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ABSTRACT

We present new calculation schemes using high-order finite element method implemented on unstructured grids
with triangle elements for solving boundary-value problems that describe axially symmetric quantum dots. The
efficiency of the algorithms and software is demonstrated by benchmark calculations of the energy spectrum, the
envelope eigenfunctions of electron, hole and exciton states, and the direct interband light absorption in conical
and spheroidal impenetrable quantum dots.
Key words: conical and spheroidal quantum dots, energy spectra, light absorption, finite element method

1. INTRODUCTION

The study of spectral and optical characteristics of quantum dots (QDs) with complicated geometry is an
actual problem of both computational and theoretical physics. To solve the boundary-value problems (BPVs)
that describe the models of QDs, they commonly use finite-difference and variational methods,1 finite element
method (FEM),2 Kantorovich and adiabatic methods.3,4

In this paper, we consider new high-order FEM calculation schemes5,6 implemented on unstructured grids
with triangle elements for solving the BVPs that describe axially symmetric QDs, in comparison with Kantorovich
method (KM) and adiabatic approach (AA). We discuss the application of these methods and the appropriate
software to the calculation of the energy spectra of electron, hole and exciton states in axially symmetric QDs,
the direct interband light absorption and the light absorption coefficient (AC) in ensembles of non-interacting
QDs by the example of conical and spheroidal impenetrable QDs.

2. SETTING THE PROBLEM

Within the effective mass approximation we consider a class of QD models in which the calculation of energy levels
and the corresponding envelope eigenfunctions is reduced to self-adjoint BVPs for elliptic differential equations7

(D − E) Ψ(z) ≡

− 1

g0(z)

d∑
ij=1

∂

∂zi
gij(z)

∂

∂zj
+ V (z)− E

Ψ(z) = 0. (1)

We assume that g0(z) > 0, gji(z) = gij(z) and V (z) are real-valued functions, continuous together with their
generalized derivatives to a given order in the domain z ∈ Ω̄ = Ω ∪ ∂Ω with the piecewise continuous boundary
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Figure 1. Triangle grid in the form of a polygon with n = 52 edges for the unit sphere R1 = 1 (middle panel), the oblate
spheroid (a = 1, c = 0.5, left-hand panel), and the prolate one (a = 0.5, c = 1, right-hand panel), ρ2/a2 + z2/c2 = 1. The
coordinates z and ρ are the abscissa and the ordinate, respectively.

S = ∂Ω, which provides the existence of a nontrivial solutions obeying the mixed boundary conditions (BCs) of
the first (I) and/or the second kind (II), i.e., Dirichlet and/or Neumann conditions

(I)Ψ(z)|S = 0, (II)
∂Φ(z)

∂nD

∣∣∣
S

= 0,
∂Ψ(z)

∂nD
=

d∑
ij=1

(n̂, êi)gij(z)
∂Ψ(z)

∂zj
, (2)

where ∂Ψm(z)
∂nD

is the derivative along the conormal direction, n̂ is the outer normal to the boundary of the domain

S = ∂Ω, êi is the unit vector of z =
∑d
i=1 êizi, and (n̂, êi) is the scalar product in Rd. The eigenfunctions Φm(z)

from the Sobolev space Hs≥1
2 (Ω), Ψm(z) ∈ Hs≥1

2 (Ω), corresponding to the real eigenvalues of energy spectrum
E : E1 ≤ E2 ≤ ... ≤ Et ≤ ... satisfy the normalization and orthogonality conditions

〈Ψt(z)|Ψt′(z)〉 =

∫
Ω

dzg0(z)Ψt(z)Ψt′(z) = δtt′ , dz = dz1...dzd. (3)

We solve this problem using high-accuracy finite element schemes, implemented in the appropriate algorithms
and programs.5,6

3. NUMERICAL CALCULATIONS OF THE ENERGY SPECTRUM

After the separation of the angular variable ϕ, the axially symmetric BVP for the electron, hole, and exciton
eigenstates in an unpenetrable conical quantum dot (CQD) or spheroidal quantum dot (SQD) is reduced to the
BVP (1)–(3) with respect to the radial z1 = ρ and the axial z2 = z variables, where g0(z) = ρ, g11(z) = g22(z) =

ρ, g12(z) = 0, V (ρ, z) = m2

ρ2 + 2VC(ρ, z), and d = 2 with the mixed conditions at the boundary ∂Ω = ∂Ω1 ∪ ∂Ω2,

∂Ω1 = {(ρ, z)|z = 0, ρ = ρmax(z)}, ∂Ω2 = {(ρ, z)|ρ = 0} of the 2D domain Ω = {(ρ, z)|ρ ≥ 0, z ≥ 0, ρ ≤ ρmax(z)}

Ψ(ρ, z)|∂Ω2 = 0, lim
ρ→0

(
ρ

Ψ(ρ, z)

∂ρ
δm0 + Ψ(ρ, z)(1− δm0)

)∣∣∣∣ ∂Ω1 = 0.

Below we restrict ourselves to the case m = 0. For CDQ ρmax(z) = R(1− z/H), where R is the base radius and
H is the height, while for SDQ, ρ2/a2 + z2/c2 = 1, ρ2 = x2/a2 + y2/a2 where a and c are the spheroid semiaxes,
and ρmax(z) = a

√
1− z2/c2. Figure 1 presents a triangle finite element grid covering the domain Ω for SDQ.

For oblate and prolate SDQs the BVP (1)– (3) was also solved in the spheroidal coordinates (z1 = ξ, z2 = η),
g0 = (f/2)2(ξ2 ± η2), g11 = (ξ2 ± 1), g22 = (1 − η2) (f/2)2 = ±(a2 − c2), f is a focal distance, and using the
Kantorovich method with 60 basis functions. The comparison of results obtained for eigenvalues of oblate SDQ
in the cylindrical coordinates on different FEM grids (see Figure 1), in the spheroidal coordinates, and using
the (KM) is resented in Table 1∗. As seen from Table 1, the results coincide to five significant digits, and the
maximal contribution to the error in cylindrical coordinates is due to the error of approximating the curved
boundary by triangle finite elements with rectilinear boundaries.

∗For electron(e) and hole(h) states 2VC(ρ, z) = 0, and for exciton states 2VC(ρ, z) = −2/
√
ρ2 + z2, 2VC(ρ, z) =

ṼC(ρ̃, z̃)/ER, ṼC(ρ̃, z̃) = −2e/(κ
√
ρ̃2 + z̃2), where e and me are the electron charge and mass, κ is the static permittivity.

For GaAs model we use the reduced atomic units, m∗
e = 0.067me, m

∗
h = m∗

e/0.12, κ = 13.18, aB = 104Å, ER = 5.275 meV,

i.e., E = 2E = Ẽ/ER, Ψ(ρ, z) = a
3/2
B Ψ̃e(ρ̃, z̃), ρ = ρ̃/aB , z = z̃/aB , where Ẽ, ṼC(ρ̃, z̃), ρ̃ and z̃ are dimensioned quantities.
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Table 1. The first three eigenvalues, Et(nb, lmin) in the units of ER, for the oblate SQD a = 2.5, c = 0.5 obtained on the
different FEM grid with the maximal element size lmin. The number nb determines the length of the polygonal boundary
approximating the boundary of SQD. KM - Kantorovich method with 60 basis functions from.3 SPH - FEM in spheroidal
coordinates on non-uniform grid in the rectangular domain 0 < ξ0 < c/

√
a2 − c2 = 1/2

√
6, 0 ≤ η ≤ 1.

lmin 0.0625 0.125 0.03125 0.0625 KM SPH
nb 0.03125 0.03125 0.015625 0.015625
1 12.76518 12.76516 12.76490 12.76490 12.764809 12.77105
2 20.04147 20.04143 20.04086 20.04085 20.040651 20.04933
3 29.74910 29.74902 29.74780 29.74779 29.747387 29.75713

4. ADIABATIC APPROXIMATION

For classification and approximate calculation of the spectrum under the size quantization conditions for electron
(e) hole (h) states the AA is used, Ψ(xf , xs) = Φ(xf ;xs)χ(xs). For prolate SQD a/c� 1 and CQD with small
apex angle R/H � 1, the parametric spectrum and eigenfunctions Φ(ρ; z) at xf = ρ, xs = z of the “fast”
subsystem at each value of parameter z are expressed in terms of the cylindrical Bessel function of the first
kind3,4

2Enρpm(z) =
α2
nρp+1,|m|

ρmax(z)2
, Φnρpm(ρ; z) =

√
2J|m|(ρ

√
2Ei(z))

ρmax(z)J|m+1|(αnρp+1,|m|)
,

where αnρp+1,|m| is the np = nρp+1-th positive zero of the Bessel function8 J|m|(ρmax(z)), np = nρp+1 = 1, 2, ....
The spectrum and eigenfunctions χ(z) of the“slow” subsystem are solutions of the BVP

(− ∂2

∂z2
+ 2Enρp(z)− 2Enρpnzp)χnzpnρp(z) = 0,

∫
Ω

dzχnzpnρp(z)χn′
zpnρp

(z) = δnzpn′
zp

(4)

with the BCs χnzpnp(0)=χnzpnp(H)=0 or χnzpnp(−c)=χnzpnp(c)=0. Considering (4) in the linear or quadratic
approximation for the prolate CQD or SQD leads to the spectrum and eigenfunctions in the analytical form 3,4

ECQD(tnpnzpm)=2E(0)
npm + 2εnzp=

2α2
np,|m|

R2
−

(
2α2

np,|m|

R2H

)2/3

βnzp+1, EPSQD(tnpnzpm)=
α2
np,|m|

a2
+
α2
np,|m|

ac
(2nzp + 1),

where βnzp+1 is the i-th negative zero of the Airy function of the first kind.8 For oblate SQD c/a�1 and CQD
H/R� 1, using the AA at xf = z, xs = ρ, one has the spectrum and eigenfunctions classified by set [nzo, nρo].

Table 2 presents the comparison of the energy of Coulomb interaction of exciton Eeht = ECt m∗h/(m∗e+m∗h)−ESQt
with the size quantization electron energy ESQt at different geometric parameters of a CQD, where exciton energy
ECt with the electron-hole reduced mass meh = m∗em

∗
h/(m

∗
e + m∗h) in the exciton center-of-mass frame and size

quantization electron energy ESQt with the electron mass m∗e were obtained by solving the BVP(1)–(3) with
Coulomb potential 2VC(ρ, z) and without it, correspondingly. From Table 2 the correction energy Eeht is always
seen to be negative, and with the increasing radius R the relative contribution of Coulomb energy of exciton
becomes significant. The comparison with ESQ(tnpnzpm) and Eeh(tnpnzpm) calculated using the AA and the first-order

perturbation theory4 show the contribution of nonadiabatic corrections and the applicability of the AA.

Figures 2 a and 2 b for CQD and SQD show the dependence of the charge carrier energies upon the base radius
of fixed-height CQDs and upon the apex angle of fixed-volume CQDs, respectively. Note that each eigenlevel
of the “fast” subsystem has a family of “slow” subsystem eigenlevels positioned thereupon. For example, for
CQD with R̃ = 0.5aB , H̃ = 10aB , the first level ((t, nρ, nz) = (1, 0, 0), ẼSQ1 /ER = 30.42114) and the eighteenth

((t, nρ, nz) = (18, 1, 0), ẼSQ18 /ER = 142.96526 ) one belong to the “fast” subsystem levels. For R̃ = 1.5aB the
first level and the seventh one belong to the “fast” subsystem, while five levels between them belong to the
“slow” subsystem, etc. The carrier energy is seen to decrease with the increasing base radius R̃ or small semiaxis
ã, because the size quantization contribution to the energy decreases. The crossing of the seventh level with the
eighth one at R̃ ≈ 1.5aB in Fig.2a corresponds to the crossing of the same levels at θ0 ≈ arctan(3/20) in Fig.3a.
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Figure 2. Size quantization energy levels Et = 2Et = ẼSQi /ER at m = 0: a) for prolate CQDs of similar height H = 10aB
versus base radius RaB , and b) prolate SQDs with similar major semiaxes c = 2.5aB versus minor semiaxis aaB . Here
the solid curves are the low adiabatic estimations of eigenvalues [nρp, nzp = 0] of the ” fast” subsystem.

a b
Figure 3. The energy levels Et = 2Et = ẼSQt /ER at m = 0: a) for prolate and oblate CQDs of equal volume V =
πR2H/3 = (15/2)πa3B at the base of H = 10 and R = 1.5 versus the stretch angle θ0 = arctan(H/R) at the base of
θ0 ≈ 8.53o, and b) for prolate and oblate SQDs of equal volume V = 4πa2c/3 = (125/6)πa3B at the base of a = c = 2.5
versus θ0 = arctan(a/c) at the base of θ0 = 45o.

Figures 3 a and 3 b for CQD and prolate SDQ show that the faster growth of energy at small apex angles
θ0 is caused by the size quantization in radial variable ρ and angular variable ϕ. The slower increase of energy
at the apex angles approaching the right angle, is caused by the size quantization in longitudinal variable z, i.e.,
the height. The difference in the rate of energy level variation in the adiabatic domains of variation of geometric
parameters is due to the nonuniform scale, since the radius varies as (tan θ0)2/3 and the height as (cot θ0)1/3. It
is also seen that for the angle values beyond the adiabatic domains there are series of quasicrossings and exact
crossings of energy levels for CQD and SQD, respectively, and its transformation to the oblate QDs.

5. INTERBAND ABSORPTION

Consider the direct interband absorption in conical quantum dots in the regime of strong size quantization, when
the Coulomb interaction between an electron and a hole can be neglected. Furthermore, consider the case of a
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Table 2. Comparison of the Coulomb interaction energy Eeht and the size quantization energy ESQt in the units of ER.
Here H = 10aB , m = 0. The values of ESQ(tnpnzpm) (adiabatic calculation) and Eeh(tnpnzpm) (first-order perturbation theory)

adopted from Ref.4 are labeled by an asterisk.

R (aB) (t, nρ, nz) = (1, 0, 0) (t, nρ, nz) = (18, 1, 0) (t, nρ, nz) = (2, 0, 1)

ESQt Eeht ESQt Eeht ESQt Eeht
0.5 30.42114 –2.64009 142.96526 –4.19801 36.95117 –1.88114
0.5 26.624* –1.121* 141.542* –1.113* 34.483* –0.95*
1.0 8.88906 –1.71413 39.22966 –2.27799 11.93808 –1.25028
1.0 8.359* –0.902* 36.272* –1.021* 10.287* –0.608*
1.5 4.49383 –1.33844 18.79476 –1.66173 6.51718 –0.99660
1.5 4.071* –0.781* 18.085* –0.762* 5.193* –0.503*

heavy hole with m∗e � m∗h, where m∗e and m∗h are the electron and hole effective mass, respectively. Then the
absorption coefficient is given by9

K̃(ω̃ph) =
∑
νν′

K̃νν′(ω̃ph) = K̃0

∑
νν′

∣∣∣∣∫ Ψ̃e
νΨ̃h

ν′d~r

∣∣∣∣2 δ(~ω̃ph − Ẽg − Ẽeν − Ẽhν′), (5)

where Ψ̃
e(h)
ν(ν′) are envelopes of the electron and hole wave functions, ν = [nρpnzpm] and ν′ = [n′ρpn

′
zpm

′]

(ν = [nzonρom] and ν′ = [n′zon
′
ρom

′]) are sets of quantum numbers corresponding to the electron and the

heavy hole prolate(oblate) SQD or CQD, respectively, Ẽg is the band gap of the bulk semiconductor (for GaAs

Ẽg/ER = 1.43/(5.27 · 10−3)), ω̃ph is the frequency of the incident light, and K̃0 is proportional to the square
of the transition matrix element calculated with Bloch functions.9 Here the following selection rules for the
transitions between the levels with different quantum numbers are valid in the adiabatic classification. In the
case of the prolate(oblate) SQD and CQD for the magnetic quantum number the transitions between the levels
with m = −m′ are allowed. For the prolate(oblate) SQD the transitions between the levels with nρp = n′ρp
and nzp = n′zp ( nzo = n′zo and nρo = n′ρo), respectively, are allowed. For the prolate(oblate)CQD transitions
between the levels with nρp = n′ρp (nzp = n′zp) are allowed, however there is no selection rule for the axial(radial)
quantum numbers nzp (nρo) and any transitions between different levels are allowed: nzp → ∀n′zp (nρo → ∀nρo)
respectively, like for prolate (oblate) SQD in uniform electric field3.

The difference between the energy levels for CQD of the same family is increased with the increase of the
axial quantum number. For example, ∆Ẽ10 = 1.12ER, when R̃ = 1.5aB and H̃ = 10aB (nρp = 0, m = 0), and

∆Ẽ10 = 3.4ER, when R̃ = 1.5aB and H̃ = 10aB (nρp = 1, m = 0). Note that the transition frequency between

these energy levels is ∆ω̃ph10 (nρp = 0,m = 0) = 1.43 ·1012sec−1 and ∆ω̃ph10 (nρp = 1,m = 0) = 4.3 ·1012sec−1, which
falls into the IR range of spectrum. second In CQD the decrease of the base radius increases the absorption
edge energy. It is due to the fact that with the decrease of R̃ the effective width of the bandgap increases due to
smaller influence of the CQD walls. The energy levels corresponding to high values of the cone height are located
above. Note that the interband transition frequency between the energy levels is ω̃ph000 = 5.07 · 10−14sec−1 for
R̃ = 0.2aB and H̃ = 15aB , which falls into the visible spectral range.4

For the Lifshits-Slezov distribution Fig. 4 displays the total absorption coefficient K̃(ω̃ph)/K̃0 and the partial
absorption coefficients K̃ν,ν(ω̃ph)/K̃0, that form the corresponding partial sum (5) over a fixed set of quantum
numbers ν, ν′ at m = −m′ = 0. In the regime of strong dimensional quantization the frequencies of the
interband transitions (h → e) in GaAS between the levels no = nzo + 1 = 1, nρo = 0,m = 0 for oblate SQD or
np = nρo + 1 = 1, nzp = 0,m = 0 for prolate SQD at the fixed values ã = 2.5ae and c̃ = 0.5ae for oblate SQD or

ã = 0.5ae and c̃ = 2.5ae for prolate SQD, are equal to ∆ω̃ph100/(2π) = 16.9THz or ∆ω̃ph100/(2π) = 33.3THz, where

∆ω̃ph100/(2π) = (2π~)−1(W̃100,100 − Ẽg), W̃ν,ν′ = Ẽg + Ẽeν + Ẽhν′ corresponds to the IR spectral region, taking the

band gap value (2π~)−1Ẽg = 346 THz into account.3

With the decreasing semiaxis the threshold energy increases, because the “effective” band gap width increases,
which is a consequence of the dimensional quantization enhancement. Therefore, the above frequency is greater
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Figure 4. Absorption coefficient K/K0, Eq. (5), consisting of a sum of the first partial contributions vs the energy
λ = λ1 = (ω̃ph− Ẽg)/Ẽg of the optical interband transitions for ensembles of GaAs SQDs (h→ e) with the Lifshits-Slezov
distribution of the random small semiaxis: a)for an ensemble of oblate SQDs c̄ = 0.5, a = 2.5 and b) prolate SQDs
ā = 0.5, c = 2.5.

for prolate QD than for oblate QD, because the QD implemented in two directions of the plane (x,y) is effectively
larger than that in the direction of the z axis solely at similar values of semiaxes. Higher-accuracy calculations
reveal essential difference in the frequency behavior of the AC for interband transitions in the systems of semi-
conductor oblate or prolate QDs having a distribution of minor semiaxes, which can be used to verify the above
models.

6. CONCLUSION

In this paper we demonstrate the efficient methods and software for calculating the electron, hole and exciton
states in axially symmetric QDs by the example of conical and spheroidal impenetrable QDs. Our analysis shows
that the calculation schemes of FEM of high order implemented on unstructured grids together with complemen-
tary KM and AA provide useful numerical and analytical tools for describing the energy spectra and the optical
absorption coefficient in an ensemble of non-interacting axially symmetric QDs. Further development and appli-
cation of such approach and software is associated with the investigation of spectral and optical characteristics
of quantum dots with complex geometry.

The work was partially supported by the Russian Foundation for Basic Research (grants Nos. 16-01-00080
and 17-51-44003 Mong a) and the RUDN University Program 5-100.
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