

Symbolic-Numerical Algorithms for Solving Elliptic Boundary-Value Problems Using Multivariate Simplex Lagrange Elements

A. A. Gusev^{1(\boxtimes)}, V. P. Gerdt^{1,2}, O. Chuluunbaatar^{1,3}, G. Chuluunbaatar^{1,2}, S. I. Vinitsky^{1,2}, V. L. Derbov⁴, A. Góźdź⁵, and P. M. Krassovitskiy^{1,6}

¹ Joint Institute for Nuclear Research, Dubna, Russia

gooseff@jinr.ru ² RUDN University, 6 Miklukho-Maklaya St., Moscow 117198, Russia ³ Institute of Mathematics, National University of Mongolia, Ulaanbaatar, Mongolia ⁴ N.G. Chernyshevsky Saratov National Research State University, Saratov, Russia ⁵ Institute of Physics, University of M. Curie–Skłodowska, Lublin, Poland

⁶ Institute of Nuclear Physics, Almaty, Kazakhstan

Abstract. We propose new symbolic-numerical algorithms implemented in Maple-Fortran environment for solving the self-adjoint elliptic boundary-value problem in a d-dimensional polyhedral finite domain, using the high-accuracy finite element method with multivariate Lagrange elements in the simplexes. The high-order fully symmetric PI-type Gaussian quadratures with positive weights and no points outside the simplex are calculated by means of the new symbolic-numerical algorithms implemented in Maple. Quadrature rules up to order 8 on the simplexes with dimension $d = 3 - 6$ are presented. We demonstrate the efficiency of algorithms and programs by benchmark calculations of a low part of spectra of exactly solvable Helmholtz problems for a cube and a hypercube.

Keywords: Elliptic boundary-value problem · Finite element method Multivariate simplex lagrange elements High-order fully symmetric Gaussian quadratures Helmholtz equation for cube and hypercube

1 Introduction

The progress of modern computing power offers more possibilities for setting and numerical solution of multidimensional elliptic boundary-value problems (BVPs) with high accuracy. 3D BVPs have wide applications in such areas as vibrating membrane, electromagnetic radiation, motion of thermal neutrons in the reactor, seismology, and acoustics, see, e.g., [\[4](#page-15-0)], while multidimensional BVPs have applications in nuclear physics, see, e.g., [\[7\]](#page-15-1). For this purpose, novel numerical methods of high accuracy order are being developed. When reducing the boundary value problem to an algebraic one in the finite element method (FEM) of the order p , one of the problems is the calculation of integrals on a finite element (we consider only simplicial finite elements) containing the products of two basis functions of Lagrange or Hermite interpolation polynomials of the order p by the coefficients for the unknown functions $[5,9]$ $[5,9]$. There are three possible ways to calculate the integrals:

- (i) using analytical calculation, which is possible for a limited number of cases;
- (ii) using quadrature formulas with products of two basic functions used as a weight function;
- (iii) using quadrature formulas with a single weight function.

It is well known [\[20\]](#page-16-1) that as a result of applying the pth order FEM to the solution of the discrete spectrum problem for the elliptic (Schrödinger) equation, the eigenfunction and the eigenvalue are determined with an accuracy of the order $p + 1$ and $2p$ provided that all intermediate quantities are calculated with sufficient accuracy. It follows that for the realization of the FEM of the order p in the third case, the integrals must be computed at least with an accuracy of the order 2p, depending on the problem considered. The most economical calculation of such integrals is achieved using the quadratures of Gaussian type. In the one-dimensional case, the nodes and the quadrature Gaussian weights are expressed analytically; in the two-, three- and four-dimensional case, the high-order quadrature formulas are determined numerically [\[2](#page-15-3),[6,](#page-15-4)[8,](#page-15-5)[10](#page-16-2)[,17](#page-16-3)[–19,](#page-16-4)[21\]](#page-16-5). Note that for multidimensional integrals, numerous quadrature formulas of the Newton–Cotes and third-order Gaussian type are known, too (see Ref. [\[1](#page-15-6)]).

The paper presents a new method for constructing fully symmetric multidimensional Gaussian-type quadratures on a standard simplex. The main idea of the method is replacing the coordinates of nodes with their symmetric combinations obtained using the Vieta theorem, which simplifies the system of nonlinear algebraic equations. The construction of the desired systems of equations is performed analytically using an original algorithm implemented in Maple [\[13](#page-16-6)]. The derived systems up to the sixth order are solved using the built-in procedure PolynomialSystem, implementing the technique of Gröbner bases, and the systems of higher order are solved using the developed symbolic-numerical algorithm based on numerical methods, implemented in Maple-Fortran environment. We demonstrate the efficiency of algorithms and programs by benchmark calculations of the lower part of spectra in exactly solvable Helmholtz problems for a cube and a hypercube.

The paper is structured as follows. In Sects. [2](#page-2-0) and [3,](#page-3-0) the FEM schemes and algorithms for solving the d-dimensional BVP are presented. In Sect. [4,](#page-9-0) the algorithms for constructing the d-dimensional fully symmetric Gaussian quadratures are presented. In Sect. [5,](#page-12-0) the benchmark calculations of the exactly solvable Helmholtz problems for the cube and hypercube are presented. In Conclusion, we discuss the results and perspectives.

2 Setting of the Problem

Consider a self-adjoint boundary-value problem for the elliptic differential equation of the second order:

$$
(D - E)\Phi(z) \equiv \left(-\frac{1}{g_0(z)}\sum_{ij=1}^d \frac{\partial}{\partial z_i} g_{ij}(z)\frac{\partial}{\partial z_j} + V(z) - E\right)\Phi(z) = 0. \tag{1}
$$

For the principal part coefficients of Eq. (1) , the condition of uniform ellipticity holds in the bounded domain $z = (z_1, \ldots, z_d) \in \Omega$ of the Euclidean space \mathcal{R}^d , i.e., the constants $\mu > 0$, $\nu > 0$ exist such that $\mu \xi^2 \leq \sum_{i,j=1}^d g_{ij}(z)\xi_i\xi_j \leq \nu \xi^2$, $\xi^2 = \sum_{i=1}^d \xi_i^2, \forall \xi_i \in \mathcal{R}$. The left-hand side of this inequality expresses the requirement of ellipticity, while the right-hand side expresses the boundedness of the coefficients $g_{ij}(z)$. It is also assumed that $g_0(z) > 0$, $g_{ji}(z) = g_{ij}(z)$ and $V(z)$ are real-valued functions, continuous together with their generalized derivatives to a given order in the domain $z \in \overline{\Omega} = \Omega \cup \partial \Omega$ with the piecewise continuous boundary $S = \partial \Omega$, which provides the existence of nontrivial solutions obeying the boundary conditions [\[5](#page-15-2)] of the first kind

$$
\Phi(z)|_S = 0,\t\t(2)
$$

or the second kind

$$
\frac{\partial \Phi(z)}{\partial n_D}\Big|_S = 0, \quad \frac{\partial \Phi(z)}{\partial n_D} = \sum_{ij=1}^d (\hat{n}, \hat{e}_i) g_{ij}(z) \frac{\partial \Phi(z)}{\partial z_j}, \tag{3}
$$

where $\frac{\partial \Phi_m(z)}{\partial n_D}$ is the derivative along the conformal direction, \hat{n} is the outer normal to the boundary of the domain $S = \partial \Omega$, \hat{e}_i is the unit vector of $z = \nabla^d$ $\sum_{i=1}^{d} \hat{e}_i z_i$, and (\hat{n}, \hat{e}_i) is the scalar product in \mathcal{R}^d .

For a discrete spectrum problem, the functions $\Phi_m(z)$ from the Sobolev space $H_2^{s\geq 1}(\Omega)$, $\Phi_m(z) \in H_2^{s\geq 1}(\Omega)$, corresponding to the real eigenvalues $E: E_1 \leq$ $E_2 \leq \ldots \leq E_m \leq \ldots$ satisfy the conditions of normalization and orthogonality

$$
\langle \Phi_m(z)|\Phi_{m'}(z)\rangle = \int_{\Omega} dz g_0(z)\Phi_m(z)\Phi_{m'}(z) = \delta_{mm'}, \quad dz = dz_1 \dots dz_d. \tag{4}
$$

The FEM solution of the boundary-value problems (1) – (4) is reduced to the determination of stationary points of the variational functional [\[3](#page-15-7),[5\]](#page-15-2)

$$
\Xi(\Phi_m, E_m) \equiv \int_{\Omega} dz g_0(z) \Phi_m(z) (D - E_m) \Phi(z) = \Pi(\Phi_m, E_m), \tag{5}
$$

where $\Pi(\Phi, E)$ is the symmetric quadratic functional

$$
\Pi(\Phi, E) = \int_{\Omega} dz \left[\sum_{ij=1}^{d} g_{ij}(z) \frac{\partial \Phi(z)}{\partial z_i} \frac{\partial \Phi(z)}{\partial z_j} + g_0(z) \Phi(z) (V(z) - E) \Phi(z) \right].
$$

3 FEM Calculation Scheme

In FEM, the domain $\Omega = \Omega_h(z) = \bigcup_{q=1}^Q \Delta_q$, specified as a polyhedral domain, is covered with finite elements, in the present case, the simplexes Δ_q with $d+1$ vertices $\hat{z}_i = (\hat{z}_{i1}, \hat{z}_{i2}, \dots, \hat{z}_{id}), i = 0, \dots, d$. Each edge of the simplex Δ_q is divided into p equal parts, and the families of parallel hyperplanes $H(i, k)$ are drawn, numbered with the integers $k = 0, \ldots, p$, starting from the corresponding face (see also [\[5](#page-15-2)]). The equation of the hyperplane is $H(i,k)$: $H(i;z) - k/p = 0$, where $H(i; z)$ is a linear function of z.

The node points of hyperplanes crossing A_r are enumerated with the sets of integers $[n_0, ..., n_d]$, $n_i \geq 0$, $n_0 + ... + n_d = p$, where n_i , $i = 0, 1, ..., d$ are the numbers of hyperplanes, parallel to the simplex face, not containing the ith vertex $\hat{z}_i = (\hat{z}_{i1},...,\hat{z}_{id})$. The coordinates $\xi_r = (\xi_{r1},...,\xi_{rd})$ of the node point $A_r \in \Delta_q$ are calculated using the formula

$$
(\xi_{r1},\ldots,\xi_{rd})=(\hat{z}_{01},\ldots,\hat{z}_{0d})\frac{n_0}{p}+(\hat{z}_{11},\ldots,\hat{z}_{1d})\frac{n_1}{p}+\ldots+(\hat{z}_{d1},\ldots,\hat{z}_{dd})\frac{n_d}{p}(6)
$$

from the coordinates of the vertices $\hat{z}_j = (\hat{z}_{j1}, \dots, \hat{z}_{jd})$. Then the Lagrange interpolation polynomials (LIP) $\varphi_r^p(z)$ are equal to one at the point A_r with the coordinates $\xi_r = (\xi_{r1}, \ldots, \xi_{rd})$, characterized by the numbers $[n_0, n_1, \ldots, n_d]$, and equal to zero at the remaining points $\xi_{r'}$, i.e., $\varphi_r^p(\xi_{r'}) = \delta_{rr'}$, have the form

$$
\varphi_r^p(z) = \prod_{i=0}^d \prod_{n'_i=0}^{n_i-1} \frac{H(i;z) - n'_i/p}{H(i;\xi_r) - n'_i/p}.\tag{7}
$$

As shape functions in the simplex Δ_q we use the multivariate Lagrange interpolation polynomials $\varphi_l^p(z)$ of the order p that satisfy the condition $\varphi_l^p(x_{1l'}, x_{2l'})$ $= \delta_{ll'}$, i.e., equal 1 at one of the points A_l and zero at the other points. In this method, the piecewise polynomial functions $N_l^p(z)$ in the domain Ω are constructed by joining the shape functions $\varphi_l^p(z)$ in the simplex Δ_q :

$$
N_l^p(z) = \{ \varphi_l^p(z), A_l \in \Delta_q; 0, A_l \notin \Delta_q \}
$$

and possess the following properties: the functions $N_l^p(z)$ are continuous in the domain Ω ; the functions $N_l^p(z)$ equal 1 at one of the points A_l and zero at the rest of the points; $N_l^p(z_{l'}) = \delta_{ll'}$ in the entire domain Ω . Here l takes the values $l=1,\ldots,N.$

The functions $N_l^p(z)$ form a basis in the space of polynomials of the pth order. Now, the function $\Phi(z) \in \mathcal{H}^1(\Omega)$ is approximated by a finite sum of piecewise basis functions $N_l^p(z)$:

$$
\Phi^h(z) = \sum_{l=1}^N \Phi_l^h N_l^p(z).
$$
 (8)

$d=3$		$d=4$		$d=5$				$d=6$			
Orbits Perm.		Orbits Perm.		Orbits Perm.		Orbits	Perm.	Orbits Perm.		Orbits	Perm.
S_4	1	S_5	1	S_6	1	S_{3111}	120	S_7	1	S_{4111}	210
S_{31}	4	S_{41}	5	S_{51}	6	S_{2211}	180	S_{61}	7	S_{3211}	420
S_{22}	6	S_{32}	10	S_{42}	15	S_{21111}	360	S_{52}	21	S_{2221}	630
S_{211}	12	S_{311}	20	S_{33}	20	S_{111111}	720	S_{43}	35	S_{31111}	840
S_{1111}	24	S_{221}	30	S_{411}	30			S_{511}	42	S_{22111}	1260
		S_{2111}	60	S_{321}	60			S_{421}	105	S_{211111}	2520
		S_{11111}	120	S_{222}	90			S_{331}	140	$S_{1111111}$	5040
								S_{322}	210		

Table 1. The orbits and their number of permutations for $d = 3, 4, 5, 6$.

After substituting expansion (8) into the variational functional (5) and minimizing it [\[3,](#page-15-7)[20\]](#page-16-1), we obtain the generalized eigenvalue problem

$$
\mathbf{A}^p \boldsymbol{\Phi}^h = \varepsilon^h \mathbf{B}^p \boldsymbol{\Phi}^h. \tag{9}
$$

Here \mathbf{A}^p is the symmetric stiffness matrix; \mathbf{B}^p is the symmetric positive definite mass matrix; $\boldsymbol{\Phi}^{\tilde{h}}$ is the vector approximating the solution on the finite-element grid; and ε^h is the corresponding eigenvalue. The matrices \mathbf{A}^p and \mathbf{B}^p have the form:

$$
\mathbf{A}^p = \{a_{ll'}^p\}_{ll'=1}^N, \mathbf{B}^p = \{b_{ll'}^p\}_{ll'=1}^N,\tag{10}
$$

where the matrix elements $a_{ll'}^p$ and $b_{ll'}^p$ are calculated for simplex elements as

$$
a_{ll'}^p = \sum_{ij=1}^d \int_{\Delta_q} g_{ij}(z) \frac{\partial \varphi_l^p(z)}{\partial z_i} \frac{\partial \varphi_l^p(z)}{\partial z_j} dz + \int_{\Delta_q} g_0(z) \varphi_l^p(z) \varphi_{l'}^p(z) V(z) dz,
$$

\n
$$
b_{ll'}^p = \int_{\Delta_q} g_0(z) \varphi_l^p(z) \varphi_{l'}^p(z) dz.
$$
\n(11)

The economical implementation of FEM is the following.

The calculations, including those of FEM integrals for mass and stiffness matrices at each subdomain Δ_q are performed in the local (reference) system of α coordinates x , in which the coordinates of the simplex vertices are the following: $\hat{x}_j = (\hat{x}_{j1}, \dots, \hat{x}_{jd}), \hat{x}_{jk} = \delta_{jk}, j = 0, \dots, d, k = 1, \dots, d.$

Let us construct the Lagrange interpolation polynomial (LIP) on an arbitrary d-dimensional simplex Δ_q with vertices $\hat{z}_i = (\hat{z}_{i1}, \hat{z}_{i2}, \dots, \hat{z}_{id}), i = 0, \dots, d$. For this purpose, we introduce the local system of coordinates $x = (x_1, x_2, \ldots, x_d) \in$ \mathcal{R}^d , in which the coordinates of the simplex vertices are \hat{x}_i . The relation between the coordinates is given by the formula:

$$
z_i = \hat{z}_{0i} + \sum_{j=1}^d \hat{J}_{ij} x_j, \quad \hat{J}_{ij} = \hat{z}_{ji} - \hat{z}_{0i}, \quad i = 1, ..., d.
$$
 (12)

Orbit	Weight	Abscissas			
14-points 4-order rule					
S_{31}	0.0801186758957551214557967806191	0.0963721076152827180679867982109			
S_{31}	0.1243674424942431317471251193937	0.3123064218132941261147265437508			
S_{22}	0.0303425877400011645313853999915	0.0274707886853344957750132954191			
14-points 5-order rule					
S_{31}	0.0734930431163619495437102054863	0.0927352503108912264023239137370			
S_{31}	0.1126879257180158507991856523333	0.3108859192633006097973457337635			
\mathcal{S}_{22}	0.0425460207770814664380694281203	0.0455037041256496494918805262793			
24-points 6-order rule					
S_{31}	0.0399227502581674920996906275575	0.2146028712591520292888392193863			
S_{31}	0.0100772110553206429480132374459	0.0406739585346113531155794489564			
S_{31}	0.0553571815436547220951532778537	0.3223378901422755103439944707625			
S_{211}	0.0482142857142857142857142857143	0.0636610018750175252992355276057 0.6030056647916491413674311390609			
35-points 7-order rule					
S_4	0.0954852894641308488605784361172	0.25000000000000000000000000000000			
S_{31}	0.0423295812099670290762861707986	0.3157011497782027994234299995933			
S_{22}	0.0318969278328575799342748240829	0.0504898225983963687630538229866			
S_{211}	0.0372071307283346213696155611915	0.1888338310260010477364311038546 0.5751716375870000234832415770223			
\mathcal{S}_{211}	0.0081107708299033415661034334911	0.0212654725414832459888361014998 0.8108302410985485611181053798482			
46-points 8-order rule					
S_{31}	0.0063972777406656176515049738764	0.0396757518582111225277078936298			
S_{31}	0.0401906214382288067038698161802	0.3144877686588789672386516888007			
S_{31}	0.0243081692121760770795396363192	0.1019873469010702748038937565346			
S_{31}	0.0548586277637264928464254253584	0.1842037697228154771186065671874			
S_{22}	0.0357196747563309013579348149829	0.0634363951662790318385035375295			
S_{211}	0.0071831862652404057248973769332	0.0216901288123494021982001218658 0.7199316530057482532021892796203			
S_{211}	0.0163720776383284788356885983306	0.2044800362678728018101543629799 0.5805775568740886759781950895673			

Table 2. Quadrature rule on tetrahedra.

The inverse transformation and the relation between the differentiation operators are given by the formulas

$$
x_i = \sum_{j=1}^d (\hat{J}^{-1})_{ij} (z_j - \hat{z}_{0j}), \frac{\partial}{\partial x_i} = \sum_{j=1}^d \hat{J}_{ji} \frac{\partial}{\partial z_j}, \frac{\partial}{\partial z_i} = \sum_{j=1}^d (\hat{J}^{-1})_{ji} \frac{\partial}{\partial x_j}.
$$

	Orbit Weight	Abscissas				
	20-points 4-order rule					
S_{41}	0.0379539224206539610831511760634	0.0784224645320084412701860095372				
S_{41}	0.0681384495140965073072374189421	0.2449925002516506829747267241998				
S_{32}	0.0469538140326247658048057024973	0.0657807054017604429326659923627				
	30-points 5-order rule					
S_{41}	0.0492516801753157409383956672833	0.0853466308308594082516329452526				
S_{41}	0.0325114606587393649369493738878	0.2369600116614607056460832163398				
S_{32}	0.0175327109958004508766635908927	0.0412980141318484010482052159450				
S_{32}	0.0415857185871719961856638885218	0.2997443384790352862963354895649				
	56-points 6-order rule					
S_5	0.0732792367435547721884408088550	0.2000000000000000000000000000000				
S_{41}	0.0047429121713183739117905941798	0.0417033817484816144703679735243				
S_{32}	0.0371671124025330069869448829255	0.2956227971470980491911963343462				
S_{311}	0.0133362480184817717166547744056	0.1543949248731168427369921195673				
		0.5227506462276968325151584695712				
S_{311}	0.0132305059002443927025030951440	0.0478156751378274921515148624255				
		0.2819739419928806028716278777811				
	76-points 7-order rule					
S_5	0.0282727667597935101461654674137	0.2000000000000000000000000000000				
S_{41}	0.0171637920155537955591265968365	0.2494020893093779695674000557470				
S_{32}	0.0084262904177368737487641566458	0.0390279956601069690478223468028				
S_{32}	0.0151633627560453145809862914879	0.1283114044638121921594658569279				
S_{311}	0.0041099348414815560204478025486	0.0338474709865642635279969618386				
		0.7462624286813390611020624803775				
S_{221}	0.0189271014864994836117247005365	0.0448337964557961849763900084527				
		0.2098710857162324764262981778162				
110-points 8-order rule						
S_{41}	0.0209889631062033488284471858741	0.1064160632601420588468274348524				
S_{41}	0.0025569304299619087111133529054	0.0405432824126613113549340882657				
S_{32}	0.0153364140237452308225281532013	0.0553205204859791157778648564000				
S_{32}	0.0143413703554045577679712361587	0.1329849247207488765271172398305				
S_{32}	0.0219839063571691797013874119590	0.2921649623679039933512390863408				
S_{311}	0.0036998351176104420717284969383	0.0333398788668747287190327986033				
		0.6960284779140254845117282473257				
S_{311}	0.0102875153954967332446050836803	0.1749055465990825034189472406388 0.4713583394803434080155451322627				
S_{221}	0.0028635538231280174352219226847	0.2139955562978852147651302856947				
		0.0055794471455235244097015787040				

Table 3. Quadrature rule on $d = 4$ dimensional simplex.

	Orbit Weight	Abscissas			
27-points 4-order rule					
S_6	0.2380952380952380952380952380952	0.166666666666666666666666666667			
S_{51}	0.0476190476190476190476190476190	0.0833333333333333333333333333333			
S_{33}	0.0238095238095238095238095238095	0.3110042339640731077939538617922			
	37-points 5-order rule				
S_6	0.1537202203084293617727126367247	0.166666666666666666666666666667			
S_{51}	0.0289106224493151615615928162885	0.07500000000000000000000000000000			
S_{42}	0.0272301053298578547025239158396	0.0620931177937680448262436473512			
S_{42}	0.0176242976698541232213247818634	0.2494113069849930171206590075161			
102-points 6-order rule					
S_{51}	0.0220609777699918416385171809216	0.0936784796657907179507883184494			
S_{51}	0.0010288939840293747752001192602	0.0270566434340766625713558698570			
S_{42}	0.0156264172618719457418380080610	0.0653950986037339179722692404805			
S_{42}	0.0278282494445825546266341924031	0.2298844181626658901051213339390			
S_{321}	0.0034940128146509199331768865324	0.0182868036924305667708203585711 0.1963426392615138866458359282858			
137-points 7-order rule					
S_{51}	0.0251079912995851246690568379932	0.1962505998027202386302784835916			
S_{51}	0.0268181773072546325688248594140	0.1073064529494792948889112833415			
S_{42}	0.0088856106397381008037487732556	0.0499693465734168548516130660759			
S_{33}	0.0155965105537609568596496409074	0.2812294050576655725449341659515			
\mathcal{S}_{411}	0.0013215130252633881273492640567	0.0287356582492413683812555969369			
		0.7243025794534749187969716773294			
S_{321}	0.0033930537821628193917167912812	0.1573270862326151676898601262299			
		0.0036548286115748769147071291765			
	257-points 8-order rule				
S_{51}	0.0176303711895221798359615170829	0.1062079269440531427851821818230			
S_{51}	0.0022261212103870366035563829745	0.0445128753938546747539305403018			
S_{42}	0.0166747305797216127029493671085	0.2215271654487921945556436076078			
S_{33}	0.0039660204626209654516270279365	0.0287362439702382298273521354305			
S_{411}	0.0013712761289024193505102030670	0.0302807316628161184245512327246			
		0.5742625240747101119061964222732			
S_{321}	0.0009261971752463936292941257741	0.0178653742410041824343316617132 0.1599485035546596050768099856676			
S_{321}	0.0048311921097760693226621205033	0.0971175464224689537586197747871			
		0.3509135920039025566598219642999			
S_{321}	0.0027473006113980140692238444274	0.1542598417836536904457879818959			
		0.0175301902661063495789625995714			

Table 4. Quadrature rule on $d = 5$ dimensional simplex.

Table 5. Quadrature rule on $d = 6$ dimensional simplex.

The integrals that enter the variational functional [\(5\)](#page-2-3) on the domain $\Omega_h(z)$ $\bigcup_{q=1}^{Q} \Delta_q$, are expressed via the integrals, calculated on the element Δ_q , and recalculated to the local coordinates x on the element Δ ,

$$
\int_{\Delta_q} dz g_0(z) \varphi_r^p(z) \varphi_{r'}^p(z) V(z) = J \int_{\Delta} dx g_0(z(x)) \varphi_r^p(x) \varphi_{r'}^p(x) V(z(x)), \quad (13)
$$
\n
$$
\int_{\Delta_q} dz g_{s_1 s_2}(z) \frac{\partial \varphi_r^p(z)}{\partial z_{s_1}} \frac{\partial \varphi_{r'}^p(z)}{\partial z_{s_2}}
$$
\n
$$
= J \sum_{t_1, t_2=1}^d \hat{J}_{s_1 s_2; t_1 t_2}^{-1} \int_{\Delta} dx g_{s_1 s_2}(z(x)) \frac{\partial \varphi_r^p(x)}{\partial x_{t_1}} \frac{\partial \varphi_{r'}^p(x)}{\partial x_{t_2}},
$$

where $J = \det \hat{J} > 0$ is the determinant of the matrix \hat{J} from Eq. [\(12\)](#page-4-0), $\hat{J}^{-1}_{s_1,s_2;t_1;t_2}$ $(\hat{J}^{-1})_{t_1s_1}(\hat{J}^{-1})_{t_2s_2}, dx = dx_1 \dots dx_d.$

In the local coordinates, the LIP $\varphi_r^p(x)$ is equal to one at the node point ξ_r characterized by the numbers $[n_0, n_1, \ldots, n_d]$, and zero at the remaining node points ξ'_r , i.e., $\varphi_r(\xi'_r) = \delta_{rr}$ are determined by Eq. [\(7\)](#page-3-2) at $H(0; x) = 1 - x_1 - \ldots$ x_d , $H(i; z) = x_i$, $i = 1, \ldots, d$:

$$
\varphi_r(x) = \prod_{i=1}^d \prod_{n_i=0}^{n_i-1} \frac{x_i - n_i/p}{n_i/p - n_i/p} \prod_{n_0=0}^{n_0-1} \frac{1 - x_1 - \ldots - x_d - n_0/p}{n_0/p - n_0/p}.
$$
 (14)

Integrals [\(13\)](#page-9-1) are evaluated using the Gaussian quadrature of the order 2p.

Let ε_m and $\Phi_m(z)$ be exact solutions of Eq. [\(9\)](#page-4-1) and ε_m^h and Φ_m^h be the corresponding numerical solutions. Then the following estimations are valid [\[20\]](#page-16-1)

$$
|\varepsilon_m - \varepsilon_m^h| \le c_1 |\varepsilon_m| h^{2p}, \quad \|\Phi_m(z) - \Phi_m^h\|_0 \le c_2 |E_m| h^{p+1}, \tag{15}
$$

where $||a(z)||_0^2 = \langle a(z)|a(z)\rangle$, h is the maximal step of the finite-element grid, m is the number of the corresponding solution, and the positive constants c_1 and c_2 do not depend on the step h.

To solve the generalized eigenvalue problem [\(9\)](#page-4-1), we choose the subspace iteration method [\[3,](#page-15-7)[20\]](#page-16-1) elaborated by Bathe [\[3](#page-15-7)] for the solution of large symmetric banded-matrix eigenvalue problems. This method uses the skyline storage mode which stores the components of the matrix column vectors within the banded region of the matrix, and is ideally suited for banded finite-element matrices.

4 Construction of the *d***-dimensional Quadrature Formulas**

Let us construct the d-dimensional p-ordered quadrature formula

$$
\int_{\Delta_q} dz V(z) = |\Delta_q| \sum_{j=1}^{n_t} w_j V(z_j), \quad z = (z_1, \dots, z_d), \quad dz = dz_1 \dots dz_d, \tag{16}
$$

for integration over the d-dimensional simplex Δ_q with vertices $\hat{z}_i = (\hat{z}_{i1}, \hat{z}_{i2}, \dots,$ \hat{z}_{id} , $i = 0, \ldots, d$, which is exact for all polynomials of the variables z_1, \ldots, z_d of degree not exceeding p, where n_t is the number of nodes that is determined during the calculation process. In Eq. [\(16\)](#page-9-2), w_j , $j = 1, \ldots, n_t$ are the weights and $z_j = (z_{j1}, z_{j2}, \ldots, z_{jd})$ are the coordinates of nodes. $|\Delta_q|$ denotes the volume of Δ_q . For each node z_j , instead of sets of d coordinates we use the sets of $d+1$ barycentric coordinates (BC) $(x_{j0}, x_{j1},...,x_{id})$:

$$
z_j = x_{j0}\hat{z}_0 + \dots + x_{jd}\hat{z}_d, \quad x_{j0} + \dots + x_{jd} = 1.
$$
 (17)

For this purpose, we introduce the local coordinate system $x = (x_1, x_2, \ldots, x_d)$ and (12) . Therefore, without loss of generality, we construct the d-dimensional p-ordered quadrature formula [\(16\)](#page-9-2) on the standard simplex Δ with vertices $\hat{x}_j = (\hat{x}_{j1},...,\hat{x}_{jd}), \hat{x}_{jk} = \delta_{jk}, j = 0,...,d, k = 1,...,d$, which is exact for all polynomials of the variables x_1, \ldots, x_d of degree not exceeding p:

$$
\int_{\Delta} dx V(x) = \frac{1}{d!} \sum_{j=1}^{n_t} w_j V(x_{j0}, \dots, x_{jd}).
$$
\n(18)

Since the following formula is valid for all permutations (l_0,\ldots,l_d) of (k_0,\ldots,k_d) :

$$
\int_{\Delta} dx x_1^{l_1} \dots x_d^{l_d} (1 - x_1 - \dots - x_d)^{l_0} = \frac{\prod_{i=0}^d k_i!}{\left(d + \sum_{i=0}^d k_i\right)!},
$$

we consider the fully symmetric Gaussian quadratures

$$
\int_{\Delta} dx V(x) = \frac{1}{d!} \sum_{j=1}^{a} w_j \sum_{j_0, \dots, j_d} V(x_{j_0 0}, x_{j_1 1}, \dots, x_{j_d d}),
$$
\n(19)

where the internal summation by j_0,\ldots,j_d is carried out over the different permutations of $(x_{i0}, x_{i1},...,x_{id})$ $(x_{i0}, x_{i1},...,x_{id})$ $(x_{i0}, x_{i1},...,x_{id})$. Table 1 presents the orbits and the corresponding number of different permutations for $d = 3, 4, 5, 6$. Here, for example, the orbit S_{331} at $d = 6$ contains BC $(\alpha, \alpha, \alpha, \beta, \beta, \beta, \gamma), \alpha \neq \beta \neq \gamma, \alpha \neq \gamma, 3\alpha + 3\beta + \gamma = 1$ and their different 140 permutations.

Substituting a monomial of the order not exceeding p in Eq. [\(19\)](#page-10-0) instead of $V(x)$, we arrive at a system of nonlinear algebraic equations, that using the Vieta theorem reduces to the form:

$$
\int_{\Delta} dx s_2^{l_2} s_3^{l_3} \times \ldots \times s_{d+1}^{l_{d+1}} = \frac{1}{d!} \sum_{j=1}^a w_j Q_j s_{j2}^{l_2} s_{j3}^{l_3} \times \ldots \times s_{jd+1}^{l_{d+1}},\tag{20}
$$

$$
2l_2 + 3l_3 + \ldots + (d+1)l_{d+1} \le p,\tag{21}
$$

where

$$
s_2 = \sum_{i=0,j\neq i}^{d} x_i x_j, \quad \dots, \quad s_{d+1} = \prod_{i=0}^{d} x_i,
$$
 (22)

 s_{ii} , $i = 2, \ldots, d+1$, are their values in the BC $(x_{i0}, x_{i1}, \ldots, x_{id})$, and Q_i is the number of different permutation of the BC. As in Ref. [\[15](#page-16-7)], instead of Eq. [\(22\)](#page-10-1), we can use

$$
s_j = \sum_{i=0}^d x_i^j, \quad j = 2, \dots, d+1.
$$
 (23)

The number of all $l_i \geq 0$ solutions of Eq. [\(21\)](#page-10-2) provides the minimal number of independent nonlinear equations for the quadrature formula of the order p. It means that we can obtain a set of independent polynomials by adding new polynomials when increasing the order p . Below the first few independent polynomials of the order not exceeding $p \leq 6$ for $d \geq 5$ are presented:

$$
V_1(x) = s_1, \tfor p = 1,\nV_2(x) = s_2, \tfor p = 2,\nV_3(x) = s_3, \tfor p = 3,\nV_4(x) = s_22, V_5(x) = s_4, \tfor p = 4,\nV_6(x) = s_2s_3, V_7(x) = s_5, \tfor p = 5,\nV_8(x) = s_23, V_9(x) = s_32, V_{10}(x) = s_2s_4, V_{11}(x) = s_6, \tfor p = 6.
$$
\n(24)

We consider fully symmetric rules with positive weights, and no points are outside the simplex (the so-called PI-type).

The n_p -points p-order quadrature rules are constructed with Algorithm 1 [\[21](#page-16-5)] implemented by us in Maple and Fortran:

– **for** each decomposition n_p **do**

repeat

- **1.** Randomly choose an initial guess for the unknowns n_t .
- **2.** Find a least square solution to Eqs. [\(20\)](#page-10-2), [\(21\)](#page-10-2) using a quasi-Newton algorithm.
- **3.** If a PI-type solution is found satisfying Eqs. [\(20\)](#page-10-2), [\(21\)](#page-10-2), with sufficient accuracy, go to Step 4.
- **until** maximum number of initial guesses tried.
- **end for**
- **Stop.**
- 4. Minimize the nonlinear equation for unknowns n_t using the Levenberg– Marquardt algorithm with high accuracy [\[12](#page-16-8),[14\]](#page-16-9).

The Levenberg–Marquardt Algorithm 2:

Let $f(\mathbf{x})$ be twice differentiable with respect to the variable $\mathbf{x} = (x_1, \ldots, x_n)$. We consider the minimization

$$
\min_{\mathbf{x} \in R^n} f(\mathbf{x}).\tag{25}
$$

1. Start with an initial value \mathbf{x}_0 , in S, an initial damping parameter λ_0 , and a scaling parameter ρ . For $k \geq 0$ do the following:

2. Determine a trial iterate **y**, using

$$
\mathbf{y} = \mathbf{x}_k - (H_f(\mathbf{x}_k) + \lambda \operatorname{diag}(H_f(\mathbf{x}_k)))^{-1} \nabla f(\mathbf{x}_k),
$$
 (26)

with $\lambda = \lambda_k \rho^{-1}$.

- 3. If $f(\mathbf{y}) < f(\mathbf{x}_k)$, where **y** is determined in Step 2, then set $\mathbf{x}_{k+1} = \mathbf{y}$ and $\lambda_{k+1} = \lambda_k \rho^{-1}$. Return to Step 2, replace k with $k+1$, and compute a new trial iterate.
- 4. If $f(\mathbf{y}) \geq f(\mathbf{x}_k)$ in Step 3, determine a new trial iterate, **y**, using [\(26\)](#page-12-1) with $\lambda = \lambda_k$.
- 5. If $f(\mathbf{y}) < f(\mathbf{x}_k)$, where **y** is determined in Step 4, then set $\mathbf{x}_{k+1} = \mathbf{y}$ and $\lambda_{k+1} = \lambda_k$. Return to Step 2, replace k with $k+1$, and compute a new trial iterate.
- 6. If $f(\mathbf{y}) \ge f(\mathbf{x}_k)$ in Step 5, then determine the smallest value of m so that when a trial iterate **y** is computed using [\(26\)](#page-12-1) with $\lambda = \lambda_k \rho^m$, then $f(\mathbf{y}) < f(\mathbf{x}_k)$. Set $\mathbf{x}_{k+1} = \mathbf{y}$ and $\lambda_{k+1} = \lambda_k \rho^m$. Return to Step 2, replace k with $k+1$, and compute a new trial iterate.
- 7. Terminate the algorithm when $\|\nabla f(\mathbf{x}_k)\| < \epsilon$, where ϵ is the specified tolerance.

In the above Algorithm 2, $\nabla f(\mathbf{x})$, $H_f(\mathbf{x})$ are the gradient vector and the Hessian matrix functions of $f(\mathbf{x})$, respectively. diag($H_f(\mathbf{x})$) is the diagonal matrix of the Hessian matrix function $H_f(\mathbf{x})$.

The weights (W) and the BC of PI-type rules of order p are presented in Tables [2,](#page-5-0) [3,](#page-6-0) [4](#page-7-0) and [5.](#page-8-0) Here, for example, for the orbit S_{421} at $d = 6$ contains the BC $(\alpha, \alpha, \alpha, \beta, \beta, \gamma)$, $\alpha \neq \beta \neq \gamma$, $\alpha \neq \gamma$ and their different 105 permutations. We present α in the first line and β in the second line, since γ is expressed in terms of α , β , i.e., $\gamma = 1 - 4\alpha - 2\beta$. The rules of the fifth and sixth order on tetrahedra coincide with the results of Ref. [\[2](#page-15-3)]. We believe that at least some of the rules presented in this paper are new. But we can not guarantee that the presented numbers of points of high-order quadrature rules are minimal. Note that up to the order $p = 6$ W and BC were calculated using Maple with 32 significant digits. For $p > 6$, W and BC were calculated using Fortran with 10 significant digits (the first three steps of Algorithm 1). These calculations were performed using the Central Information and Computer Complex, and HybriLIT heterogeneous computing cluster at JINR. Starting from the approximate values found with the Fortran code, W and BC were then calculated in Maple with 32 significant digits.

5 BVP for Helmholtz Equation in a *d***-dimensional Hypercube**

For benchmark calculations, we use the BVP for the Helmholtz equation (HEQ) with the boundary condition (II) in a d-dimensional hypercube with the edge length π . Since the variables are separated, the eigenvalues $E_m = E_{m_1,...,m_d}$ are sums of squared integers, $E_m = E_{m_1,...,m_d} = m_1^2 + ... + m_d^2$, $m_k = 0, 1, ...,$ $k=1,\ldots,d.$

Fig. 1. (a) Division of a 3D cube into $3! = 6$ equal tetrahedrons $(T1, \ldots, T6)$. (b) The error $\Delta\Phi_8(z_1, z_2, z_3) = |\Phi_8^h(z_1, z_2, z_3) - \Phi_8(z_1, z_2, z_3)|$ for the eighth eigenfunction $\Phi_8^h(z_1, z_2, z_3)$ at fixed $z_3 = \pi/9$, calculated using FEM with third-order LIPs versus the exact eigenfunction $\Phi_8(z_1, z_2, z_3)$ corresponding to the eigenvalue $E_8 = 3$. Here the cube is divided into $2³$ cubes, each comprised of 6 tetrahedrons. The isolines marked 1 correspond to the values of $\Delta\Phi_8(z_1, z_2, z_3) = \Delta\Phi_8^{\text{max}}/10$, the isolines marked 2 correspond to the values of $\Delta\Phi_8(z_1, z_2, z_3) = 2\Delta\Phi_8^{\text{max}}/10, \dots$, at $\Delta\Phi_8^{\text{max}} \approx 0.018$.

Assertion (see also [\[16\]](#page-16-10))**.** The hypercube is divided into d! equal simplices. The vertices of each simplex are located on broken lines composed of d mutually perpendicular edges, and the extreme vertices of all polygons are located on one of the diagonals of the hypercube (for $d = 3$ see Fig. [1a](#page-13-0)).

Algorithm 3.

Input. A single d-dimensional hypercube with vertices the coordinates of which are either 0 or 1 in the Euclidean space \mathcal{R}^d . The chosen diagonal of the hypercube connects the vertices with the coordinates $(0,\ldots,0)$ and $(1,\ldots,1)$.

Output. $z_k^{(i)} = (z_{k1}^{(i)}, \ldots, z_{kd}^{(i)})$, the coordinates of the *i*th simplex.

Local. The coordinates of the vertices of the polygonal line are $z_k = (z_{k1}, \ldots, z_{k1})$ z_{kd} , $k = 0, \ldots, d$.

1. For all $i = (i_1, \ldots, i_d)$, the permutations of the numbers $(1, \ldots, d)$:

1.1. For all $k = 0, ..., d$ and $s = 1, ..., d$: $z_{k,s}^{(i)} = \{1, i_s \leq k, ; 0, i_s > k\}$ **1.2.** If det $(z_{ks}^{(i)})_{ks=1}^d = -1$ then $z_{kd}^{(i)} \leftrightarrow z_{kd-1}^{(i)}$.

3D HEQ for the cube. In Fig. [1b](#page-13-0), we show the error $\Delta \Phi_8(z_1, z_2, z_3)$ for the eighth eigenfunction $\Phi_8^h(z_1, z_2, z_3)$ at fixed $z_3 = \pi/9$, calculated using FEM with third-order LIPs versus the exact eigenfunction $\Phi_8(z_1, z_2, z_3)$ corresponding to the eigenvalue $E_8 = 3$. In Fig. [2a](#page-14-0), we also show the maximal error $\Delta \Phi_8^{\text{max}}$ for the exact eighth eigenfunction $\Phi_8(z_1, z_2, z_3)$ calculated using FEM with LIPs of the orders $p = 3, 4, 5$ versus the number N of piecewise basis functions $N_l^p(z)$ in the expansion [\(8\)](#page-3-1). In Fig. [2b](#page-14-0), we show the error of eigenvalues of the 3D BVP for the HEQ at $d = 3$ with the boundary condition (II) using the FEM scheme with 3D LIP of the order $p = 6$. As seen from Fig. [2,](#page-14-0) the errors of the eigenfunctions and eigenvalues lie on parallel lines in the double logarithmic scale

Fig. 2. (a) The maximal error $\Delta \Phi_8^{\text{max}} = \max_{z_1} \in (0, \pi), z_2 \in (0, \pi), z_3 \in (0, \pi)$ $\Phi_8^h(z_1, z_2, z_3) - \Phi_8(z_1, z_2, z_3)$ for the exact eighth eigenfunction $\Phi_8(z_1, z_2, z_3)$ calculated using FEM with LIPs of the orders $p = 3, 4, 5$ versus the number N of piecewise basis functions $N_l^p(z)$ in the expansion [\(8\)](#page-3-1). (b) The error $\Delta E_m = E_m^h - E_m$ calculated using FEM with sixth-order LIPs versus the exact eigenvalue E*m*. Squares: the cube divided into 6 tetrahedrons. Circles: the cube divided into 2^3 cubes, each comprised of 6 tetrahedrons. Solid circles: the cube divided into $4³$ cubes, each comprised of 6 tetrahedrons.

which agrees with the theoretical error estimates [\(15\)](#page-9-3) for the eigenfunctions and eigenvalues depending on the maximal size of the finite element. For a cube with the edge π divided into 4^3 cubes, each of them comprising 6 tetrahedrons, the matrices **A** and **B** had the dimension 15625×15625 . The matrices **A** and **B** were calculated in two ways: analytically or with Gaussian quadratures from Sect. [4](#page-9-0) using Maple 2015, 2x 8-core Xeon E5-2667 v2 3.3 GHz, 512 GB RAM, GPU Tesla 2075. For the considered task, the values of matrix elements agree with Gaussian quadratures up to the order 10 with given accuracy. The generalized algebraic eigenvalue problem [\(9\)](#page-4-1) was solved during 20 min using Intel Fortran.

6D HEQ for the hypercube. We solved HEQ at $d = 6$ with the boundary condition (II) using FEM scheme with 6D LIP of the order $p = 3$. The 6D hypercube having the edge π was divided into $n = d! = 6! = 720$ simplexes

(the size of the finite element being equal to π). On each of them $N_1(p)$ = $(p+d)!/(d!p!) = 84$ third-order LIPs were used. The matrices **A** and **B** had the dimension 4096×4096 . The lower part of the spectrum E_m is shown in Table [6.](#page-14-1) The errors of the second, the third, and the fourth degenerate eigenvalue are equal to 0.0003, 0.05, and 0.15, respectively. Note that applying the third-order scheme for solving the BVPs of smaller dimension d , we obtained errors of the same order. The calculation time was 9234.46 s using Maple 2015.

6 Conclusion

We have elaborated new calculation schemes, algorithms, and programs for solving the multidimensional elliptic BVP using the high-accuracy FEM with simplex elements. The elaborated symbolic-numerical algorithms and programs implemented in Maple-Fortran environment calculate multivariate finite elements in the simplex and the fully symmetric PI Gaussian quadrature rules. We demonstrated the efficiency of the proposed finite element schemes, algorithms, and codes by benchmark calculations of BVPs for Helmholtz equation of cube and hypercube. The developed approach is aimed at calculations of the spectral characteristics of nuclei models and electromagnetic transitions [\[7,](#page-15-1)[11\]](#page-16-11). This will be done in our next publications.

Acknowledgment. The work was partially supported by the RFBR (grant No. 16- 01-00080 and 18-51-18005), the MES RK (Grant No. 0333/GF4), the Bogoliubov-Infeld program, the Hulubei–Meshcheryakov program, the RUDN University Program 5-100 and grant of Plenipotentiary of the Republic of Kazakhstan in JINR. The authors are grateful to prof. R. Enkhbat for useful discussions.

References

- 1. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover, New York (1965)
- 2. Akishin, P.G., Zhidkov, E.P.: Some symmetrical numerical integration formuas for simplexes. Communications of the JINR 11–81-395, Dubna (1981). (in Russian)
- 3. Bathe, K.J.: Finite Element Procedures in Engineering Analysis. Prentice Hall, Englewood Cliffs (1982)
- 4. Bériot, H., Prinn, A., Gabard, G.: Efficient implementation of high-order finite elements for Helmholtz problems. Int. J. Numer. Meth. Eng. **106**, 213–240 (2016)
- 5. Ciarlet, P.: The Finite Element Method for Elliptic Problems. North-Holland Publishing Company, Amsterdam (1978)
- 6. Cui, T., Leng, W., Lin, D., Ma, S., Zhang, L.: High order mass-lumping finite elements on simplexes. Numer. Math. Theor. Meth. Appl. **10**(2), 331–350 (2017)
- 7. Dobrowolski, A., Mazurek, K., Góźdź, A.: Consistent quadrupole-octupole collective model. Phys. Rev. C **94**, 054322-1–054322-20 (2017)
- 8. Dunavant, D.A.: High degree efficient symmetrical Gaussian quadrature rules for the triangle. Int. J. Numer. Meth. Eng. **21**, 1129–1148 (1985)
- 9. Gusev, A.A., et al.: Symbolic-numerical algorithm for generating interpolation multivariate hermite polynomials of high-accuracy finite element method. In: Gerdt, V.P., Koepf, W., Seiler, W.M., Vorozhtsov, E.V. (eds.) CASC 2017. LNCS, vol. 10490, pp. 134–150. Springer, Cham (2017). [https://doi.org/10.1007/978-3-319-](https://doi.org/10.1007/978-3-319-66320-3_11) [66320-3](https://doi.org/10.1007/978-3-319-66320-3_11) 11
- 10. Gusev, A.A., et al.: Symbolic-numerical algorithms for solving the parametric self-adjoint 2D elliptic boundary-value problem using high-accuracy finite element method. In: Gerdt, V.P., Koepf, W., Seiler, W.M., Vorozhtsov, E.V. (eds.) CASC 2017. LNCS, vol. 10490, pp. 151–166. Springer, Cham (2017). [https://doi.org/10.](https://doi.org/10.1007/978-3-319-66320-3_12) [1007/978-3-319-66320-3](https://doi.org/10.1007/978-3-319-66320-3_12) 12
- 11. Gusev, A.A., et al.: Symbolic algorithm for generating irreducible rotationalvibrational bases of point groups. In: Gerdt, V.P., Koepf, W., Seiler, W.M., Vorozhtsov, E.V. (eds.) CASC 2016. LNCS, vol. 9890, pp. 228–242. Springer, Cham (2016). [https://doi.org/10.1007/978-3-319-45641-6](https://doi.org/10.1007/978-3-319-45641-6_15) 15
- 12. Levenberg, K.: A method for the solution of certain non-linear problems in least squares. Q. Appl. Math. **2**, 164–168 (1944)
- 13. <www.maplesoft.com>
- 14. Marquardt, D.: An algorithm for least squares estimation of parameters. J. Soc. Ind. Appl. Math. **11**, 431–441 (1963)
- 15. Maeztu, J.I., Sainz de la Maza, E.: Consistent structures of invariant quadrature rules for the n-simplex. Math. Comput. **64**, 1171–1192 (1995)
- 16. Mead, D.G.: Dissection of the hypercube into simplexes. Proc. Am. Math. Soc. **76**, 302–304 (1979)
- 17. Mysovskikh, I.P.: Interpolation Cubature Formulas. Nauka, Moscow (1981). (in Russian)
- 18. Papanicolopulos, S.-A.: Analytical computation of moderate-degree fullysymmetric quadrature rules on the triangle. [arXiv:1111.3827v1](http://arxiv.org/abs/1111.3827v1) [math.NA] (2011)
- 19. Sainz de la Maza, E.: Fórmulas de cuadratura invariantes de grado 8 para el simplex 4-dimensional. Revista internacional de métodos numéricos para cálculo y diseño en ingeniería **15**(3), 375–379 (1999)
- 20. Strang, G., Fix, G.J.: An Analysis of the Finite Element Method. Prentice-Hall, Englewood Cliffs (1973)
- 21. Zhang, L., Cui, T.: Liu. H.: A set of symmetric quadrature rules on triangles and tetrahedra. J. Comput. Math. **27**, 89–96 (2009)