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ABSTRACT

The calculations of vibration-rotation bound states and new metastable states of a diatomic beryllium molecule
important for laser spectroscopy are presented. The problem is solved using the potential curve and the authors’
software package that implements the iteration Newton method and the high-accuracy finite element method.
The efficiency of the proposed approach is demonstrated by calculating vibration-rotation bound states and,
for the first time, rotation-vibration metastable states with complex- valued energy eigenvalues (with negative
imaginary parts of the order of (10−20 ÷ 6) cm−1) in a diatomic beryllium molecule. The existence of these
metastable states is confirmed by calculating the corresponding scattering states with real-values resonance
energies.

Keywords: laser spectroscopy, eigenvalue problem, bound and metastable states, finite element method, di-
atomic beryllium molecule, vibration-rotation bound states, rotation-vibration metastable and resonance scat-
tering states

1. INTRODUCTION

During the last decade, theoretical studies1–5 have shown 12 vibrational bound states in a diatomic beryllium
molecule, whereas 11 states were extracted from the experimental data of laser pump-probe spectroscopy (see
Fig. 1 in Ref. 6). Earlier7 we started to study the vibration-rotation spectrum of diatomic beryllium molecule.
We solved the boundary value problem (BVP) for the second-order ordinary differential equation (SOODE) with
potential function numerically tabulated on a non-uniform grid in a finite interval of the independent variable
values.3 To formulate the BVP on a semiaxis, the potential function should be continued beyond the finite
interval using the additional information about the interaction of atoms comprising the diatomic molecule at
large interatomic distances. The dominant term of the potential function at large distances is given by the van
der Waals interaction, inversely proportional to the sixth power of the independent variable with the constant,
determined from theory.8,9 Proceeding in this way we faced a problem how to match the asymptotic expansion of
the potential function with its tabulated numerical values (within the accuracy of their calculation) at a suitable
sufficiently large distance and calculate correctly the required sets of bound and metastable states.10
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Table 1. Comparison of the vibrational spectra Ẽv=0L=0 − ẼvL=0 (in cm−1) for the X1Σ+
g state of the beryllium dimer:

the eigenvalues of vibrational energy −ẼvL=0 (in cm−1) of the beryllium diatomic molecule calculated by the KANTBP
4M14 and ODPEVP11 programs implementing FEM (FEM), theoretical (EMO) and experimental (Exp) results,6 com-
bined ab initio2 and EMO calculations tabulated as modified EMO (MEMO),3 symmetry-adapted perturbation theory
(SAPT),1 the Morse-long range (MLR) function and Chebyshev polynomial expansion (CPE)5 19 09 2019 and Slater-type
orbitals(STO);4 De is the well depth and D0 is the dissociation energy in cm−1, re is the equilibrium internuclear distance
in Å, RMS is root-mean-square (RMS) dicrepancy between the theoretical and experimental data.

n v FEM MEMO EMO Exp SAPT MLR&CPE STO
re 2.4534 2.4534 2.4535 2.4536 2.443 2.445 2.4344
De 929.804 929.74 929.74 929.7±2 938.7 934.8 934.6±2.5

1 D0 806.07 806.48 806.5 807.4 812.4 808.1510 807.7
2 1 222.50 222.16 222.7 222.6 222.3 222.9170 223.4
3 2 397.34 397.6 397.8 397.1 397.6 397.4191 400.1
4 3 517.71 517.87 518.2 518.1 520.3 518.4196 517.3
5 4 594.89 595.06 595.4 594.8 597.9 595.0856 595.1
6 5 651.91 652.10 652.4 651.5 655.1 651.7974 651.7
7 6 698.92 699.14 699.4 698.8 702.6 699.0308 698.7
8 7 737.72 737.97 738.2 737.7 741.7 737.9791 738.0
9 8 768.27 768.56 768.8 768.2 772.4 768.5002 769.3

10 9 789.74 790.05 790.7 789.9 794.3 790.1738 790.1
11 10 801.66 802.08 803.4 802.6 807.1 802.8323 802.6
12 11 805.74 806.21 811.9 807.5335 807.5

RMS 0.4 0.4 0.6 3.4 0.3 1.1

In the present paper we continue studying these problems. We recall the results of vibration-rotation bound
states and present the improved calculations of the rotation-vibration metastable states of diatomic beryllium
molecule having complex-valued eigenenergies. The existence of these metastable states is confirmed by calcu-
lation of the corresponding scattering states with real values of resonance energies. High-precision theoretical
estimates are of significant importance for further experiments in laser spectroscopy of the diatomic beryllium
molecule.

The development of technique for solving the above class of eigenvalue problems for the SOODE using the
programs ODPEVP11 and KANTBP 5M,12,13 i.e., the upgraded version of KANTBP 4M,14, implementing the
finite element method15,16 in Fortran and Maple, respectively, is also a subject of the present study.

The paper has the following structure. Section 2 describes the procedure of approximation of potential curve
and its extension on large interval by means of the matching procedure using Hermite interpolation polynomials.
In Section 3 we present the results of calculating the spectrum of vibration-rotation bound states of the beryllium
dimer. Section 4 demonstrates the calculation of beryllium dimer rotation-vibration metastable states with
complex values of eigenenergy. In section 5 we present examples of scattering states at resonance energies that
confirm the existence of the typical metastable states under consideration. The Appendix presents the Maple
subroutine for calculating the potential curve in an extended interval and the input of KANTBP 5M for the
calculation of metastable states. In Conclusion we discuss further applications of the elaborated method and
results.

2. THE POTENTIAL CURVE AND ITS EXTENSION ON A LARGE INTERVAL

In quantum chemical calculations, the effective potentials of interatomic interaction are presented in the form of
numerical tables calculated with limited accuracy and defined on a nonuniform mesh of nodes in a finite domain
of interatomic distance variation. However, for a number of diatomic molecules the asymptotic expressions
for the effective potentials are calculated analytically for sufficiently large distances between the atoms. The
Schrödinger equation for a diatomic molecule in the crude adiabatic approximation, commonly referred to as
Born–Oppenheimer (BO) approximation, has the form(
− ~2

2mDaÅ
2

(
1

r2
d

dr
r2
d
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)
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where L is the total angular momentum quantum number, ~2/(2Da)=1.685762920 ·10−7 Å, the reduced mass of
beryllium molecule is m=M/2=4.506, r̃=r Å, the effective potential is Ṽ (r̃) in atomic units aue=0.002194746314
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(a) (b)
Figure 1. (a) Potential V (r) (Å−2) of the beryllium diatomic molecule as a function of r (Å) obtained by interpolating
the tabulated values3 (points in the subintervals, the boundaries of which are shown by larger-size circles) by fifth-order
LIPs. (b) MEMO potential V (r) (points and line 13), the asymptotic expansion Vas(r) of MEMO function (line 2,9), the
analytical forms of the potential function Van(r) (line 38 and line 45). r is given in Å, V∗(r) in cm−1.

Å−1, Da = 9.10938356 · 10−31kg= 931.494061MeV is the dalton (atomic mass unit),17 the energy is ẼvL
cm−1. The BVP for Eq. (1) was solved in the following units: the variable r is expressed in (Å), the ef-

fective potential V (r) = (2mDaÅ
2
aue/~2)Ṽ (rÅ)=58664.99239 Ṽ (rÅ) Å−2, and the desired value of energy

EvL=(2mDaÅ
2
/~2)ẼvL in Å−2, the momentum (wave number) k =

√
E in Å−1 and ẼvL=s2EvL cm−1, where

s2 = 1/0.2672973729 is the conversion factor from cm−1 to Å−2.

In Ref.3 the potential Ṽ (r) (in cm−1) (see Fig. 1) is given by the BO potential function marked as MEMO
tabular values {ṼM (ri)}76i=1 in interval r ∈ [r1 = 1.5, r76 = 48]Å. These tabular values were chosen to provide
the best approximation of the potential Ṽ (r) by the fifth-order Lagrange interpolation polynomials (LIPs) of the
variable r in subintervals r ∈ [r5k−4, r5k+1], k = 1, ..., 15. Indeed, one can see that Fig. 1a displays a smooth
approximation till r49 = 12, where the approximate potential curve coincides with and crosses the asymptotic
potential Vas(r) given analytically by the expansions9

Vas(r)=58664.99239Ṽas(r), Ṽas(r)=−
(
214(3)Z−6+10230(60)Z−8+504300Z−10

)
, Z = r/0.52917. (2)

This fact allows considering the interval r ∈ [rmatch ≥ 12,∞) as possible for using the asymptotic potential
Vas(r) at large r and executing conventional calculations based on tabular values of V (r) in the finite interval
r ∈ [r1, r=12] (see also4). However, the above MEMO tabular values have been calculated in the unusually
larger interval r ∈ [r1, r=48] using special composite basis functions in different subintervals, taking into account
both polarization and relativistic corrections DK-MRCI in the subinterval r ∈ [r = 12, r = 48].2 We note that
the MEMO tabular values for r ∈ {r41 = 6.5, ..., r48 = 11} are smaller than the asymptotic ones by 5.5 ÷ 6%,
for r = r51 = 14 exceed the asymptotic ones by 8%, and beyond the interval r ∈ [r40 = 6.0, ..., r52 = 15] the
difference is more than 10%. Based on this fact, in Ref.10 we considered three cases of approximation of this
potential function in the extended interval marked by the key K = −1, −3 or −4.

Here we use only the key K = −1, the potential V (r) in subintervals r ∈ [r5k−4, r5k+1], k = 1, ..., 9 was
approximated by the fifth-order interpolation Lagrange polynomials of the variable r in the interval r ∈ [r1, r46 =
14]. In subinterval r ∈ [re = r46 = 9, rmatch = 14] we consider the approximation of the potential V (r) by the
fourth-order interpolation Hermite polynomial using the values of the potential V (r) at the points r = {re =
r46 = 9, r47 = 10, r48 = 11} and the values of the asymptotic potential Vas(r) and its derivative dVas(r)/dr at
the point r = rmatch = 14. In the r ∈ [rmatch = 14,∞) the potential V (r) is approximated by the asymptotic
expansion (2). This approximation has been accepted in our paper.7

For comparison we show in Fig. 1 the potential function Ṽ (r), its asymptotic expansion Ṽas(r) and the ana-
lytical potential functions Ṽan(r) in a.u. (converted into cm−1), proposed in Ref.8 The MEMO potential function

Proc. of SPIE Vol. 11846  118460Y-3
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 27 May 2021
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



Table 2. Vibration-rotation bound states −ẼvL (in cm−1) of beryllium diatomic molecule.

L v =0 1 2 3 4 5 6 7 8 9 10 11
0 806.07 583.57 408.74 288.37 211.19 154.16 107.15 68.35 37.80 16.33 4.41 0.32
1 804.85 582.44 407.73 287.51 210.48 153.54 106.60 67.87 37.40 16.03 4.21 0.24
2 802.43 580.17 405.70 285.82 209.06 152.31 105.51 66.93 36.61 15.42 3.81 0.095
3 798.78 576.77 402.68 283.27 206.94 150.46 103.89 65.51 35.42 14.51 3.23
4 793.93 572.24 398.64 279.88 204.11 148.00 101.72 63.63 33.84 13.31 2.48
5 787.86 566.58 393.61 275.66 200.59 144.93 99.02 61.28 31.89 11.83 1.57
6 780.59 559.79 387.57 270.60 196.38 141.27 95.79 58.48 29.56 10.09 0.56
7 772.11 551.88 380.55 264.73 191.49 137.01 92.04 55.24 26.88 8.11
8 762.43 542.85 372.54 258.04 185.93 132.16 87.79 51.56 23.85 5.91
9 751.55 532.71 363.56 250.56 179.71 126.74 83.03 47.47 20.50 3.54

10 739.47 521.45 353.60 242.29 172.84 120.76 77.78 42.96 16.84 1.02
11 726.20 509.10 342.69 233.26 165.34 114.22 72.06 38.06 12.92
12 711.74 495.65 330.84 223.48 157.23 107.15 65.88 32.80 8.75
13 696.09 481.12 318.05 212.98 148.51 99.55 59.25 27.18 4.40
14 679.27 465.50 304.35 201.77 139.21 91.45 52.20 21.25
15 661.28 448.81 289.75 189.88 129.36 82.86 44.76 15.04
16 642.12 431.07 274.28 177.35 118.97 73.81 36.94 8.59
17 621.80 412.27 257.94 164.21 108.06 64.32 28.78 *1.95
18 600.34 392.44 240.78 150.49 96.67 54.42 20.31
19 577.72 371.59 222.81 136.25 84.82 44.14 11.59
20 553.98 349.73 204.07 121.52 72.53 33.51 *2.66
21 529.10 326.87 184.61 106.35 59.85 22.58
22 503.11 303.05 164.46 90.81 46.82 11.40
23 476.02 278.27 143.68 74.95 33.46 *0.017
24 447.82 252.56 122.33 58.84 19.83
25 418.55 225.94 100.49 42.53 *5.98
26 388.20 198.45 78.27 26.09
27 356.79 170.11 55.77 9.58
28 324.34 140.96 33.18
29 290.86 111.05 10.70
30 256.36 80.42
31 220.87 49.14
32 184.41 17.28
33 146.98
34 108.63
35 69.36
36 29.21

Ṽ (r) is seen to have a minimum −De(FEM)=Ṽ (Re)=−929.804cm−1 at the equilibrium point Re=2.4534 Å and
shifts above the analytical potential function Ṽan(r) in the vicinity of this point−De(Sheng)=Ṽan(Re)=−948.3cm−1,
while the analytical potential function Ṽan(r) lies above the MEMO potential function Ṽ (r) in the interval
r∈(3.2, 6.1). Thus, using the accepted approximation with the key K = −1 we have the potential function Ṽ (r)
in the analytical form in interval r∈(1.9, 14) and its smooth continuation at r ≥ 14 by means of the asymptotic
expression (2).

3. BOUND STATES

The BVP for Eq. (1) was solved using the FEM programs KANTBP 4M and ODPEVP on the finite element
mesh

Ω1 = {1.90, 1.95, 2.00, 2.07, 2.15, 2.22, 2.30, 2.36, 2.42, 2.50(0.1)4(0.2)6(0.5)14(2)44} (3)

with the second-type or Neumann boundary conditions (BCs) on the boundary points of the mesh. In each
of the subintervals (except the last one) the potential V (r) was approximated by a LIP of the fifth order. In
Appendix we present the function V (r) in Å−2, the values of r in Å, and the input file for calculating eigenvalues,
S-matrix, and corresponding wave functions of bound, metastable and scattering states by means of KANTBP
5M program. In the BVP solution at all finite elements of the mesh the local functions were represented by
fifth-order HIPs.

Table 1 presents the results of using FEM programs KANTBP 4M and ODPEVP to calculate 12 eigenvalues
of beryllium diatomic molecule. It shows the eigenvalues calculated with the ab initio modified expanded Morse
oscillator (MEMO) potential function3 and the corresponding FEM approximation. In contrast to the original
EMO function, which was used to describe the experimental (Exp) vibrational levels,6 it has not only the correct
dissociation energy, but also describes all twelve vibrational energy levels with the RMS error less than 0.4 cm−1.
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(a) (b)
Figure 2. (a) Potential functions VL(r) at L = 0, 4, 8, ..., 56. (b) Eigenenergies EvL of vibration-rotation bound states
(lower panel) and real part <EM

Lv (lower panel) and imaginary part −=EM
Lv with negative sign (upper panel) of

complex eigenenergies EM
Lv = <EM

Lv + i=EM
Lv of rotation-vibration metastable states. The potential functions VL(r)

at L = 0, 1, ..., 36 and at L = 0, 4, 8, ..., 56. Note that the bound states are supported by the potentials VL(r) at
L = 0, 1, ..., 36 (see Table 2 and Fig. 2 a), while the metastable states are supported by the potentials VL(r) at L =
3, 7, 8, 11, 12, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
48, 49 (see Table 3 and Fig. 2 a)

The table also shows the results of recent calculation using the Morse long-range (MLR) function and Chebyshev
polynomial expansion (CPE) alongside with the EMO potential function.5 Similar results were obtained by
Lesiuk et al.4 The main attention in the optimization of the MLR and CPE functions was focused on their
correct long-range behavior displayed in Fig. 1. However, there are some problems with the quality of the
MLR and CPE potential curves.3 As a consequence, one can see from the table, that the corresponding results
provide a lower estimate whereas FEM and MEMO results give an upper estimate for the discrete spectrum of
the diatomic beryllium molecule.

The potential functions ṼL(r) from L = 0 to L = 36 support 37+33+30+28+26+24+21+18+14+11+7+3 =
252 vibration-rotation levels −ẼvL presented in Table 2. Note that four states marked by asterisk in Table 2
are added as a result of applying a denser finite-element mesh (3). Figure 2b shows also the rotation-vibration
spectrum ẼvL ≡ ẼvL (in cm−1) of Be2 vs L. These functions ṼL(r) are displayed in Fig. 2a at L = 0, ..., 36
with the step 4. One can see that the potential VL(r) at L = 0, L = 1 and L = 2 supports 12 vibrational energy
levels.

4. METASTABLE STATES

The complex eigenenergies ẼMLv = <ẼMLv + ı=ẼMLv, (in cm−1) of Be2 rotation-vibration metastable states, where
v is the number of states at fixed value of L, are shown in Table 3. Their real parts <EMLv in comparison with
the eigenenergies ẼvL of vibration-rotation bound states are displayed in lower panel of Fig. 2b. Note that the
real parts of energies <EMLv of the metastable states marked by an asterisk in Table 3 lie above the top V max

L of
the potential barrier VL(r). The BVP for Eq. (1) was solved by the FEM programs on the above finite element
mesh Ω1 with mixed BVPs, i.e. the Neumann BC at the left point r1 of the finite interval r ∈ [r1, r

max] and the
third-type or Robin BC at the right point rmax which is calculated using the corresponding asymptotic solution

Φ
M(as)
Ln (r) in the form of an outgoing wave.16
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Table 3. The rotation-vibration metastable states ẼM
Lv = <ẼM

Lv + =ẼM
Lv (in cm−1) of Be2, where “eps” means that

−10−5 < =ẼM
Lv < 0 (in cm−1).

L v V min
L V max

L <E −=E
0 -929.74 0.00
1 -928.49 0.01
2 -926.00 0.04
3 11 -922.26 0.12 0.092 0.014
4 -917.27 0.22
5 -911.04 0.42
6 -903.59 0.71
7 10 -894.94 1.11 0.504 5.5e-4
8 10 -885.05 1.62 1.508 0.078
9 -873.92 2.24

10 -861.56 3.00
11 9 -847.96 3.92 1.554 eps
12 9 -833.12 5.02 4.050 0.031
13 -817.04 6.27
14 8 -799.73 7.73 0.083 eps
15 8 -781.19 9.39 4.605 1.e-5
16 8 -761.44 11.26 8.992 0.018
17 8 -740.59 13.34 13.016 0.314
18 7 -718.51 15.66 4.788 eps
19 7 -695.21 18.22 11.517 1.4e-4
20 6 -670.68 21.05 17.991 0.036

21 6 -644.93 24.15 6.403 eps
21 7 -644.93 24.15 23.915 0.482

22 6 -618.07 27.51 15.497 eps
23 5 -590.08 31.24 24.444 3.7e-3

24 5 -561.68 35.18 11.484 eps
24 6 -561.68 35.18 32.872 0.169

25 4 -531.76 39.58 22.998 eps
*25 5 -531.76 39.58 40.608 1.156

26 4 -500.63 44.18 7.996 eps
26 5 -500.63 44.18 34.354 1.4e-3

27 4 -468.31 49.30 22.032 eps
27 5 -468.31 49.30 45.187 0.100

28 3 -434.78 54.66 6.963 eps
28 4 -434.78 54.66 35.991 eps

*28 5 -434.78 54.66 55.158 0.963

L v V min
L V max

L <E −=E
29 3 -400.25 60.57 23.517 eps
29 4 -400.25 60.57 49.669 3.0e-4

30 2 -364.62 66.91 11.354 eps
30 3 -364.62 66.91 40.058 eps
30 4 -364.62 66.91 62.639 0.155

31 2 -327.81 73.60 32.621 eps
31 3 -327.81 73.60 56.534 1.6e-4

*31 4 -327.81 73.60 74.625 1.305

32 2 -290.09 80.68 52.660 eps
32 3 -290.09 80.68 72.662 0.030

33 1 -251.21 88.21 15.028 eps
33 2 -251.21 88.21 71.131 2.4e-4
33 3 -251.21 88.21 87.630 0.696

34 1 -211.33 80.42 47.644 eps
35 1 -170.41 101.47 80.254 eps
36 1 -128.47 124.02 111.593 0.057

37 0 -85.56 147.94 11.780 eps
37 1 -85.56 147.94 143.263 3.429

38 0 -41.66 173.18 53.590 eps
*38 1 -41.66 173.18 174.945 4.014

39 0 3.20 199.73 96.169 eps
40 0 48.96 227.57 139.466 eps
41 0 95.70 256.70 183.406 8.3e-4
42 0 143.28 287.15 227.880 0.023
43 0 191.72 318.91 272.755 0.148
44 0 241.02 352.03 317.922 0.544
45 0 291.13 386.52 363.371 1.432
46 0 342.01 422.41 409.200 3.007
47 0 393.59 459.74 450.402 6.810

*48 0 445.84 498.57 499.563 5.439
*49 0 498.71 538.92 542.927 6.046
50 552.15 580.82
51 606.00 624.52
52 660.18 670.09
53 714.45 717.43
54
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Figure 3. Plots of real (solid curve) and imaginary (dashed curve) parts of eigenfunctions ΦM
Lv(r) of selected metastable

states having eigenvalues from the table marked by L = 3, 7, 12, 18, 24 and v.

The BVP for Eq. (1) was solved using the FEM programs KANTBP 5M on the finite element mesh

Ω1 = {1.90, 1.95, 2.00, 2.07, 2.15, 2.22, 2.30, 2.36, 2.42, 2.50(0.1)4(γ1)6(γ2)14(γ3)γ4},

where γ1 = {0.2, L < 44; 0.1}, γ2 = {0.5, L < 25; 0.25, L < 38; 0.1(6), L < 44; 0.125}, γ3 = 3.1/
√
V max
L9

,
L9 = max(L, 9) γ4 is the lowest number of sequence 14 + kγ3, k ∈ N greater than 80, with the Neumann
boundary conditions (BCs) on the boundary point r = 1.90 and the Robin boundary condition with logarithmic
derivative

dΦ(kr)

dr
−RΦ(kr) = 0, R =

1

Φ+
as(kr)

dΦ+
as(kr)

dr
=
L

r
− k

H
(1)
L+3/2(kr)

H
(1)
L+1/2(kr)

, k =
√
E =

√
Ẽ

s2
(4)

Φ±as(kr) =

√
π/2√
r
H

(1,2)
L+1/2(kr) = ∓ıexp(±ı(kr − πL/2))√

kr
+O(k−3/2r−2)

that followed from asymptotic solution. where E given in cm−1, H
(1,2)
L+1/2(r), H

(1,2)
L+3/2(r) are Hankel functions

( ddzH
(1,2)
L+1/2(z) = (L+1/2)H

(1,2)
L+1/2(z)/z−H(1)

L+3/2(z)) and s2 = 1/0.2672973729 is the conversion factor from cm−1

to Å−2. The potential functions VL(r) at L = 3, 7, 8, 11, 12, 14, ..., 49 supported this set of metastable states.
These functions are plotted in Fig. 2a at L = 8, ..., 56 with the step 4. For L > 0 the potential functions at large
r decrease proportionally to r−2 and at L ≤ 38 have the form of a potential well with a minimum below the
dissociation threshold D0, while at L > 38 the potential well has a minimum above the dissociation threshold.
The height of the centrifugal barrier increases with increasing L, but its width at the dissociation threshold energy
is infinite. With increasing energy, the effective width of the barrier decreases. The number of metastable states
δv at L ≤ 38 is determined by the number of positive-energy states in the potential well with the barrier with
the height V max

L taken into account, i.e., in the well with the potential V ∗L = {V (r), r < rmax;Vmax, r ≥ rmax}.
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Figure 4. Plots of real (solid curve) and imaginary (dashed curve) parts of eigenfunctions ΦM
Lv(r) of selected metastable

states having eigenvalues from the table marked by L = 30, 36, 42, 49 and v.

For small L < 16 the barrier height V max
L counted from the zero energy is smaller than the energy difference

between two upper levels of metastable states. This means that even one metastable state can exist not for all
values of L. With the growth of L to L = 33 the barrier height increases, but the width of the well changes
insignificantly. As a result, the number of metastable states increases to three. With further increase in L,
when in the interval r ∈ (3.5, 6) the slope of centrifugal potential exceeds the slope of MEMO potential, the well
width rapidly decreases, so that only two states can exist in the well, a bound state and a metastable one at
L = 34, 35, 36 and two metastable states at L = 37, 38. At L ≥ 39 the potential well minimum turns to be above
the dissociation threshold and the effective barrier width, the width and depth of the well decrease. Only one
state exists in the well, its width increasing with the growth of L. At L > 49 there are no energy levels in the
well, and at L > 54 the potential well disappears.

As can be seen from Tables 2 and 3 and Figures 3–4, the eigenfunctions of metastable states with complex
energy values for a fixed value of the orbital momentum L have an increasing number of nodes localized inside
the potential well. Beginning from each lower state above the dissociation threshold, they have has one node
more than the last bound state with real energy under the dissociation threshold (E = 0) with the same value
of the orbital momentum L. Thus, there is a continuation of the real energy eigenvalues ẼLv = <ẼLv to the
complex plane ẼMLv = <ẼMLv + ı=ẼMLv, labelled by the number of nodes of eigenfunctions localized inside the
potential well, for each value of the orbital moment L.

5. SCATTERING STATES

The scattering problem for Eq. (1) was solved using the FEM programs KANTBP 5M on the finite element
mesh

Ω1 = {1.90, 1.95, 2.00, 2.07, 2.15, 2.22, 2.30, 2.36, 2.42, 2.50(0.1)4(γ1)6(γ2)14(γ3)γ4},

where γ1 = {0.2, Ẽ < 360; 0.1}, γ2 = {0.5, Ẽ < 35; 0.25, Ẽ < 1488; 0.1(6), Ẽ < 320; 0.125}, γ3 = 2.9/
√
Ẽ,

γ4 is the lowest number of sequence 14 + kγ3, k ∈ N greater than 80. The Robin boundary condition 4 for
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eigenfunction of scattering states is formulated using the asymptotic form “incident wave + outgoing wave”:

ΨL
as(r) =

1

2
(Ψ−as(kr) + Ψ+

as(kr)SL(E)), (5)

where SL(E) = exp(2ıδL(E)) is the partial scattering matrix and h
(±)
L (pr) are spherical Hankel functions.18

a b c
Figure 5. Plots of the real (solid) and imaginary (dashed) parts of scattering functions ΦL(r) in the vicinity of the resonance
energy E(res) ≈ 4.0444958cm−1 at L = 12 (b) and at energies E = E(res)− 0.5cm−1 (a) and E = E(res) + 0.5cm−1 (c)

a b c
Figure 6. Plots of the real (solid) and imaginary (dashed) parts of scattering functions ΦL(r) in the vicinity of resonance
energy E(res) ≈ 4.78829358850231cm−1 at L = 18 (b) and at energies E = E(res) − 10−3cm−1 (a) and E = E(res) +
10−3cm−1 (c)

Plots of the real (solid) and imaginary (dashed) parts of scattering functions in the vicinity of the resonance
energy for the narrow resonance at L = 12 and very narrow resonance at L = 18 are shown in Figs. 5 and 6.
One can see that the resonant scattering functions are localized in the potential well, which is no longer observed
with a minor change in the energy of the incident wave. As can be seen from Table 3, the energies of resonant
states coincide with the real parts of the energies of metastable states. In Fig. 7 the phase shifts δ vs the
scattering energy E are shown, as expected, the phase shifts takes the value δ = π/2 for resonant energies and
change rapidly in their vicinity. In Fig. 8 the wave functions of broad resonance states at L = 25 and L = 49
are presented. Comparing Fig. 8 and Fig. 4 for L = 49 one can see that the wave functions in the potential
well infinity also almost coincide up to the phase, but the energies of broad resonance states differ from the real
parts of the energies of metastable states.

For rough estimation of scattering length aS of the scattering state at k → 0 one can apply the formula

aS = − lim
k→0

tan δ0(k)

k
≈ −dδ0(k)

dk

∣∣∣∣
k→0

≈ −δ0(ki+1)− δ0(ki−1)

ki+1 − ki−1

∣∣∣∣
ki→0

,
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a b c
Figure 7. Phase shifts δ vs scattering energy E counted from E(0) at L = 12 (a) and L = 18 (b). Phase shifts δ at L = 18
in the vicinity of resonance energy E(res) (c). Here δE(res) = E − E(res).

a b c
Figure 8. Plots of the real (solid) and imaginary (dashed) parts of scattering functions in the vicinity of resonance energies
E1(res) = 22.9981893 and E2(res) = 38.684375 at L = 25 (a,b) and E1(res) = 562 at L = 49 (c)

where k−1 =
√
~2/(2µE) in Å and E in Å−2 are accepted in our calculations. The calculated plot −dδ0(k)dk ≈ aS

presented in Fig.9 gives us an estimate for aS ≈ 3.348 Å. For example, a plot of the corresponding wave function
is shown at k = 0.001.

Figure 9. Estimate of scattering length aS in Å vs k =
√
E in Å−1 and wave function at k = 0.001, L = 0.
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6. CONCLUSION

The efficacy of the applied programs is demonstrated by the calculations of twelve eigenenergies of the vibrational
bound states of the diatomic beryllium molecule with the required accuracy in comparison with those known from
literature, as well as the vibration-rotation spectrum bound states and rotation-vibration spectrum of narrow-
band metastable states with complex valued eigenenergies. We believe that these results can serve as a guide
for future high-precision laser spectroscopy of weakly-bound, metastable and scattering states of the diatomic
beryllium molecule. Laser spectroscopy of such objects offers unique opportunities for clarifying the nature of
electron correlation bonding in molecules that could not exist in the standard chemical bond theory based on
the Hartree-Fock self-consistent field approximation.

The presented approach and KANTBP 5M program12,13 provide a useful tool for further study of approx-
imations of the tabulated potential function in a finite interval and its extension beyond this interval using
asymptotic expansions and its matching via interpolation Hermite polynomials, and modeling calculations of the
weakly bound states with eigenenergies close to the dissociation threshold.

APPENDIX A. PROGRAM APPR100(Z,NDIFF) FOR CALCULATION OF THE
FUNCTION AND THEIR DERIVATIVES IN MAPLE

This program is generated by KANTBP 5M as file “ap100proc.dat” and formatted by authors to save space.

IHPord100:=5;
APPRa100(1):=Array(0..5, [6563.481440,-25773.71080,37646.63813,-21410.9884,-6655.7025,11630.1485]);
APPRa100(2):=Array(0..5, [359.3721451,-3104.297326,-5215.0147,70890.050,-178091.889,145901.634]);
APPRa100(3):=Array(0..5, [-247.1310696,-87.46223573,1940.24795,-37266.546,767534.90,-5122429.0]);
APPRa100(4):=Array(0..5, [-246.1380760,95.5486417,1039.161533,-2399.49691,2045.3678,-559.7915.]);
APPRa100(5):=Array(0..5, [-128.1684292,181.6804438,-224.971337,154.52760,-2.64361,-42.13789]);
APPRa100(6):=Array(0..5, [-75.73714115,58.2170614,-47.294042,60.28050,-47.22552,16.29992]);
APPRa100(7):=Array(0..5, [-53.35927103,37.54337408,-6.7217519,2.0653728,-3.909147,1.5793407]);
APPRa100(8):=Array(0..5, [-22.80208992,22.47494218,-8.23297389,-1.1391093,3.4655190,-1.7463266]);
APPRa100(9):=Array(0..5, [-7.980042026,8.254463698,-4.495464799,1.525957870,-.3023317676,.2625548403e-1]);
APPRa100(10):=Array(0..5, [-.5837591267,.3903170743,-.1264023888,.2045626914e-1,-.1286537989e-2,0]);
APPR100:=proc(z,ndiff)local nelemd,zelemd,EIGFt,IHPordt,j1,j2,res,jc;
jc:=1;
if z < 1.50 or z > 14.
then RETURN(0)
else if z < (3.50)
then if z < (2.42)
then if z < (2.00)
then nelemd:=1; zelemd:=z-(1.50);
else nelemd:=2; zelemd:=z-(2.00); fi;
else if z < (2.50)
then nelemd:=3;zelemd:=z-(2.42);
else if z < (3.00)
then nelemd:=4; zelemd:=z-(2.50);
else nelemd:=5; zelemd:=z-(3.00); fi;fi;fi;
else if z < (5.00)
then if z < (4.00)
then nelemd:=6; zelemd:=z-(3.50);
else nelemd:=7; zelemd:=z-(4.00); fi;
else if z < (6.00)
then nelemd:=8; zelemd:=z-(5.00);
else if z < (9.00)
then nelemd:=9; zelemd:=z-(6.00);
else nelemd:=10; zelemd:=z-(9.00);fi;fi;fi;fi;fi;
EIGFt:=APPRa100(nelemd); IHPordt:=IHPord100;
for j1 from 1 to ndiff do
IHPordt:=IHPordt-1;
for j2 from 0 to IHPordt do EIGFt[j2]:=EIGFt[j2+1]*(j2+1); od;
EIGFt[IHPordt+1]:=0; od;
res:=0; for j2 from 0 to IHPordt do res:=res+EIGFt[j2]*zelemd^j2; od;
RETURN(res);
end;

APPENDIX B. INPUT FOR KANTBP 5M IN MAPLE

1. Preparation the coefficients of ODEs (common block)
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restart;read "kantbp4m.mwt";nexec:=100;keypot:=0;pmax:=5;zmax:=14;
sc1:=58664.99239;sc2:=1/0.2672973729;sc3:=0.52917;
vpotas:=proc(z) -sc1*(214/z^6+10230/z^8+504300/z^10); end;
dvpotas:=proc(z) sc1*(6*214/z^7+8*10230/z^9+10*504300/z^11); end;
fgrid:=[[ 1.50,0.1118807175059 ],[ 1.60,0.0739898922057 ],[ 1.70,0.0466443312944 ],[ 1.80,0.0275431523429 ]
,[ 1.90,0.0145889788722 ],[ 2.00,0.0061258363891 ],[ 2.10,0.0008750047040 ],[ 2.20,-0.0024073301631 ]
,[ 2.30,-0.0036689744392 ],[ 2.40,-0.0041746459684 ],[ 2.42,-0.0042125816352 ],[ 2.43,-0.0042246962019 ]
,[ 2.44,-0.0042324378496 ],[ 2.45,-0.0042362178362 ],[ 2.46,-0.0042354030082 ],[ 2.50,-0.0041956551263 ]
,[ 2.60,-0.0038931591836 ],[ 2.70,-0.0034358549158 ],[ 2.80,-0.0029579508571 ],[ 2.90,-0.0025328802176 ]
,[ 3.00,-0.0021847514842 ],[ 3.10,-0.0019107861711 ],[ 3.20,-0.0016979919870 ],[ 3.30,-0.0015318041849 ]
,[ 3.40,-0.0013994900523 ],[ 3.50,-0.0012910108407 ],[ 3.60,-0.0011988862767 ],[ 3.70,-0.0011177635545 ]
,[ 3.80,-0.0010439586802 ],[ 3.90,-0.0009750528419 ],[ 4.00,-0.0009095589866 ],[ 4.20,-0.0007859660563 ]
,[ 4.40,-0.0006710837021 ],[ 4.60,-0.0005657679843 ],[ 4.80,-0.0004713661945 ],[ 5.00,-0.0003886830799 ]
,[ 5.20,-0.0003177456704 ],[ 5.40,-0.0002579299264 ],[ 5.60,-0.0002081941213 ],[ 5.80,-0.000167514292722]
,[ 6.00,-0.000136027325687],[ 6.50,-0.000081888817926],[ 7.00,-0.000050646242390],[ 7.50,-0.000032288610141]
,[ 8.00,-0.000021178605693],[ 9.00,-0.000009950723641],[10.00,-0.000005125283373],[11.00,-0.000002823983793]];
fgrid:=[seq([fgrid[i,1],sc1*fgrid[i,2]],i=1..nops(fgrid)),[zmax,vpotas(zmax/sc3),dvpotas(zmax/sc3)/sc3]];
hermites();
IHPtype:=[3,3];
fa:=proc(z) z^2*sc2; end;
fb:=proc(z) z^2; end;
read "ap100proc.dat":
vpot:=proc(z)(‘if‘(z<zmax,APPR100(z,0),vpotas(z/sc3))+L*(L+1)/z^2)*sc2; end;

2. Solution of the bound states problem

Emax:=0.0;keypot:=1;L:=0;
zmesh:=[1.90,1.95,2.00,2.07,2.15,2.22,2.30,2.36,2.42,seq(2.50+0.1*i,i=0..14),seq(4.00+0.2*i,i=0..9)
,seq(6.00+0.5*i,i=0..15),seq(14.00+2.*i,i=0..15)];

hermites();

3. Solution of the scattering problem

RBC:=proc(Rp2OC,RBoundLR,RBoundRL,DRBoundLR,DRBoundRL,RBoundC,DRBoundC) local HHC,HH1,HH2,HHH1,HHH2;
Rp2OC[1]:=Eh/sc2;
HHC:=evalf(sqrt(Pi/2)/sqrt(zmesh[-1]));
HH1:=HankelH1(L+1/2,sqrt(Rp2OC[1])*zmesh[-1]);
HH2:=HankelH2(L+1/2,sqrt(Rp2OC[1])*zmesh[-1]);
HHH1:=HankelH1(L+3/2,sqrt(Rp2OC[1])*zmesh[-1]);
HHH2:=HankelH2(L+3/2,sqrt(Rp2OC[1])*zmesh[-1]);
RBoundLR[1,1] :=evalf(HHC*HH1);
RBoundRL[1,1] :=evalf(HHC*HH2);
DRBoundLR[1,1]:=evalf(HHC*(L*HH1/(zmesh[-1])-HHH1*sqrt(Rp2OC[1])));
DRBoundRL[1,1]:=evalf(HHC*(L*HH2/(zmesh[-1])-HHH2*sqrt(Rp2OC[1])));
RBoundC[1,1] :=0;
DRBoundC[1,1] :=0;

RETURN();
end;

keypot:=2;DirL:=2;DirR:=-1;L:=25;Eh:=22.9981893;
zmesh:=[1.90,1.95,2.00,2.07,2.15,2.22,2.30,2.36,2.42,seq(2.50+0.1*i,i=0..14)

,‘if‘(Eh>360.,seq(4.00+0.1*i,i=0..19),seq(4.00+0.2*i,i=0..9))
,‘if‘(Eh<35.,seq(6.00+0.5*i,i=0..15) ,‘if‘(Eh<148.,seq(6.00+0.25*i,i=0..31)

,‘if‘(Eh<320.,seq(6.00+0.5*i/3,i=0..47) ,seq(6.00+0.125*i,i=0..63))))
,seq(14+min(2.9/sqrt(Eh),2)*i,i=0..ceil((80-14)/min(2.9/sqrt(Eh),2)))];

hermites();

4. Solution of the metastable states problem

steps1 := [27.910, 13.658, 8.739, 6.405, 4.653, 3.603, 2.883, 2.389, 2.030, 1.754
,1.536, 1.358, 1.216, 1.095, .994, .908, .834, .770, .715, .665,.621, .582, .546, .515, .486
, .460, .435, .414, .393, .374,.357, .341, .326, .342, .305, .276, .252, .233, .217, .204
,.192, .181, .172, .164, .157, .150, .144, .138, .133, .128, .124, .119];

L:=25;
zmesh1:=[1.90,1.95,2.00,2.07,2.15,2.22,2.30,2.36,2.42,seq(2.50+0.1*i,i=0..14)
,‘if‘(L>44,seq(4.00+0.1*i,i=0..19),seq(4.00+0.2*i,i=0..9))
,‘if‘(L<24,seq(6.00+0.5*i,i=0..15),‘if‘(L<37,seq(6.00+0.25*i,i=0..31)

,‘if‘(L<43,seq(6.00+0.5*i/3,i=0..47),seq(6.00+0.125*i,i=0..63))))
,seq(14+steps1[max(L,9)]*i,i=0..ceil((80-14)/steps1[max(L,9)]))];
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for i from nops(zmesh1)-1 to 2 by -1 do
if(vpot(zmesh1[i])>vpot(zmesh1[i+1]) and vpot(zmesh1[i])>vpot(zmesh1[i-1])) then zmax1:=zmesh1[i];imax:=i+2; fi;
if(vpot(zmesh1[i])<vpot(zmesh1[i+1]) and vpot(zmesh1[i])<vpot(zmesh1[i-1])) then zmin1:=zmesh1[i]; fi;

od;

keypot:=1;Emin:=max(0,vpot(zmin1));Emax:=vpot(zmax1);nexec:=99;normtp:=0;zmesh:=zmesh1[1..imax];DirR:=2;
hermites(); read "ev99proc.dat":

for j from 1 to Ecur99 do
keypot:=3;mukopt:=1:mukc:=0;nexec:=1000+10*L+j; zmesh:=zmesh1;DirR:=3; Eh:=EIGV99[j];

EIGFinit:=proc(z,ndiff) EIGF99(j,z,ndiff) end:
RBoundR:=expand(convert(series(L/(zmesh[-1])

-sqrt(EEh/sc2)*HankelH1(L+3/2,sqrt(EEh/sc2)*zmesh[-1])
/HankelH1(L+1/2,sqrt(EEh/sc2)*zmesh[-1]),EEh=Eh),polynom));

hermites();
od:
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1. Patkowski, K., Špirko, V., and Szalewicz, K. “On the elusive twelfth vibrational state of beryllium dimer,
Science 326, 1382-1384 (2009)

2. Mitin, A.V. “Ab initio calculations of weakly bonded He2 and Be2 molecules by MRCI method with pseudo-
natural molecular orbitals, Int. J. Quantum Chem. 111 2560–2567, (2011).

3. Mitin, A.V. “Unusual chemical bonding in the beryllium dimer and its twelve vibrational levels, Chem.
Phys. Lett. 682, 30-33 (2017)

4. Lesiuk, M., Przybytek, M., Balcerzak, J.G., Musial, M. Moszynski, R. “Ab initio potential energy curve for
the ground state of beryllium dimer, J. Chem. Theory Comput. 15, 2470-2480 (2019)

5. Meshkov, V.V., Stolyarov, A.V., Heaven, M.C., et al. “Direct-potential-fit analyses yield improved empirical
potentials for the ground X1Σ+

g state of Be2, J. Chem. Phys. 140, 064315-1-8 (2014)

6. Merritt,J.M., Bondybey, V.E., Heaven, M.C. “Beryllium dimer – caught in the act of bonding, Science 324
(5934), 1548-1551 (2009)

7. Gusev, A., Chuluunbaatar, O., Vinitsky, S., et al. “On rotational-vibrational spectrum of diatomic beryllium
molecule, Proceedings of SPIE, 11066, 1106619 (2019)

8. Sheng, X.W., Kuang, X.Y., Li, P., Tang, K.T. “Analyzing and modeling the interaction potential of the
ground-state beryllium dimer, Phys. Rev. A 88, 022517 (2013)

9. Porsev S.G., Derevianko, A. “High-accuracy calculations of dipole, quadrupole, and octupole electric dy-
namic polarizabilities and van der Waals coefficients C6, C8, and C10 for alkaline-earth dimers, JETP, 102,
195-205 (2006)

10. Derbov, V., Chuluunbaatar, G., Gusev, A., Chuluunbaatar, O., Vinitsky, S., et al., On calculations of
metastable and Rydberg states of diatomic beryllium molecule and antiprotonic helium atom Proc. of SPIE
11458, p. 114580Q (2020).

11. Chuluunbaatar, O., Gusev, A.A., Vinitsky, S.I., Abrashkevich, A.G. “ODPEVP: A program for computing
eigenvalues and eigenfunctions and their first derivatives with respect to the parameter of the parametric
self-adjoined Sturm-Liouville problem, Comput. Phys. Commun. 181, 1358-1375 (2009)

12. Gusev, A.A., Chuluunbaatar, O., Vinitsky, S.I., et al. talk in MAPLE 2020 conference
https://www.maplesoft.com/mapleconference/

13. KANTBP 5M program will be publisehd as open code in JINRLIB (2021).

14. JINRLIB (2015) http://wwwinfo.jinr.ru/programs/jinrlib/kantbp4m/indexe JINRLIB (2015)
http://wwwinfo.jinr.ru/programs/jinrlib/kantbp4m

15. Gusev, A.A., Chuluunbaatar, O., Vinitsky, S.I., et al. “Symbolic-numerical solution of boundary-value prob-
lems with self-adjoint second-order differential equation using the finite element method with interpolation
Hermite polynomials, Lecture Notes in Computer Science 8660, 138-154 (2014)

16. Gusev, A.A., Hai, L.L., Chuluunbaatar, O., et al. “Symbolic-numeric solution of boundary-value problems
for the Schrodinger equation using the finite element method: scattering problem and resonance states,
Lecture Notes in Computer Science 9301, pp. 182-197 (2015)

17. https://www.nist.gov/pml/atomic-spectroscopy-databases

18. M.L. Goldberger and K.M. Watson, Collision Theory, John Wiley & Sons, Inc. NY. 1964.

Proc. of SPIE Vol. 11846  118460Y-13
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 27 May 2021
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use


