
On rotational-vibrational spectrum of diatomic beryllium
molecule

A.A. Guseva, O. Chuluunbaatara,b, S.I. Vinitskya,c, V.L. Derbovd, A. Góźdźe, P.M.
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ABSTRACT

The eigenvalue problem for second-order ordinary differential equation (SOODE) in a finite interval with the
boundary conditions of the first, second and third kind is formulated. A computational scheme of the finite
element method (FEM) is presented that allows the solution of the eigenvalue problem for a SOODE with the
known potential function using the programs ODPEVP and KANTBP 4M that implement FEM in the Fortran
and Maple, respectively. Numerical analysis of the solution using the KANTBP 4M program is performed
for the SOODE exactly solvable eigenvalue problem. The discrete energy eigenvalues and eigenfunctions are
analyzed for vibrational-rotational states of the diatomic beryllium molecule solving the eigenvalue problem
for the SOODE numerically with the table-valued potential function approximated by interpolation Lagrange
and Hermite polynomials and its asymptotic expansion for large values of the independent variable specified as
Fortran function. The efficacy of the programs is demonstrated by the calculations of twelve eigenenergies of
vibrational bound states with the required accuracy, in comparison with those known from literature, and the
vibrational-rotational spectrum of the diatomic beryllium molecule.

1. INTRODUCTION

The study of mathematical models, describing waveguide problems, spectral and optical properties of diatomic
molecular systems, reduces to the solution of a boundary-value problem (BVP) for an elliptic equation of the
Schrödinger type.1, 2 After the separation of angular variables, this equation reduces to a second order ordinary
differential equation (SOODE) with variable coefficients and the independent variable belonging to the semiaxis
r ∈ (0,+∞). In this equation the potential function is numerically tabulated on a non-uniform grid in a finite
interval of the independent variable values.3–5

To formulate the BVP on the semiaxis, the potential function should be continued beyond the finite interval
using the additional information about the interaction of atoms comprising the diatomic molecule at large
distances between them. The leading term of the potential function at large distances is given by the van der
Waals interaction, inversely proportional to the sixth power of the independent variable (internuclear distance)
with the constant, determined from theory and experimental data.6–8
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Therefore, it is necessary to make an appropriate approximation of the tabulated potential function and
to match the asymptotic expansion of the potential function with its tabulated numerical values (within the
accuracy of their calculation) at a suitable sufficiently large value of the independent variable.

The present paper is devoted to the development of technique for solving the above class of eigenvalue
problems with SOODE using the programs ODPEVP9 and KANTBP 4M10 implementing FEM11 in Fortran
and Maple, respectively. The technique is applied to the calculation of rotational-vibrational energy spectrum
of diatomic berillium molecule.

2. SETTING OF THE PROBLEM

The mathematical model describing the spectral and optical characteristics of molecular systems is formulated
as a BVP for the SOODE for the unknown function Φ(r) of the independent variable r ∈ Ω[rmin, rmax]:

(D − E) Φ(r) =

(
− 1

r2

d

dr
r2 d

dr
+ V (r)− E

)
Φ(r) = 0. (1)

Here V (r) is a real-valued function from the Sobolev spaceHs≥1
2 (Ω), providing the existence of nontrivial solutions

obeying the boundary conditions (BCs) of the first (I) (Dirichlet), second (II) (Neumann), or third (III) kind at
the boundary points of the interval r ∈ [rmin, rmax] with given R(zt):

(I) : Φ(rt) = 0, (II) : lim
r→rt

r2 dΦ(r)

dr
= 0, (III) : lim

r→rt
r2 dΦ(r)

dr
=R(rt)Φ(rt), t= min or max . (2)

The calculation of the approximate solution Φ(r)∈Hs≥1
2 (Ω̄) of the BVP (1)–(2) is executed by means of the

FEM using the symmetric quadratic functional11

Ξ(Φ, E, rmin, rmax) = Π(Φ, E)− Φ(rmax)R(rmax)Φ(rmax) + Φ(rmin)R(rmin)Φ(rmin), (3)

Π(Φ, E)=

∫ rmax

rmin

[
dΦ(r)

dr

dΦ(r)

dr
+ Φ(r)(V (r)−E)Φ(r)

]
r2dr. (4)

For the bound-state problem the set of M eigenvalues of the energy Em: E1 ≤ E2 ≤ . . . ≤ EM and the
corresponding set of eigenfunctions Φ(r) ≡ {Φm(r)}Mm=1 is calculated in the space H2

2 for the SOODE (1). The
functions obey the BCs of the first, second or third kind at the boundary points of the interval r ∈ [rmin, rmax]
and the orthonormalization condition

〈Φm|Φm′〉 =

∫ rmax

rmin

Φm(r)Φm′(r)r2dr = δmm′ . (5)

Thus, to solve the discrete spectrum problem on an axis or semiaxis, the initial problem is approximated by
the BVP in the finite interval r ∈ [rmin, rmax] with the BCs of the first, second, or third kind with the given
R(rt), dependent or independent of the unknown eigenvalue E, and the set of approximated eigenvalues and
eigenfunctions is calculated.

2.1. Reduction to an algebraic problem

Let us construct a discrete representation of the solution Φm(r) of the problem (1)–(2), reduced to the variational
functional (3) on the finite-element mesh

Ωphj(r)[r
min, rmax]=[r0=rmin, r1, ..., rnp−1, rnp=r

max]. (6)
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The solution Φhm(r) ≈ Φm(r) is sought in the form of expansion in basis functions Ng
µ(r) in the interval r ∈ ∆ =

∪nj=1∆j = [rmin, rmax]:

Φhm(r) =

L−1∑
µ=0

Φhm;µN
g
µ(r), Φhm(rl) = Φhm;l, (7)

where L = pn+ 1 is the number of the basis functions Ng
µ(r) and the desired coefficient Φhm;µ which at µ = l are

values of the function Φhm(r) at each node r = rl of the mesh Ωphj(r)[r
min, rmax]. The basis functions Ng

µ(r) are

piecewise continuous polynomials of the order p in the corresponding subinterval r ∈ ∆j = [rmin
j ≡ r(j−1)p, r

max
j ≡

rjp] constructed using the Lagrange interpolation polynomials (LIP) or Hermite ones.11

The substitution of the expansion (7) into the variational functional (3) reduces the BVP (1)–(2) to the
generalized algebraic problem for the set of the eigenvalues Em and the eigenvectors Φh

m = {Φhm;µ}L−1
µ=0 :

(A− EhmB)Φh
m = 0. (8)

Here A is the symmetric stiffness matrix and B is the the positive definite symmetric mass matrix, both having
the dimension L× L, where L = κmax(np+ 1).

Theoretical estimates of the difference between the exact solution Φm(z) ∈ H2
2 and the numerical one Φhm(r) ∈

H1 by the norm H0 evaluate the convergence of the eigenvalues and eigenfunctions of the order 2p and p+ 1,
respectively11:

|Ehm−Em| ≤ c1h2p,
∥∥Φhm(r)−Φm(r)

∥∥
0
≤c2hp+1, (9)

where h = max1<j<n hj is the maximal step hj = rj+1−rj of the mesh (6), c1 ≡ c1(Em) > 0 and c2 ≡ c2(Em) > 0
are independent of the step h, the norm H0 being defined as

∥∥Φhm(r)−Φm(r)
∥∥

0
=

(∫ rmax

rmin

r2dr(Φhm(r)−Φm(r))2

)1/2

. (10)

In the program KANTBP 4M the integration in each finite element is, generally, performed with the potential
V (r) approximated by the interpolation Hermite polynomials (IHPs) with the node multiplicities κmax, which
leads to the quadrature formula10, 11∫ rmax

j

rmin
j

r2drNL1
(r, rmin

j , rmax
j )V (r)NL2

(r, rmin
j , rmax

j ) =

p∑
r=0

κmax−1∑
κ=0

V (κ)(r(j−1)p+r)Vl1;l2;κmaxr+κ(rmin
j , rmax

j )),

where Vl1;l2;l3(rmin, rmax) are determined by the integrals with IHPs

Vl1;l2;l3(rmin
j , rmax

j ) =

∫ rmax
j

rmin
j

r2Nl1(r, rmin
j , rmax

j )Nl2(r, rmin
j , rmax

j )Nl3(r, rmin
j , rmax

j )dr.

The obtained expression is exact for polynomial potentials of the order smaller than p. Generally, this decom-
position leads to numerical eigenfunctions and eigenvalues with the accuracy of the order about p+ 1.

The estimation of the error is carried out using the maximal norm, i.e., the maximal absolute value of the
error of the eigenfunctions Φhm(r) and eigenvalues Ehm in the interval r ∈ Ωh(r):

σ1 = |Ehm − Em| ≤ c1(Em)hp+1, σ2 = max
r∈Ωh(r)

|Φhm(r)− Φm(r)| ≤ c2(Em)hp+1. (11)

In the program ODPEVP the integrals are calculated using the Gauss integration rule with 2p + 1 nodes and
the theoretical estimates (9) hold.

Since the eigenfunctions of the discrete spectrum exponentially decrease, Φasm (r) ∼ exp(−
√
−Emr)/r, at

r → +∞, the initial problem is reduced to a BVP for bound state in the finite interval with the Neumann
conditions at the boundary points rmin and rmax of the interval and the normalization condition (5).
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(a) (b)

Figure 1. (a) The potential V (r) (Å−2) of the beryllium diatomic molecule as a function of r (Å) obtained by interpolating
the tabulated values (points in the subintervals, the boundaries of which are marked by larger-size points) by means of
the fifth-order LIPs. (b) The MEMO potential function V (r) (points and line 13), the asymptotic expansion Vas(r) of the
MEMO function (line 2,6), the analytical forms of the potential function Van(r) (line 37 and line 48). The units for r and
V∗(r) are Å and cm−1, respectively.

2.2. Benchmark problem

The original bound state problem is formulated in the infinite interval r ∈ (0,+∞) for the Schrödinger equation

(1) with the potential function, inversely proportional to the square of hyperbolic cosine, V (r) = −λ(λ−1)
cosh(r)2 , where

λ > 1. The eingenvalues Eexactm and eigenfunctions Φexactm (r) = r−1χexactm (r) of this problem, normalized by the
condition (5) at rmin → 0 and rmax → +∞, are known in the analytical form. For the chosen λ = 11/2, the
BVP has two discrete spectrum solutions with the eigenvalues −Em = 49/4, 9/4.

The calculations were performed in the finite interval r ∈ [rmin, rmax] with the Neumann boundary conditions
(2) on the quasi-uniform mesh Ω = {0(2ng)1(2ng)5(ng)20}, where in parentheses the number of finite elements
between two nodes is indicated, the dimension L is expressed in terms of the number ng and the order of LIP p
as L = 5ngp+ 1.

3. BERYLLIUM DIATOMIC MOLECULE

In quantum chemical calculations, the effective potentials of interatomic interaction are presented in the form of
numerical tables calculated with limited accuracy and defined on a nonuniform mesh of nodes in a finite domain
of interatomic distance values. However, for a number of diatomic molecules the asymptotic expressions for the
effective potentials can be calculated analytically for sufficiently large distances between the atoms. The equation
for the diatomic molecules in a crude adiabatic approximation, commonly referred to as Born–Oppenheimer
approximation (BO), has the form(

− ~2

2mDaÅ
2

(
1

r2

d

dr
r2 d

dr

)
+ṼL(r̃)−ẼvL

)
Φ̃vL(r̃)=0, (12)

where ṼL(r̃) = Ṽ (r̃)+ ~2

2mDaÅ
2
L(L+1)
r2 , L is a quantum number of the total angular momentum, ~2/(2Da) =

1.685762920 · 10−7 Å, the reduced mass of beryllium is m=M/2=4.506, r̃=r Å, the effective potential is Ṽ (r̃) in
atomic units aue=0.002194746314 Å−1, the energy is ẼvL cm−1.

The BVP (1)–(2) was solved for the equation (12) where the variable r is specified in (Å), and the ef-

fective potential V (r) = (2mDaÅ
2
aue/~2)Ṽ (rÅ)=58664.99239 Ṽ (rÅ) Å−2, and the desired value of energy

EvL=(2mDaÅ
2
/~2)ẼvL in Å−2, ẼvL=(1/0.2672973729)EvL cm−1.
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Table 1. Eigenvalues of vibrational energy −EvL=0 (in cm−1) of beryllium diatomic molecule calculated using the
programs KANTBP 4M10 and ODPEVP9 implementing FEM (FEM), ab initio MEMO calculation,3 theoretical (EMO)
and experimental (Exp) results,4 symmetry-adapted perturbation theory (SAPT),5 and the Morse long-range (MLR)
function and Chebyshev polynomial expansion (CPE).8 De is the absolute energy at the dissociation limit in cm−1,
re is the equilibrium internuclear distance in Å. The 11-th χ10L(r) = rΦ10L(r) (solid curves) 12-th χ11L(r) = rΦ11L(r)
(dashed curves) eigenfunctions vs. r of the vibrational-rotational spectrum of beryllium diatomic molecule at L = 0, 1, 2:
Ev=10;L=0 = −4.41, Ev=10;L=1 = −4.21, Ev=10;L=2 = −3.82; Ev=11;L=0 = −0.325, Ev=11;L=1 = −0.245 and Ev=11;L=2 =
−0.096 (in cm−1).

v FEM MEMO EMO Exp SAPT MLR&CPE
re 2.4534 2.4534 2.4535 2.4536 2.443 2.445
De 929.804 929.74 929.74 929.7±2 938.7 934.8&935.0

0 806.07 806.48 806.5 807.4 812.4 808.1510
1 583.57 584.32 583.8 584.8 590.1 585.2340
2 408.73 408.88 408.7 410.3 414.8 410.7319
3 288.36 288.61 288.3 289.3 292.1 289.7314
4 211.18 211.42 211.1 212.6 214.5 213.0654
5 154.16 154.38 154.1 155.9 157.3 156.3536
6 107.15 107.34 107.1 108.6 109.8 109.1202
7 68.35 68.51 68.3 69.7 70.7 70.1719
8 37.80 37.92 37.7 39.2 40.0 39.6508
9 16.33 16.43 15.8 17.5 18.1 17.9772

10 4.41 4.40 3.1 4.8 5.3 5.3187
11 0.326 0.27 0.5 0.5175

In Ref.3 the potential V (r) (see Fig. 1) is given by the BO-PRC potential function marked as MEMO
tabular values {VM (ri)}76

i=1. So, in the interval r ∈ [r1 = 1.5, r46 = 9] the potential V (r) was approximated in
subintervals r ∈ [r5k−4, r5k+1], k = 1, ..., 9 by the fifth-order interpolation Lagrange polynomials of the variable
r. In the interval r ∈ [rmatch = 14,∞) the asymptotic behavior Vas(r)=58664.99239Ṽas(r) at large r is expressed
as6

Ṽas(r)=−
(

214(3)

Z6
+

10230(60)

Z8
+

504300

Z10

)
, (13)

where Z = r/0.52917. In the subinterval r ∈ [r46 = 9, rmatch = 14] we consider the approximation of the potential
V (r) by the fourth-order interpolation Hermite polynomial using the values of the potential V (r) at the points
r = {r46 = 9, r47 = 10, r48 = 11} and the values of the asymptotic potential Vas(r) and its derivative dVas(r)/dr
at the point r = rmatch = 14. This approximation is specified in Å−2 as REAL*8 FUNCTION VPOT(R) of the
variable R in (Å) (see Appendix).

For comparison, Fig. 1 plots the above potential function V (r), its asymptotic expansion Vas(r), and the
analytical potential functions Ṽan(r) in a.u. proposed in Ref.7:

Ṽan(r)=A exp(−bZ)+d exp(−eZ−fZ2)−
8∑

n=3

((
1− exp(−bZ)

2n∑
k=0

(bZ)k

k!

)
C(2n)

Z2n

)
,

where A = 21.7721, b = 1.2415, d = −4.3224, e = 0.5891, f = 0.0774, Z = r/0.52917, C(6) = 214,
C(8) = 10230, C(10) = 504300, C(2i) = (C(2i − 2)/C(2i − 4))3C(2i − 6), i = 6, 7, 8, and r is given in Å.
One can see that the MEMO potential function V (r) has a minimum −De(FEM)=V (re) = 929.804cm−1 at
the equilibrium point re = 2.4534 Å and displaces above the analytic potential function Van(r) in the vicinity
of this point, −De(Sheng)=Van(re)=−948.3cm−1 and the MLR&CPE potential functions8 −De(MLR)=934.8,
−De(CPE)=935.0 at re = 2.445, while the analytical potential function Van(r) is located above the MEMO and
MLR&CPE potential functions in the interval r ∈ (3.2, 6.1), i.e. to the left of the interval r ∈ (6.1,∞), where
the considered potentials tend to the dominated asymptotic potential Vas(r).
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In the calculation presented below, we used the asymptotic expansion Vas(r), Eq. (13) with which the
matching of the tabulated potential V (r) and the asymptotic potential Vas(r) was executed at r = rmatch = 14
using REAL*8 FUNCTION VPOT(R) of the variable R in (Å) (see Appendix). The BVP (1) was solved on the
finite element mesh Ω1 = {1.50 (ng) 2.00 (ng) 2.42 (ng) 2.50 (ng) 3.00 (ng) 3.50 (ng) 4.00 (ng) 5.00 (ng) 6.00
(ng) 9.00 (ng) 14.00 (ng) 19.00 (ng) 24.00 (ng) 29.00 (ng) 38.00 (ng) 48.00 (6ng) r

max =78.00} with Neumann
BCs. In each of the subintervals (except the last one) the potential V (r) was approximated by the LIP of the
fifth order, and ng = 4 finite elements were used. The last integrand was divided into 6ng finite elements and
the potential V (r) was replaced with its asymptotic expansion. In the solution of the BVP at all finite elements
of the mesh the local functions were represented by the fifth-order LIP.

Table 1 presents the results of using FEM programs KANTBP 4M and ODPEVP to calculate twelve energy
eigenvalues of beryllium diatomic molecule. Note, that our calculation was performed using the program that
implements the Numerov method on the mesh (0,100) for twelve levels with the mesh spacing 0.02 with Dirichlet
BCs for χvL(r) = rΦvL(r), which differs from the FEM results in Table 1 only in the last significant digit.
The table shows the eigenvalues calculated with ab initio modified (MEMO) expanded Morse oscillator (EMO)
potential function.3 In contrast to the original EMO function, which was used to describe the experimental
(Exp) vibrational levels,4 it has not only the correct dissociation energy, but also describes all twelve vibrational
energy levels with the RMS error smaller than 0.4 cm−1.

The table also shows the results of recent calculation using the Morse long-range (MLR) function and Cheby-
shev polynomial expansion (CPE) alongside with the EMO potential function.8 The main attention in the
optimization of the MLR and CPE functions was focused on their correct long-range behavior displayed in Fig.
1. However, there are some problems with the quality of the MLR and CPE potential curves.3 As a consequence,
one can see from the table, that the MLR and CPE results provide a lower estimate while FEM and MEMO
results give an upper estimate for the discrete spectrum of the diatomic beryllium molecule.

Figure 2. Potential functions VL(r) (in cm−1) vs r (in Å) at L = 0, ..., 36 and rotational-vibrational spectrum EvL (in
cm−1) of the beryllium diatomic molecule vs L.

Figure 2 displays the potential functions VL(r) from L = 0 till L = 36 that support 36+33+30+28+25+23+
20+17+14+11+7+3+1 = 248 vibrational–rotational levels or 12+12+12+11+11+11+11+10+10+10+10+
9+9+9+8+8+8+7+7+7+6+6+6+5+5+4+4+4+3+3+2+2+2+1+1+1+1 = 248 rotational-vibrational
levels. Figure 2 also shows the rotational-vibrational spectrum EvL (in cm−1) of the beryllium diatomic molecule
vs L. One can see that potentials VL(r) at L = 1 and L = 2 supports 12 vibrational energy levels. Figure 1
(right) shows the behavior of the 11-th χ10L(r) = rΦ10L(r) and 12-th χ11L(r) = rΦ11L(r) eigenfunctions of the
vibrational-rotational spectrum of beryllium diatomic molecule at L = 0, 1, 2.

CONCLUSION

We present the computational finite element scheme for the solution of the BVP for the SOODE with variable
coefficients using the programs KANTBP 4M and ODPEVP. The numerical analysis of the solution of the
benchmark eigenvalue problem for the SOODE is given.
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The discrete energy eigenvalues and eigenfunctions are analyzed for vibrational–rotational states of the di-
atomic beryllium molecule by solving the eigenvalue problem for the SOODE numerically with the table-valued
potential function approximated by interpolation Lagrangian and Hermite polynomials and its asymptotic ex-
pansion for large values of the independent variable specified as Fortran function.

The efficacy of the programs is demonstrated by the calculations of twelve eigenenergies of the vibrational
bound states of the diatomic beryllium molecule with the required accuracy in comparison with those known
from literature, as well as the vibrational-rotational spectrum.

New high accuracy ab initio calculations of the tabulated potential function will be useful for further study
of the vibrational-rotational spectrum and scattering problems.

The results and the presented FEM programs with interpolation Hermite polynomials that preserve the
derivatives continuity of the approximate solutions can be applied in the analysis of spectra of diatomic molecules
and waveguide problems by solving the eigenvalue and scattering problems in the closed–coupled channel method.
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APPENDIX
REAL*8 FUNCTION VPOT(R) #-279.496863252389085774320D0
REAL*8 R #+16.3002196867918408302045D0*(R-3.50D0)**5
IF ( R .LT. 0.200D1) THEN #+60.2807956755861261238267D0*(R-3.50D0)**3
VPOT = -25773.7109044290317516659D0*R #-47.2260081876105825000000D0*(R-3.50D0)**4

#+45224.0477977149109075999D0 #-47.2940696984941697748181D0*(R-3.50D0)**2
#+11630.1409366263902691980D0*(R-1.50D0)**5 ELSEIF ( R .LT. 0.500D1) THEN
#-21410.9944579041874319967D0*(R-1.50D0)**3 VPOT =37.5433740382779941025814D0*R
#-6655.69301415296537793622D0*(R-1.50D0)**4 #-203.532767180257088384326D0
#+37646.6374905803929755811D0*(R-1.50D0)**2 #+1.57933446805903445309567D0*(R-4.00D0)**5
ELSEIF ( R .LT. 0.242D1) THEN #+2.06536720797980643219389D0*(R-4.00D0)**3
VPOT = -3104.29731660146789925758D0*R #-3.90913978185322013018878D0*(R-4.00D0)**4

#+6567.96677835187237746414D0 #-6.72175482977376484481239D0*(R-4.00D0)**2
#+145901.637557436977844389D0*(R-2.00D0)**5 ELSEIF ( R .LT. 0.600D1) THEN
#+70890.0501932798636244675D0*(R-2.00D0)**3 VPOT = 22.4749425088812799926950D0*R
#-178091.891722217850289831D0*(R-2.00D0)**4 #-135.176802468861661924475D0
#-5215.01465840480348371833D0*(R-2.00D0)**2 #-1.74632723645421934973176D0*(R-5.00D0)**5
ELSEIF ( R .LT. 0.250D1) THEN #-1.13910625636659500903584D0*(R-5.00D0)**3
VPOT = -87.4623224249792247412537D0*R #+3.46551546383436915312500D0*(R-5.00D0)**4

#-35.4722493028120322541662D0 #-8.23297658169947934799179D0*(R-5.00D0)**2
#-5122452.98252855176907985D0*(R-2.42D0)**5 ELSEIF ( R .LT. 0.900D1) THEN
#-37267.2557427451395256506D0*(R-2.42D0)**3 VPOT = 8.25446369250102969043326D0*R
#+767538.576723810368564874D0*(R-2.42D0)**4 #-57.5068241812660846645295D0
#+1940.26376259904725429059D0*(R-2.42D0)**2 #+0.262554831228989391666862D-1*(R-6.00D0)**5
ELSEIF ( R .LT. 0.300D1) THEN #+1.52595797003340802069435D0*(R-6.00D0)**3
VPOT =95.5486415932416181588138D0*R #-.302331762133111382686686D0*(R-6.00D0)**4

#-485.009680038558034254034D0 #-4.49546478165576415777827D0*(R-6.00D0)**2
#-559.791178882855959174489D0*(R-2.50D0)**5 ELSEIF ( R .LT. 0.1400D2) THEN
#-2399.49666698491294179656D0*(R-2.50D0)**3 VPOT = 11.385941234992376680396136937226D0*R
#+2045.36781464380745875587D0*(R-2.50D0)**4 #-37.683304037819782698889968642231D0
#+1039.16158144865749926292D0*(R-2.50D0)**2 #-1.3036988112705401175758401661849D0*R**2
ELSEIF ( R .LT. 0.350D1) THEN #+0.6675467548036330733418010128614D-1*R**3
VPOT = 181.680445623994493034163D0*R #-0.12861577375486918213137485397657D-2*R**4

#-673.209766066617684340488D0 ELSE
#-42.1375729651804208384176D0*(R-3.00D0)**5 Z=R/0.52917D0
#+154.527717281912104793036D0*(R-3.00D0)**3 VPOT = -( 214.D0/Z**6+10230.D0/Z**8
#-2.64421453511851874413350D0*(R-3.00D0)**4 # +504300.D0/Z**10)
#-224.971347436273044312400D0*(R-3.00D0)**2 ENDIF
ELSEIF ( R .LT. 0.400D1) THEN VPOT =58664.99239D0*VPOT
VPOT = 58.2170634592331667146628D0*R RETURN
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