) calcu-
lated using FEM with LIPs of the orders p = 3,4, 5 versus the number N of piecewise
basis functions N7 (z) in the expansion (8). (b)The error AE,, = E, — E,, calculated
using FEM with sixth-order LIPs versus the exact eigenvalue E,,. Squares: the cube
divided into 6 tetrahedrons. Circles: the cube divided into 23 cubes, each comprised
of 6 tetrahedrons. Solid circles: the cube divided into 4% cubes, each comprised of 6
tetrahedrons.

Table 6. The lower part of the exact spectrum E,, and the calculated spectrum E”,
for the 6D hypercube.

E.| El,

0 |0.183360983479286 e—10

1 | 1.00023, 1.00034, 1.00034, 1.00034, 1.00034, 1.00034

2 2.04760, 2.04760, 2.04760, 2.04760, 2.04760, 2.04760, 2.04760, 2.04760,

2.04760, 2.07391, 2.08478, 2.08478, 2.08478, 2.08478, 2.08478

3 |3.15060, 3.15196, 3.15196, 3.15196, 3.15196, 3.15196, 3.15780, 3.15780,
3.15780, 3.15780, 3.15780, 3.16319, 3.16319, 3.16319, 3.16319, 3.16319,
3.16319, 3.16319, 3.16319, 3.16319

which agrees with the theoretical error estimates (15) for the eigenfunctions and
eigenvalues depending on the maximal size of the finite element. For a cube with
the edge 7 divided into 43 cubes, each of them comprising 6 tetrahedrons, the
matrices A and B had the dimension 15625 x 15625. The matrices A and B were
calculated in two ways: analytically or with Gaussian quadratures from Sect. 4
using Maple 2015, 2x 8-core Xeon E5-2667 v2 3.3 GHz, 512 GB RAM, GPU Tesla
2075. For the considered task, the values of matrix elements agree with Gaussian
quadratures up to the order 10 with given accuracy. The generalized algebraic
eigenvalue problem (9) was solved during 20 min using Intel Fortran.

6D HEQ for the hypercube. We solved HEQ at d = 6 with the boundary
condition (II) using FEM scheme with 6D LIP of the order p = 3. The 6D
hypercube having the edge m was divided into n = d! = 6! = 720 simplexes
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(the size of the finite element being equal to 7). On each of them Np(p) =
(p+ d)!/(d!p!) = 84 third-order LIPs were used. The matrices A and B had the
dimension 4096 x 4096. The lower part of the spectrum F,, is shown in Table 6.
The errors of the second, the third, and the fourth degenerate eigenvalue are
equal to 0.0003, 0.05, and 0.15, respectively. Note that applying the third-order
scheme for solving the BVPs of smaller dimension d, we obtained errors of the
same order. The calculation time was 9234.46 s using Maple 2015.

6 Conclusion

We have elaborated new calculation schemes, algorithms, and programs for
solving the multidimensional elliptic BVP using the high-accuracy FEM with
simplex elements. The elaborated symbolic-numerical algorithms and programs
implemented in Maple-Fortran environment calculate multivariate finite ele-
ments in the simplex and the fully symmetric PI Gaussian quadrature rules.
We demonstrated the efficiency of the proposed finite element schemes, algo-
rithms, and codes by benchmark calculations of BVPs for Helmholtz equation
of cube and hypercube. The developed approach is aimed at calculations of the
spectral characteristics of nuclei models and electromagnetic transitions [7,11].
This will be done in our next publications.
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