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Abstract

In the effective mass approximation for electronic (hole) states of a spheroidal quantum dot

with and without external fields the perturbation theory schemes are constructed in the framework

of the Kantorovich and adiabatic methods. The eigenvalues and eigenfunctions of the problem,

obtained in both analytical and numerical forms, were applied for the analysis of spectral and

optical characteristics of spheroidal quantum dots in homogeneous electric fields.
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I. INTRODUCTION

Quantum dots(QDs) are considered to be promising as the elementary basis for the new

generation of semiconductor devices [1, 2]. The unique opportunity to perform the energy

level control and flexible manipulation in QDs is due to the full quantization of charge carrier

energy spectra in these systems. This allows design and manufacturing of artificial structures

with prescribed quantum physical characteristics [3]. That is why the scope of QDs potential

applications is very wide, from heterostructure lasers to nanomedicine and nanobiology. An

impressive example of such application is represented by QD lasers possessing low threshold

current and high efficiency [3].

The peculiarities of physical processes in QDs are caused by both their composition and

geometry. Electronic, kinetic, optical and other properties of QDs have been investigated

experimentally and theoretically in many papers [4–13]. Particularly, the optical absorption

characteristics of QDs have been shown to be strongly correlated with their geometry, on

one hand, and with their physical–chemical properties, on the other hand. In one of the

first publications on optical transitions in QD [14] the interband absorption of light was

considered in the ensemble of weakly interacting spherical QDs implanted in a dielectric

matrix. The dispersion of QD sizes was characterized in the framework of Lifshitz–Slezov

theory [15]. It was shown that in the absence of size dispersion, due to the full quantization of

charge carriers energy spectra in QD, the absorption coefficient behaves like a delta function,

and the absorption threshold frequencies depend on the peculiarities of electron and hole

energy spectra. When the QD size dispersion is taken into account, the averaging procedure

yields the absorption profile having finite width and height.

Recently several reports concerning the experimental implementation of narrow-band

InSb QDs have appeared [16, 17], in which the dispersion law for electrons and light holes

is non-parabolic and described according to the double-band mirror Kane model [18, 19].

For non-interacting band of heavy holes the dispersion law is considered as quadratic. The

investigation of optical absorption peculiarities in InSb QDs with the transitions from light

and heavy hole bands to the conduction band taken into account is an interesting problem.

Interband transitions in an ensemble of cylindrical or spherical InSb QDs were considered

theoretically in the dipole approximation with and without magnetic field, including exciton

effects, by means of the perturbation theory and the adiabatic methods[20–22]. In our ear-
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lier work we elaborated the calculation schemes, symbolic-numerical algorithms (SNAs) and

programs, based on the generalized Kantorovich method (KM) for numerical solving with

required accuracy the boundary-value problems (BVPs) of discrete and continuous spectra

describing the axial-symmetric models of quantum wells(QWs), quantum wires(QWrs) and

quantum dots(QDs) in external fields within the framework of the effective mass approxi-

mation [23–35]. Meanwhile, for the analysis and estimations of the appropriate range of

material parameters, spectral and optical characteristic of quantum dots at the first stage of

investigation, conventionally, approximate eigenvalues and eigenfunctions evaluated in the

analytical form were applied [6–8, 14, 22]. However, it is a real challenge to specify the range

of applicability of such approximations in the problems, depending on a few parameters [2],

e.g., for impurity states of quantum wires in a homogeneous magnetic field [25].

With this aim in the present paper we report the formulation and MAPLE- environment

implementation of algebraic schemes of the perturbation theory (PT) of the Lennard-Jones

(LJ) and Rayleigh-Schrödinger (RS) [36], permissive in the nondiagonal and diagonal adia-

batic approximations, respectively, to evaluate in numerical and in analytic forms the eigen-

values and eigenfunctions of models of spheroidal QDs in homogeneous magnetic and electric

fields. To construct the required perturbation schemes, we choose such models of spheroidal

QDs, in which the basis functions depending upon fast variables can be expressed in the

analytic form. The region of the model parameters, for which the PT asymptotic series are

applied, is estimated using the results of numerical calculations carried out with required

accuracy. The efficiency of the schemes is demonstrated by the analysis of spectral charac-

teristics of oblate and prolate spheroidal QDs and also spherical QDs with corresponding

shape of confinement well with walls of infinite height under the influence of homogeneous

electric fields (HEFs). We apply the developed approach to the analysis of spectral charac-

teristics of oblate and prolate spheroidal QDs with parabolic and non-parabolic dispersion

laws under the influence of HEFs, i.e., the quantum-confined Stark effect.

The paper is organized as follows. In Section 2 the calculation scheme for solving elliptic

BVP describing spheroidal QDs in homogeneous electric fields using the Kantorovich method

is presented. Section 3 is devoted to the description of the PT schemes by slow variables

in nondiagonal adiabatic approximation and the comparison of the results with those of

numerical calculation with given accuracy. In section 4 the explicit PT scheme for evaluation

of the basis functions of the fast variable for oblate spheroidal QDs in a homogeneous electric
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field is derived. Section 5 is devoted to the description of PT schemes by slow variables in the

diagonal adiabatic approximation for spheroidal QDs in electric fields. The results evaluated

here in the analytic form are compared with numerical ones to establish the range of their

applicability. In Section 6 the absorption coefficient for an ensemble of spheroidal QDs with

random dimensions of minor semiaxis and with parabolic and non-parabolic dispersion laws

for holes and electrons under the influence of HEFs is found using the calculated eigenvalues

and eigenfunctions. In conclusion we summarize the results and discuss further applications.

II. STATEMENT OF THE PROBLEM

Let us consider an impurity localized in the center of a quantum dot and take the electron-

hole interaction into account. Then in the effective mass approximation of the k · p-theory

the Schrödinger equation for the slow-varying envelope wave function Ψ̃(r̃e, r̃h) of an electron

(e) and a hole (h) in a uniform magnetic field H with the vector-potential A = 1
2
H× r̃ and

electric field F in oblate and prolate QDs reads as [8]:

{
H̃(r̃e, r̃h)− Ẽ

}
Ψ̃(r̃e, r̃h) = 0, (1)

H̃(r̃e, r̃h) =
∑
i=e,h

{
1

2µi

(
˜̂pi −

qi
c
A
)2

− qi(F · r̃i) + Ũconf (r̃i)−
qiqc
κ|̃ri|

}
+

qeqh
κ|̃re − r̃h|

.

Here r̃i is the radius-vector, |r̃i| =
√
x̃i

2 + ỹi
2 + z̃i

2, ˜̂pi = −ı~∇r̃i is the momentum, Ẽ is the

energy of the particles, qe = −e, qh = +e, and qc are the Coulomb charges of the electron,

the hole, and the impurity center, κ is the dc permittivity, µi = βe(h)m0 is the effective mass

of electron or hole, m0 is the mass of electron. For the model under consideration, Ũ(r̃) is

the potential of a spherical or axially-symmetric well

Ũ(r̃i) = {0, S(r̃i) < 0; Ũ0, S(r̃i) ≥ 0}, (2)

bounded by the surface S(r̃i) = 0 with walls of infinite height (infinite potential barrier

model, IPBM) or finite height 1� Ũ0 <∞ (finite potential barrier model, FPBM). In Eq.

(2) S(r̃i) depends on the parameters ã, c̃, which are semiaxes of a spheroidal QD,

S(r̃i) ≡ (x̃2
i + ỹ2

i )/ã
2 + z̃2

i /c̃
2 − 1. (3)
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Below we restrict ourselves to IPBMs of spheroidal quantum dots with possible influence

of the uniform electric field F = (0, 0, F ), the magnetic field being switched off, H = 0,

and the Coulomb interaction of the electron and the hole with the impurity center being

absent, qc = 0. In this case the wave function Ψ̃(r̃e, r̃h) = Ψ̃e(r̃e)Ψ̃
h(r̃h) is factorized. So,

we arrive at the 3D BVPs for unknowns Ψ̃e(r̃e) and Ẽe or Ψ̃h(r̃h) and Ẽh. The eigenvalues

and eigenfunctions needed to evaluate the absorption coefficients (ACs) were calculated with

prescribed accuracy by means of the program packages ODPEVP and KANTBP [28–30].

The models with nonzero values of these parameters were announced in [8, 25]. Throughout

the paper we make use of the reduced atomic units [2, 5]: a∗B = κ~2/µpe
2 is the reduced

Bohr radius, ẼR ≡ Ry∗ = ~2/(2µpa
∗
B

2) is the reduced Rydberg unit of energy, and the

following dimensionless quantities are introduced: Ψ̃(r̃) = a∗B
−3/2Ψ(r), 2Ĥ =

˜̂
H/Ry∗, E ≡

2E = Ẽ/Ry∗, 2U(r) = Ũ(r̃)/Ry∗, r = r̃/a∗B, a = ã/a∗B, c = c̃/a∗B, 2γF = F/F ∗0 , F ∗0 =

Ry∗/(ea∗B) = e/(2κ(a∗B)2).

A. The BVP for SQDs in the effective mass approximation

In cylindrical coordinates z, ρ, ϕ the solution of Eq. (1), periodical with respect to the

azimuthal angle ϕ, is sought in the form of a product Ψ(ρ, z, ϕ) = Ψm(ρ, z)exp (imϕ)/
√

2π,

where m = 0,±1,±2, ... is the magnetic quantum number. The 3D BVP for SQDs at fixed

values of m is reduced to 2D BVP with respect to fast xf and slow xs variables: oblate

xf = z (minor axis), xs = ρ (major axis) and prolate xf = ρ (minor axis), xs = z (major

axis) [27]: (
Ĥf (xf ;xs) + Ĥs(xs) + V̌fs(xf , xs)− Emt

)
Ψm
t (xf , xs) = 0. (4)

Here Ĥs(xs) is the operator of slow subsystem

Ĥs(xs) = − 1

g1s(xs)

∂

∂xs
g2s(xs)

∂

∂xs
+ V̌s(xs), (5)

and Ĥf (xf ;xs) is the operator of fast subsystem

Ĥf (xf ;xs) = − 1

g1f (xf )

∂

∂xf
g2f (xf )

∂

∂xf
+ V̌f (xf ;xs). (6)

For OSQD g1s(xs) = g2s(xs) = 1, g1f (xs) = g2f (xs) = ρ, V̌f (xf ;xs) = 0, V̌s(xs) = m2/ρ2,

V̌fs(xf , xs) = 2γF z, while for PSQD g1s(xs) = g2s(xs) = ρ, g1f (xs) = g2f (xs) = 1,
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V̌f (xf ;xs) = m2/ρ2, V̌s(xs) = 2γF z, V̌fs(xf , xs) = 0. From (2) the boundary conditions

for the eigenfunctions Ψm
t (xf , xs) of SQDs, corresponding to a well with walls of infinite

height, have the form

lim
ρ→0

(
ρ
∂Ψm

t (ρ, z)

∂ρ
δ0m + Ψm

t (ρ, z)(1− δ0m)

)
= 0,Ψm

t (ρ, z)

∣∣∣∣
∂Ω2

= 0,

Ω2 =

(
{ρ, z}

∣∣∣∣ρ2

a2
+
z2

c2
< 1

)
, ∂Ω2 =

(
{ρ, z}

∣∣∣∣ρ2

a2
+
z2

c2
= 1

)
.

The eigenfunctions Ψm
t (xf , xs) corresponding to the eigenvalues Emt = Em1 < Em2 , ... are

subject to the normalization and orthogonality conditions∫
Ω2

ρdρdzΨm
t (ρ, z)Ψm

t′ (ρ, z) = δtt′ .

Note, that at γF = 0 the solutions are separated by the z-parity σ = ±1 into two invariant

subspaces Ψmσ
t corresponding to the eigenvalues Emσt = Emσ1 < Emσ2 , ... , while at γF 6= 0 the

z-parity is broken.

B. Kantorovich or adiabatic reduction of the BVP

The solution Ψt(xf , xs) ≡ Ψm
t (xf , xs) of the above problem at fixed m is sought in the

form of Kantorovich expansion

Ψt(xf , xs) =

jmax∑
j=1

Bj(xf ;xs)χjt(xs). (7)

The set of appropriate trial functions is chosen as the set of eigenfunctions Bj(xf ;xs) cor-

responding to the eigenvalues Êj(xs) of the Hamiltonian Ĥf (xf ;xs), Eq. (6), depending

parametrically on xs ∈ Ω(xs):

Ĥf (xf ;xs)Bj(xf ;xs) = Êj(xs)Bj(xf ;xs).

The eigenfunctions Bj(xf ;xs) corresponding to the eigenvalues Êj(xs) = Ê1(xs) < Ê2(xs), ...

are subject to the normalization and orthogonality conditions with the weighting function

g1f (xf ) in the same interval xf ∈ Ωxf (xs):∫ xmax
f (xs)

xmin
f (xs)

Bi(xf ;xs)Bj(xf ;xs)g1f (xf )dxf = δij. (8)
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The BVP for a set of ODEs of the slow subsystem with respect to the unknown vector func-

tions χt(xs) = (χ1;t(xs), ..., χjmax;t(xs))
T corresponding to the unknown eigenvalues 2Et ≡ Et,(

D + E(xs) + W(xs)− IEt
)
χt(xs) = 0,

D = − 1

g1s(xs)
I
d

dxs
g2s(xs)

d

dxs
+ IV̌s(xs), (9)

W(xs) = U(xs) +
g2s(xs)

g1s(xs)
H(xs) +

1

g1s(xs)

dg2s(xs)Q(xs)

dxs
+
g2s(xs)

g1s(xs)
Q(xs)

d

dxs

satisfy the orthogonality and normalization conditions∫ xmax
s

xmin
s

(χt(xs))
Tχt′(xs)g1s(xs)dxs = δtt′ . (10)

Here the effective potentials Hij(xs) and Qij(xs) are defined by the formula

Uij(xs) = Uji(xs) =

∫ xmax
f (xs)

xmin
f (xs)

Bi(xf ;xs)V̌fs(xf , xs)Bj(xf ;xs)g1f (xf )dxf ,

Hij(xs) = Hji(xs) =

∫ xmax
f (xs)

xmin
f (xs)

∂Bi(xf ;xs)

∂xs

∂Bj(xf ;xs)

∂xs
g1f (xf )dxf , (11)

Qij(xs) = −Qji(xs) = −
∫ xmax

f (xs)

xmin
f (xs)

Bi(xf ;xs)
∂Bj(xf ;xs)

∂xs
g1f (xf )dxf .

Here the basis functions of the fast subsystem and the matrix elements are calculated ana-

lytically. For oblate spheroidal QDs (xf = z, xs = ρ)

Bi (xf ;xs) = Bσ
i (xf ;xs)=

√
a

c
√
a2 − x2

s

sin

(
πno
2

(
xf

c
√

1− x2
s/a

2
− 1

))
,

Ei(xs) = Eσ
i (xs) = Ei;0

a2

(a2 − x2
s)
, Ei;0 =

π2i2

4c2
, Uii(xs) = 0, (12)

Uij(xs) = Uij;0(xs)

√
a2 − x2

s

a
, Uij;0(xs) =

8γF cij(−1 + (−1)i+j)

(i2 − j2)2π2
,

Hii(xs) = Hii;0(xs)
a2x2

s

(a2 − x2
s)

2
, Hii;0(xs) =

3 + π2i2

12a2
,

Hij(xs) = Hij;0(xs)
a2x2

s

(a2 − x2
s)

2
, Hij;0(xs) =

2ij(i2 + j2)(1 + (−1)i+j)

a2(i2 − j2)2
,

Qij(xs) = Qij;0(xs)
axs

a2 − x2
s

, Qij;0(xs) =
ij(1 + (−1)i+j)

a(i2 − j2)
, j 6= i.
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For prolate spheroidal QDs (xf = ρ, xs = z) (at m = 0 for nondiagonal potentials i 6= j)

Bm
nρp(xs) =

√
2c

a
√
c2 − x2

s

J|m|(
√

2Enρp+1,|m| (xs)xf )

|J|m|+1(αnρp+1,|m|)|
,

Ei (xs) = Ei;0
c2

(c2 − x2
s)
, Ei;0 =

(J̄ i|m|)
2

a2
, (13)

Uii(xs) = 0, Uij(xs) = 0,

Hii(xs) = Hii;0(xs)
c2x2

s

(c2 − x2
s)

2
, Hii;0(xs) =

(1 + (J̄ i|m|)
2)

3c2
,

Hij(xs) = Hij;0(xs)
c2x2

s

(c2 − x2
s)

2
, Hij;0(xs) =

2

c2

(
J̄ i0J̄

j
0

∫ 1

0

J1(J̄ i0x)

J1(J̄ i0)

J1(J̄ j0x)

J1(J̄ j0)
x3dx

−J̄ i0
∫ 1

0

J1(J̄ i0x)

J1(J̄ i0)

J0(J̄ j0x)

J1(J̄ j0)
x2dx− J̄ j0

∫ 1

0

J0(J̄ i0x)

J1(J̄ i0)

J1(J̄ j0x)

J1(J̄ j0)
x2dx

)
,

Qij(xs) = Qij;0(xs)
cxs

c2 − x2
s

, Qij;0(xs) =
2

c
J̄ j0

∫ 1

0

J0(J̄ i0x)

J1(J̄ i0)

J1(J̄ j0x)

J1(J̄ j0)
x2dx, j 6= i,

where αnρp+1,|m| = J̄
nρp+1

|m| are positive zeros of the Bessel function of the first kind [37].

For the interesting lower part of the spectrum Et : E1 < E2 < ..., the number jmax of

the equations solved should be at least not less than the number of the energy levels of

the problem (9) at a = c = r0. To ensure the prescribed accuracy of calculation of the

lower part of the spectrum discussed below with eight significant digits we used jmax = 16

basis functions in the expansion (8) and the discrete approximation of the desired solution

by Lagrange finite elements of the fourth order with respect to the grid pitch Ωp
hs

(xs) =

[xs;min;xs;k = xs;k−1 +hs;xs;max]. The details of the corresponding computational scheme are

given in [24].

The convergence of eigenenergies Et vs number jmax of basis functions for oblate and

prolate spheroidal QDs, and for spherical QD is shown on Tables I and II at γF = 0 and

m = 0. The considered QDs having the size comparable with De Broglie wavelength of

composed particles with small effective masses are referred as quantum-size systems. In the

spheroidal QDs having different length of minor and major axes the quantization procedure

leads to different transversal and longitudinal spectra. Moreover, for PSQD (c = 2.5, a =

0.5) the confinement in two variables (xy) with the minor semiaxis a = 0.5 leads to greater

eigenvalues, than the confinement in one variable (z) with the size-for-size minor semiaxis a =

0.5 for PSQD (c = 2.5, a = 0.5). Tables I and II show that the expansions in basis functions

(12) and (13) in cylindrical coordinates have better rate of convergence in the adiabatic

8



TABLE I: The convergence of eigenenergy Et vs number jmax of basis functions at γF = 0 .

Fast and slow variables xf = z and xs = ρ (oblate SQD and spherical QD), number of nodes

i = (nzo = no − 1, nρo),
∗ notes diagonal approximation at j = 2

jmax a = 2.5, c = 0.5 a = 2.5, c = 2.5

(nzo, nρo) (0,0) (0,1) (2,0) (0,0) (0,1) (2,0)

C 12.737 41 19.936 21 96.696 83∗ 1.468 496 5.445 665∗ 5.589 461

1 12.765 48 20.046 02 96.753 17∗ 1.590 238 5.766 612∗ 6.004 794

2 12.764 90 20.041 33 96.754 27 1.580 243 5.340 214 6.329 334

4 12.764 82 20.040 74 96.752 15 1.579 273 5.316 872 6.317 204

16 12.764 81 20.040 65 96.752 01 1.579 140 5.314 832 6.316 562

Exact 1.579 136 5.314 793 6.316 546

TABLE II: The convergence of eigenenergy Et vs number jmax of basis functions at γF = 0 .

Fast and slow variables xf = ρ and xs = z (prolate SQD and spherical QD), number of nodes

i = (nρp, nzp),
∗ notes diagonal approximation at j = 2

jmax c = 2.5, a = 0.5 c = 2.5, a = 2.5

(nρp, nzp) (0,0) (0,2) (1,0) (0,0) (0,2) (1,0)

C 25.184 73 34.428 85 126.424 5∗ 1.493 612 5.131 784 5.898 668∗

1 25.201 74 34.530 30 126.456 5∗ 1.584 433 5.680 831 6.071 435∗

2 25.201 29 34.525 78 126.457 3 1.579 860 5.331 101 6.324 717

4 25.201 21 34.525 12 126.456 1 1.579 239 5.316 732 6.317 058

16 25.201 20 34.525 02 126.456 1 1.579 138 5.314 828 6.316 554

Exact 1.579 136 5.314 793 6.316 546

limit of strongly oblate and prolate QDS, than for the benchmark spherical QDs with the

known spectrum, which is not surprising. For lower states the crude adiabatic approximation

(without Hjj(xs)) (CAA) provides a lower estimate, while the adiabatic approximation (AA)

(with Hjj(xs)) (1) gives an upper estimate, such that at the ratio of minor to major semiaxis

equal to 1/5 the bracket is approximated with the accuracy of ∼ 0.1%.

Below we present the analysis of the spectrum under the variation of parameters, which

opens the questions about the additional symmetry of the problem, connected with the
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existence of exact and approximate integrals of motion[27, 38].
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FIG. 1: Dependence of eigenenergies E (in units of Ee) of lower part of spectrum of electronic

states of QDs at m = 0 on electric field strength γF (in units of F ∗0 ): for spherical quantum dot

(SQD) with radius a = c = 2.5, oblate and prolate spheroidal quantum dots (OSQD and PSQD) at

different minor semiaxis (for OSQD c = 0.5, 1, 1.5, 2, a = 2.5, for PSQD c = 2.5, a = 0.5, 1, 1.5, 2).

In Fig. 1 we show the eigenenergies of the lower part of the spectrum Et, t = 1, ..., 40 at

m = 0 for OSQD (c = 0.5, 1, 1.5, 2, a = 2.5), SQD (c = 2.5, a = 2.5) and PSQD (c = 2.5, a =

0.5, 1, 1.5, 2) as functions of the dimensionless strength γF of the electric field. In spite of

the fact that at γF = 0 the eigenfunctions of SQD, OSQD and PSQD have definite z-parity,

and, therefore, exhibit additional integrals of motion and separation of variables in spherical

and spheroidal coordinates systems, the spectrum of eigenvalues at fixed m is simple, i.e.,

nondegenerate, similar to the case γF 6= 0, when the eigenfunctions have no definite z-parity.

At γF = 0 a one-to-one correspondence rule nρp + 1 = np = i = n = nr + 1, i = 1, 2, ...

and nzp = l− |m| holds between the quantum numbers (n, l,m, σ̂ = (−1)|m|σ) of SQD with
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the radius r0 = a = c, the spheroidal quantum numbers {nξ = nr, nη = l − |m|,m, σ}

of PSQD with the major c and the minor a semiaxes, and the adiabatic set of quantum

numbers [np = nρp + 1, nzp,m, σ] under the continuous variation of the parameter ζac = a/c.

At γF = 0 there is a one-to-one correspondence rule no = nzo + 1 = 2n − (1 + σ)/2,

n = 1, 2, 3, ... and nρo = (l − |m| − (1 − σ)/2)/2, between the sets of spherical quantum

numbers (n, l,m, σ̂ = (−1)|m|σ) of SQD with the radius r0 = a = c and spheroidal ones

{nξ = nr, nη = l− |m|,m, σ} of OSQD with the major a and the minor c semiaxes, and the

adiabatic set of cylindrical quantum numbers [no = nzo + 1, nρo,m, σ] under the continuous

variation of the parameter ζca = c/a.

FIG. 2: Eigenfunctions of sixth order of PT of 2D BVP for oblate SQD a = 5, c = 0.5, [t = nzo = 0,

n = no = 1, 2, 3, 4, m = 0] in electric field γF = −10 (weak asymmetry by z - axis i.e. by

minor ellipsoid axis).Eigenfunctions of sixth order of PT of 2D BVP for prolate SQD c = 2.5,

a = 0.5,[t = nρp = 0, n = np = 0, 1, 2, 3, 4, m = 0] in electric field γF = −1 (asymmetry by z - axis

i.e. by major ellipsoid axis).

One can see that when the parameter γF increases the eigenvalues Et decrease faster for

SQD, slower for PSQD and even more slower for OSQD, because the influence of the electric

field for OSQD at c = 0.5 is essentially weaker than for PSQD at c = 2.5. With increasing

γF a series of exact crossings of eigenenergies with different values of quantum numbers
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for PSQD and OSQD occur at γF & 20 and a series of avoided crossings for SQD occur

at γF & 10. With further growth of the parameter they first increase and then begin to

decrease. Indeed, with the growth of γF the eigenfunctions with smaller number of nodes

in the longitudinal variable z are localized (see Fig.2) in the vicinity of the equilibrium

point, and the corresponding eigenenergies decrease. Increasing the number of nodes is

accompanied with delocalization of the wave functions, and the corresponding eigenenergies

increase and then decrease again. For PSQD the density of states per unit energy for the

eigenfunction with the same number of nodes nρp in the transverse variable ρ is greater (i.e.,

the separation between the adjacent energy levels is smaller) than the density of states for

the function having the same number of nodes nzp in the longitudinal variable z. For this

reason in Fig. 1 one can see three crossing series of curves with different number of ρ-nodes

nρp = 0, 1, 2, the lower of them (e.g., with a = 0.5, nρp = 0, and nzp from 0 to 12) are

decreasing at all γF ≥ 0, while the upper ones (e.g., with a = 0.5, nρp = 0, and nzp starting

from 13) with the energies, exceeding that of the state (nρp = 1) without z-nodes (nzp = 0),

increase from the beginning and then start to decrease. Thus, at small γF the energy levels

for the groups of states with even nρp = 0, 2... and odd nρp = 1, 3... number of nodes are

repulsing and crossing.

For OSQD, on the contrary, the number of energy levels per unit energy for the eigen-

functions having the same number nρo of ρ-nodes is smaller (i.e., the separation between

the adjacent levels is larger) than that for the eigenfunctions having the same number nzo

of z-nodes. Therefore, in Fig. 1 one can see four crossing series of almost ’parallel’ curves

with different number nzo = 0, 1, 2, 3 of z-nodes.

For OSQD and PSQD the crossings of the energy levels that occur with increasing γF are

similar to the exact crossings of the energy levels with decreasing c semiaxis in OSQD and

PSQD without electric field (γF = 0), i.e., we observe the accidental degeneracy, which is

known to be generally associated with the existence of an additional integral of motion[27]

and with the separability of variables in oblate and prolate spheroidal coordinate systems.

Thus, from our observations it follows that an additional approximate integral of motion

should exist.

For SQD eigenfunction with different numbers of ρ- and z-nodes, nρ and nz, and with

increasing γF the series of crossings become mixed. Note, that the eigenenergies of the states

with the same z-parity at γF = 0 are repulsed with increasing γF (e.g., [t = 9, n = 1, l = 5,

12



E9(γF = 0) = 14.01] and [t = 10, n = 3, l = 0, E10(γF = 0) = 14.21]), but the states with

different z-parity are attracted (e.g., [t = 7, n = 1, l = 4, E7(γF = 0) = 10.71] and [t = 8,

n = 2, l = 2, E8(γF = 0) = 13.24]). This fact should be also associated with the existence of

approximate integrals of motion. Indeed, from Fig 1 one can see that for SQD at a = c = 2.5

with increasing γF the series of exact crossings appear.

III. THE PTLJ IN NONDIAGONAL ADIABATIC APPROXIMATION

We expand the potentials (12) and (13) of the BVP (9) and (10) in Taylor series in the

vicinity of xs = 0:

Ei(xs) = Ei;0 +
kmax∑
k=1

Ei;0
τ 2k

x2k
s , Uij(xs) = Uij;0 +

kmax∑
k=1

Ũij;k
τ 2k

x2k
s , (14)

Hij(xs) =
kmax∑
k=1

k
Hij;0

τ 2k
x2k
s , Qij(xs) =

kmax∑
k=1

Qij;0

τ 2k−1
x2k−1
s ,

where Ũij;k = (2k−3)!!
(2k)!!

Uij;0 and the parameter τ equals τ = a for OSQD, and τ = c for PSQD.

Substitution of expansions (14) into Eq. (9) leads to the BVP for a set of ODEs of slow

subsystem with respect to the unknown vector functions χt(xs) = (χ1;t(xs), ..., χjmax;t(xs))
T

corresponding to the unknown eigenvalues 2Et ≡ Et:(
D(0) + (Ei;0 − Et) + V̌s(xs) +

kmax∑
k=1

Ei;0 + kHii;0

τ 2k
x2k
s

)
χi;t(xs) (15)

+

jmax∑
j 6=i

kmax∑
k=1

(
Ũij;k
τ 2k

x2k
s + k

Hij;0

τ 2k
x2k
s + (2k − 1)

Qij;0

τ 2k−1
x2k−2
s + 2

Qij;0

τ 2k−1
x2k−1
s

d

dxs

)
χj;t(xs) = 0,

where Ũij;k is given by the expansion (14) and V̌s(xs) = 0 for OSDQ; Uij(xs) = 0 and

V̌s(xs) = γF z for PSDQ. We choose the unperturbed operator to have the eigenvalues and

basis functions of 2D and 1D oscillators. For the OSQD (2D oscillator) with respect to the

scaled slow variable x we have: xs = ρ =
√
x/
√
Ef ), where Ef = (Ei′;0 + Hi′i′;0)/(4a2) =

ω2
i′/4, i.e., the adiabatic frequency, at given i′ = no

L (n) = D(0) − E(0), D(0) = −
(
d

dx
x
d

dx
− x

4
− m2

4x

)
, E(0) ≡ E(0)

n,m = n+ (|m|+ 1)/2,

Φ
(0)

q (x) =

√
q!x|m|/2 exp(−x/2)L

|m|
q (x)√

(q + |m|)!
,

∫ ∞
0

Φ
(0)

q (x)Φ
(0)

q′ (x)dx = δqq′ . (16)
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Therefore, the action of the operators L(n) and x on the function Φ
(0)
q (x) ≡ Φ

(0)
q,m(x) is

determined by the recurrence relations [37]

L(n)Φ(0)
q,m(x) = (q − n)Φ(0)

q,m(x),

xΦ(0)
q,m(x) = −

√
q + |m|√qΦ(0)

q−1,m(x) +

+(2q + |m|+ 1)Φ(0)
q,m(x)−

√
q + |m|+ 1

√
q + 1Φ

(0)
q+1,m(x), (17)

x
dΦ

(0)
q,m(x)

dx
= −

√
q + |m|√qΦ(0)

q−1,m(x)/2

−Φ(0)
q,m(x)/2 +

√
q + |m|+ 1

√
q + 1Φ

(0)
q+1,m(x)/2.

For PSQD (1D oscillator) with respect to the scaled slow variable x xs = x/ 4
√
Ef , where

Ef = (Ei′;0 +Hi′i′;0)/c2 = ω2
i′ , i.e., the adiabatic frequency, at given i′ = np, we have

L (n) = D(0) − E(0), D(0) = − d2

dx2
+ x2, E(0) ≡ E(0)

n = 2n+ 1, n = 0, 1, ....,

Φ
(0)

q (x) =
exp(−x2/2)Hq(x)

4
√
π
√

2q
√
q!

,

∫ ∞
−∞

Φ
(0)

q (x)Φ
(0)

q′ (x)dx = δqq′ . (18)

Correspondingly action of operators L(n), x and d
dx

on functionΦ
(0)
q (x)is determined by

recurrence relations [37]

L(n)Φ(0)
q (x) = 2(q − n)Φ(0)

q (x),

xΦ(0)
q (x) =

√
q
√

2
Φ

(0)
q−1(x) +

√
q + 1√

2
Φ

(0)
q+1(x), (19)

d

dx
Φ(0)
q (x) =

√
q
√

2
Φ

(0)
q−1(x)−

√
q + 1√

2
Φ

(0)
q+1(x).

The eigenfunctions (15)as functions of the new scaled variable x are sought in the form

of expansion over the basis of the normalized functions Φ
(0)
q (x), q = 0, 1, .... of the 2D or 1D

oscillators with unknown coefficients bj,s:

χj;t(x) =

qmax∑
q=0

bj,q;tΦ
(0)
q (x), bj,q<0;t = bj,q>qmax;t = 0. (20)

Below we demonstrate that such expansions are appropriate for getting approximate solu-

tions in the lower part of the BVP spectrum (9) and (10). Substitution of the expansion
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(20) into (15) yields the set of equations

qmax∑
q=0

Âiibi,q;tΦ
(0)
q (x) +

jmax∑
j 6=i=1

qmax∑
q=0

Âijbj,q;tΦ
(0)
q (x) =

qmax∑
q=0

κ−2EtE−1/2
f bi,q;tΦ

(0)
q (x), (21)

Âii =

(
D(0) + V̌s(x)E

−3/4
f + κ−2Ei;0E

−1/2
f + κ−2

kmax∑
k=1

Ei;0 + kHii;0

τ 2kE
(k+1)/2
f

x2k

)
,

Âij = κ−2

kmax∑
k=1

(
Ũij;k + kHij;0

τ 2kE
(k+1)/2
f

x2k
s +

Qij;0

τ 2k−1E
k/2
f

(
(2k − 1)x2k−2 + 2x2k−1 d

dx

))
,

where κ = 2 and V̌s(xs) = 0 for OSQD; κ = 1 and V̌s(x) = γFx for PSQD. Applying the

relations (17) or (19) to get first derivatives of the basis functions, we get the expressions

for the action of operators Âij:

ÂijΦ
(0)
q (x) =

qmax∑
q′=0

αij;qq′Φ
(0)
q′ (x) (22)

and, hence, the algebraic eigenvalue problem with respect to the unknown Et and bj,q;t

qmax∑
q=0

αii;q′qbi,q;t +

jmax∑
j 6=i=1

qmax∑
q=0

αij;q′qbj,q;t = κ−2EtE−1/2
f bi,q;t. (23)

In the matrix form it reads as

ABt = κ−2EtE−1/2
f Bt, BT

t′Bt = δtt′ ,

where Bt = (b1,0;t, b1,1;t, ..., b1,qmax;t, b2,0;t, ..., bjmax,qmax;t)
T is a vector with dimension of

jmax(qmax + 1), and A is a positive defined symmetric matrix having the dimensions

(jmax(qmax + 1)) × (jmax(qmax + 1)) with the elements A(qmax+1)(i−1)+q+1,(qmax+1)(j−1)+q′+1 =

αij;qq′ .

Note, that the approximation with nonzero elements on the diagonal of the matrix A =

{αii;q′q}(qmax)
q′,q=0δi=i0,j=i0 , obtained by the action of the diagonal operator Âii, Eq. (21), on the

basis function Φ
(0)
q (x), Eq.(22), gives the diagonal adiabatic approximation (AA) of PTLJ

solution (23), i.e., Et ≈ Ei;n, n = 0, 1, ... at each fixed i. Such adiabatic classification of the

eigenenergies is used in Tables discussed below.

The convergence of eigenenergies of Eq. (23) vs the order kmax of approximation of the

effective potentials (14) for jmax = 4 and qmax = 60 is shown in Tables III and IV for OSDD,

PSQD, and SQD at γF = 0 and in Table V at γF = −10 for PSQD and SQD. Table IV
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TABLE III: The convergence of eigenenergies Et of Eq. (23) vs order kmax of approximation of

effective potentials from (14) for jmax = 4 and qmax = 60 basis functions at γF = 0. Fast and

slow variables xf = z and xs = ρ (oblate SQD and spherical QD), number of nodes i = (nzo =

no − 1, nρo).

kmax a = 2.5, c = 0.5 a = 2.5, c = 2.5

(nzo, nρo) (0,0) (0,1) (2,0) (0,0) (0,1) (2,0)

8 12.668 20 19.067 45 96.714 86 1.192 415 2.998 982 5.325 360

12 12.749 67 19.813 83 96.750 70 1.377 572 4.088 539 5.868 629

20 12.784 07 19.838 42 96.751 72 1.132 323 5.084 082 6.735 687

N(jmax = 4) 12.764 82 20.040 74 96.752 15 1.579 273 5.316 872 6.317 204

TABLE IV: The convergence of eigenenergies Et of Eq. (23) vs order kmax of approximation of

effective potentials from (14) for jmax = 4 and qmax = 60 basis functions at γF = 0. Fast and slow

variables xf = ρ and xs = z (prolate SQD and spherical QD), number of nodes i = (nρp, nzp).

kmax c = 2.5, a = 0.5 c = 2.5, a = 2.5

(nρp, nzp) (0,0) (0,2) (1,0) (0,0) (0,2) (1,0)

8 25.179 14 34.076 77 126.445 9 1.471 911 4.270 174 5.614 892

12 25.199 62 34.468 84 126.456 0 1.536 121 4.716 984 6.188 144

20 25.201 16 34.522 02 126.456 1 1.563 492 5.182 198 6.266 533

N(jmax = 4) 25.201 21 34.525 12 126.456 1 1.579 239 5.316 732 6.317 058

shows that for PSQD we have upper estimate and monotonic convergence with increasing

kmax to the numerical results at jmax = 4. Similar behavior is observed for OSQD, however

the accuracy of approximation of the effective potentials is worse, especially for the lowest

effective potential i′ = 1, corresponding to the ground state of the fast subsystem, because

the upper estimates are violated. These Tables show also that such expansions have faster

convergence for strongly oblate or prolate spheroidal QDs than for spherical ones.
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TABLE V: The convergence of eigenenergies Et of Eq. (23) vs order kmax of approximation of

effective potentials from (14) for jmax = 4 and qmax = 60 basis functions at γF = −10. Fast and

slow variables xf = ρ and xs = z (prolate SQD and spherical QD), number of nodes i = (nρp, nzp).

kmax c = 2.5, a = 0.5, γF = −10 c = 2.5, a = 2.5, γF = −10

(nρp, nzp) (0,0) (0,2) (1,0) (0,0) (0,2) (1,0)

8 20.221 65 30.913 36 125.306 2 -19.673 98 -5.378 707 -1.784 110

12 20.607 33 32.375 40 125.331 6 -15.348 50 -6.881 266 -2.605 091

20 20.658 46 32.674 45 125.332 2 -12.194 45 -2.204 160 -1.336 853

N(jmax = 4) 20.6620̇3 32.708 77 125.332 2 -10.844 02 -1.511 063 1.129 039

IV. PTRS FOR BVP FOR OSQD IN ELECTRIC FIELD BY FAST VARIABLES

To have an analytic representation of the matrix elements (11) for small γF , one can use

V̌f (xf ;xs) = 2γF z, V̌fs(xf , xs) = 0 as potentials for OSQD instead of the potentials (12)

introduced in Section 2.1. Then we arrive at the Sturm-Lioville problem for the OSQD in

fast variable expressed in the form(
− d2

dz2
− εz − Ej(ρ)

)
Bj(z; ρ) = 0, (24)

〈Bi(ρ)|Bj(ρ)〉 =

∫ L(ρ)/2

−L(ρ)/2

Bi(z; ρ)Bj(z; ρ)dz = δij,

where ε = γF is the electric field strength considered here as a formal parameter of the PT,

implying a small interval ρ ∈ (0, L(ρ) = 2c
√

1− ρ2/a2) of the scalar product 〈Bi(ρ)|Bj(ρ)〉.

The solutions B
(0)
j (z; ρ) and E

(0)
j (ρ) of the unperturbed equation (at ε = 0) have the form

{B(0)
j (z; ρ), E

(0)
j (ρ)} =

 {Bs
j (z; ρ), Es

j (ρ)}, for even j = 2, 4, ...;

{Bc
j(z; ρ), Ec

j (ρ)}, for odd j = 1, 3, ...

 , (25)

where

Bs
j (z; ρ) =

√
2/L(ρ) sin(πjz/L(ρ)), Bc

j(z; ρ) =
√

2/L(ρ) cos(πjz/L(ρ)),

Es
j (ρ) = (πj/L(ρ))2, Ec

j (ρ) = (πj/L(ρ))2.

We seek for the eigenfunctions Bj(z; ρ) and the eigenvalues Ej(ρ) in the form of power

expansions

Bj(z; ρ) =
kmax∑
k=0

εkB
(k)
j (z; ρ), Ej(ρ) =

kmax∑
k=0

εkE
(k)
j (ρ). (26)
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Substituting Eq. (26) into Eqs. (24) and equating the coefficients at the same powers of ε,

we arrive at the system of inhomogeneous differential equations with respect to corrections

E
(k)
j and B

(k)
j (z; ρ):

(
− d2

dz2
− E(0)

j (ρ)

)
B

(k)
j (z; ρ) =

(
z + E

(1)
j (ρ)

)
B

(k−1)
j (z; ρ) +

k∑
p=2

E
(p)
j (ρ)B

(k−p)
j (z; ρ), (27)

k∑
p=0

〈B(p)
j (ρ)|B(k−p)

j (ρ)〉 = 0.

In each k-th order of the perturbation theory (PT) the solutions becoming zero at the

boundary points (z = ±L(ρ)/2 are sought in the form

B
(k)
j (z; ρ) =


νmax∑
ν=0

Bs
j (z; ρ)S

(k)
ν zν + (z2 − (L(ρ)/2)2)

νmax−2∑
ν=0

Bc
j(z; ρ)C

(k)
ν+2z

ν , j = 2, 4, ...

νmax∑
ν=0

Bs
j (z; ρ)C

(k)
ν zν + (z2 − (L(ρ)/2)2)

νmax−2∑
ν=0

Bc
j(z; ρ)S

(k)
ν+2z

ν , j = 1, 3, ...

 .(28)

Substituting Eq. (28) into the corresponding equation (27) of the k-th order of the PT, and

extracting the coefficients at Bs
j (z; ρ)zν and Bc

j(z; ρ)zν , ν = 0, ..., νmax, we arrive at the set

of algebraic equations with respect to unknowns E
(k)
j (ρ), S

(k)
ν and

(k)
ν , for even j:

−(−1)j(ν + 1)(L(ρ)/2)πjC
(k)
ν+3 − (ν + 2)(ν + 1)S

(k)
ν+2 + (−1)j2(ν + 1)πjC

(k)
ν+1

−E(1)
j (ρ)S(k−1)

ν − S(k−1)
ν−1 −

k−1∑
p=2

E
(p)
j (ρ)S(k−p)

ν − E(k)
j (ρ)δν,0 = 0,

+(ν + 1)(ν + 2)(L(ρ)/2)2C
(k)
ν+4 − (ν + 2)(ν + 1)C

(k)
ν+2 − (−1)j2(ν + 1)πjS

(k)
ν+1

−E(1)
j (ρ)(C(k−1)

ν − (L(ρ)/2)2C
(k−1)
ν+2 )− C(k−1)

ν−1 + (L(ρ)/2)2C
(k−1)
ν+1 )

−
k−1∑
p=2

E
(p)
j (ρ)(C(k−p)

ν − (L(ρ)/2)2C
(k−p)
ν+2 ) = 0.

For odd j the same unknowns are calculated using the equations (29) (29) with the replace-

ment C(p) � S(p). The unknowns
(k)
0 for even j and S

(k)
0 for odd j are determined from the

respective conditions:

k∑
p=0

∑
ν,ν′

(
S(p)
ν S

(k−p)
ν′ 〈Bs

j (ρ)|zν+ν′ |Bs
j (ρ)〉 (29)

+[(C(p)
ν S

(k−p)
ν′ + S(p)

ν C
(k−p)
ν′ ) + (L(ρ)/2)2(C

(p)
ν+1S

(k−p)
ν′+1 + S

(p)
ν+1C

(k−p)
ν′+1 )]〈Bs

j (ρ)|zν+ν′|Bc
j(ρ)〉

+[(C(p)
ν C

(k−p)
ν′ )− 2(L(ρ)/2)2C

(p)
ν+1C

(k−p)
ν′+1 + (L(ρ)/2)4C

(p)
ν+2C

(k−p)
ν′+2 ]〈Bc

j(ρ)|zν+ν′ |Bc
j(ρ)〉

)
,
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and S
(k)
0 for odd j is calculated from the equation (29) with the replacement C(p) � S(p).

This algorithm was implemented using the Maple environment. The run was performed

until the maximal order of the PT kmax = 8. Below we present the first few coefficients of

the eigenvalue expansion, truncated by the terms proportional to ε6 = γ6
F

Ej(ρ) =
π2j2

((L(ρ))2
+

((L(ρ))4(π2j2 − 15)

48π4j4
ε2 +

(L(ρ))10(1980− 210π2j2 + π4j4)

2304π10j10
ε4, (30)

the eigenfunctions truncated by the terms proportional to ε2 = γ2
F

Bj(z; ρ) =

 Bs
j (z; ρ) +

(
− (L(ρ))2zBsj (z;ρ)

4π2j2
+

L(ρ)(z2−(L(ρ)/2)2)Bcj (z;ρ)

4πj

)
ε, j = 2, 4, ...

Bc
j(z; ρ) +

(
− (L(ρ))2zBcj (z;ρ)

4π2j2
− L(ρ)(z2−(L(ρ)/2)2)Bsj (z;ρ)

4πj

)
ε, j = 1, 3, ...

 ,

and the diagonal effective potentials, truncated by the terms proportional to ε6 = γ6
F

Hjj(z) =

(
dL(ρ)

dρ

)2(
π2j2 + 3

12(L(ρ))2
+

(L(ρ))4(−2880 + 258π2j2 + 7π4j4)

576π6j6
ε2

+
L(ρ)10(3510000− 389880π2j2 + 3321π4j4 + 13π6j6)

27648π12j12
ε4
)
. (31)

V. THE PTRS IN THE DIAGONAL ADIABATIC APPROXIMATION

The desired solutions ofthe original 2D BVP (4) are determined by the diagonal approx-

imation of the Kantorovich expansion(7) at fixed m

Ψm
i;n(xf , xs) ≈ Bi(xf ;xs)χi;n(xs).

The diagonal approximation of the BVP (9) and (10) in the slow variable has the form(
− 1

xds

d

dxs
xds

d

dxs
+
m̃

x2
s

+ Vi(xs)− Ei;n
)
χi;n(xs) = 0. (32)

and the eigenfunctions satisfy the orthonormalization conditions on the semiaxis [xmin
s =

0, xmax
s =∞) at d = 1 for the OSQD and on the axis (xmin

s = −∞, xmax
s =∞) at d = 0 for

the OSQD ∫ xmax
s

xmin
s

χi;n(xs))χi,n′(xs)(xs)
ddxs = δnn′ . (33)

Here Vi(xs) = V̌s(xs) + Ei(xs) + DHii(xs), where the parameter D is D = 0 for the crude

adiabatic approximation and D = 1 for the adiabatic approximation; V̌s(xs) = 0, Ei(xs)

and Hii(xs), Eqs. (30)–(31), for OSQD and V̌s(xs) = 2γF z, Ei(xs) and Hii(xs), Eq. (13),

19



FIG. 3: Three potential functions Vi(xs) for oblate xs = ρ and prolate xs = z spheroids and their

power expansions till sixth order with account of adiabatic frequencies ωi and lower bound shifts

V
(0)
i .

for PSQD; Ei;n are the eigenenergies of a lower part of thespectrum Ei;0 < Ei;1 < ... < Ei;n
enumerated in the ascending order by the number of nodes n = 0, 1, 2, ... of the eigenfunctions

χi;n(xs) at fixed adiabatic quantum numbers i = no for OSQD and i = np for PSQD. The

potential function Vi(xs) is expanded in powers of the small parameter ε

V
[jmax]
i (xs) = V

(0)
i + κ−2ω2

i x
2
s + κ−2

∑jmax

j=1
V

(j)
i (xs)ε

j. (34)

For OSQD at the values of the parameters d = 1, ε = c−2, κ = 2, m̃ = m the coefficients

V
(j)
i are determined by Taylor expansion of the effective potentials (30), (31) in the vicinity

of the equilibrium point xs = 0. With the accuracy up to order of O(γ6
F ) the coefficients

V
(j)
i and ω2

i are expressed as:

V
(0)
i =

π2n2
o

4c2
+ γ2

F

c4(π2n2
o − 15)

3π4n4
o

+ γ4
F

4c10(π4n4
o − 210π2n2

o + 1980)

9π10n10
o

, (35)

ω2
i =

π2n2
o

(ac)2
+D

3 + π2n2
o

a4
+ γ2

F

(
−8c4(π2n2

o − 15)

3a2π4n4
o

+D
4c6(7π4n4

o + 258π2n2
o − 2880)

9a4π6n6
o

)
+γ4

F

(
−80c10(π4n4

o − 210π2n2
o + 1980)

9a2π10n10
o

+D
16c12(13π6n6

o + 3321π4n4
o − 389880π2n2

o − 3510000)

27a4π12n12
o

)
,

V
(j)
i =

(
π2n2

o

(ac)2
+ jD

3 + π2n2
o

a4
+ γ2

F

(
−4c4(π2n2

o − 15)

3a4π4n4
o

δi2 −D
4c6(7π4n4

o + 258π2n2
o − 2880)

9a6π6n6
o

δi2

)
+γ4

F

(
16c10(π4n4

o − 210π2n2
o + 1980)

9a4π10n10
o

(10δi2 − 10
δi3
a2

+ 5
δi4
a4
− δi5
a6

)

+D
16c12(13π6n6

o + 3321π4n4
o − 389880π2n2

o − 3510000)

27a6π12n12
o

(−4δi2 + 6
δi3
a2
− 4

δi4
a4

+
δi5
a6

)

))
x2j+2
s .
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For PSQD at the values of the parameters d = 0, ε = 1, κ = 1, m̃ = 0 the coefficients V
(j)
i are

sought in the form of a Taylor expansion in powers of x̄s = (xs− x0) and γF of the effective

potentials Vi(xs, γF ) = Ej(xs) + DHjj(xs) + γFxs, Eq. (13). The expansion coefficients

x0 =
∑

k τ2k+1γ
2k+1
F are sought from the equilibrium condition ∂Vi(xs,γF )

∂xs

∣∣∣
xs=x0

= 0 at fixed

γF . With the accuracy up to O(γ5
F ) the coefficients V

(j)
i and ω2

i are expressed as:

V
(0)
i = −2τ1γ

2
F − 2τ3γ

4
F + α2

np,|m|/(a
2) +D(1 + α2

np,|m|)/(3c
4)

+γ2
F τ

2
1 (α2

np,|m|/(a
2c2) +D(1 + α2

np,|m|)2/(3c
4))

+γ4
F τ1(α2

np,|m|(τ
3
1 + 2c2τ3)/(a2c4) + 2D(1 + α2

np,|m|)(τ
3
1 + τ3c

2)/(3c6),

ω2
i =

(
α2
np,|m|/(a

2c2) +D(1 + α2
np,|m|)/(3c

4) (36)

+γ2
F τ

2
1 6(α2

np,|m|/(a
2c4) +D(1 + α2

np,|m|)2/(3c
6))

+γ4
F τ1(α2

np,|m|(15τ 3
1 + 12c2τ3)/(a2c6) +D(1 + α2

np,|m|)(15τ 3
1 + 8τ3c

2)/(c8)
)
,

V
(j)
i =

(
+2γF τ1((i+ 1)α2

np,|m|/(a
2c2i+2) +D(i+ 1)2(1 + α2

np,|m|)/(3c
2i+4))

+2γ3
F (i+ 1)(α2

np,|m|((2i
2 + 7i+ 6)τ 3

1 + 3τ3c
2)/(3a2c2i+4)

+D(1 + α2
np,|m|)((2i

3τ 3
1 + 11i2 + 20i+ 12)τ 3

1 + 3(i+ 1)τ3c
2)/(9c2i+6)

)
x̄2i+1
s

+
(
α2
np,|m|/(a

2c2i+2) +D(1 + α2
np,|m|)(i+ 1)/(3c2i+4)

+γ2
F τ

2
1 (i+ 2)(2i+ 3)(α2

np,|m|(a
2c2i+4) +D(1 + α2

np,|m|)(i+ 2)/(3c2i+6))

+γ4
F τ1(i+ 2)(2i+ 3)(α2

np,|m|((2i
2 + 11i+ 15)τ 3

1 + 12c2τ3)/(6a2c2i+6)

+D(1 + α2
np,|m|)((2i

3 + 17i2 + 48i+ 45)τ 3
1 + 12(i+ 2)τ3c

2)/(18c2i+8)
)
x̄2i+2
s ,

where τ2k+1 is determined from the condition that the coefficient at x̄s is zero:

τ1 =
3a2c4

3c2α2
np,|m| +Da2(1 + α2

np,|m|)
, τ3 = −

54a6c10(3c2α2
np,|m| + 2Da2(1 + α2

np,|m|))

(3c2α2
np,|m| +Da2(1 + α2

np,|m|))
4

.

In Fig 3 we show three potential functions Vi(xs) for oblate xs = ρ and prolate xs = z

spheroids and the convergence of the corresponding power expansions till the sixth order

with account of adiabatic frequencies ωi and lower bound shifts V
(0)
i .

We choose the unperturbed operators of Eq. (32) at ε = 0 in the expansion (34) in

the form (16)–(19) with the eigenvalues and the basis functions of 2D- and 1D- oscillators

given in Section 3 with respect to the scaled coordinate x, xs =
√

2x/ωi and x̄s = x/
√
ωi,

where the adiabatic frequencies ωi are defined by Eqs. (35) and (36) (at fixed i′ = n + 1),

respectively. According to (34), we seek for the eigenfunctions χi;n(xs) and the eigenvalues
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Ei;n in the form of expansions in powers of ε with unknowns Φ
(k)
n and E

(k)
n , omitting the

notation m for brevity:

χi;n(xs) = Φ(0)
n +

kmax∑
k=1

Φ(k)
n (xs)ε

k, (37)

Ei;n = V
(0)
i +

kmax∑
k=0

E (k)
i;n = V

(0)
i + κωi

(
E

(0)
i +

kmax∑
k=1

E(k)
n εk

)
. (38)

Substituting the expansions (34), (37) and (38) into Eq. (32) and equating the terms with the

same power of the parameter ε, we arrive at the recurrence set of inhomogeneous equations

of the PT with respect to the unknowns E
(k)
n and Φ

(p)
n (x):

L(n)Φ(0)
n (x) = 0 ≡ f (0)(x), (39)

L(n)Φ(k)
n (x) =

k−1∑
p=0

(E(k−p)
n − V (k−p)

i )Φ(p)
n (x) ≡ f (k)(x), k ≥ 1.

with the initial conditions (16) and (18) for OSQD and PSQD, respectively. The solution

of this problem is implemented in four steps.

Applying the relations (17) and (19), we expand the right-hand side f (k)(x) and the

solutions Φ(k)(x) of Eqs. (39) over the basis of normalized states Φ
(0)
n+s(x), Eqs. (16) and

(18):

Φ(k)
n (x) =

smax∑
s=−smax

b(k)
s Φ

(0)
n+s(x), f (k)(x) =

smax∑
s=−smax

f (k)
s Φ

(0)
n+s(x). (40)

Then a recurrent set of linear algebraic equations for unknown coefficients b
(k)
s and corrections

E(k) is obtained

s′b(k)
s − f (k)

s = 0, s = −smax, . . . , smax, (41)

where s′ = s for OSQD and s′ = 2s for PSQD. These equations are solved sequentially for

k = 1, 2, . . . , kmax:

f
(k)
0 = 0 → E(k); b(k)

s = f (k)
s /s′, s = −smax, . . . , smax, s 6= 0. (42)

The initial conditions for this procedure are

b(0)
s = δs0, E(0) = (n+ (|m̃|+ 1)/2) or E(0) = (n+ 1)/2).
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To obtain the normalized wave function Φj(x) up to the k-th order, the coefficients b
(k)
0

are determined by the following relation:

b
(k)
0 = − 1

2〈0|0〉

k−1∑
p=1

smax∑
s′=−smax

smax∑
s=−smax

b(k−p)
s 〈s|s′〉b(p)

s′ . (43)

The above scheme implemented in Maple was applied to the evaluations of solutions in

the analytical form up to the order kmax = 6 of the PTRS. The first four nonzero coefficients

for the energy (38) in the analytic form, truncated by the terms proportional to the sixth

power of the electric field strength, γ6
F , in the crude adiabatic approximation (CAA) take

the form:

1) For OSQD in terms of minor c and major a semiaxes; the set of adiabatic quantum

numbers [m,no = nzo + 1, nρo]

V (0)
no =

π2n2
o

4c2
+ γ2

F

c4(π2n2
o − 15)

3π4n4
o

+ γ4
F

4c10(π4n4
o − 210π2n2

o + 1980)

9π10n10
o

, (44)

E (0)
no;nρo =

[
πno
ac
− γ2

F

4c5(π2n2
o − 15)

3aπ5n5
o

− γ4
F

8c11(2π4n4
o − 360π2n2

o + 3375)

3aπ11n11
o

]
(2nρo + |m|+ 1),

E (1)
no;nρo =

[
1

a2
+ γ2

F

4c6(π2n2
o − 15)

π6n6
oa

2
+ γ4

F

16c12(7π4n4
o − 1110π2n2

o + 10350)

3π12n12
o a

2

]
×

×(2 + 6nρo + 3|m|+ 6n2
ρo + |m|2 + 6nρo|m|),

E (2)
no;nρo = (2nρo + |m|+ 1)

[
3c

2πa3no
(2 + 2nρo + |m|+ 2n2

ρo + 2nρo|m|)

−γ2
F

2c7(π2n2
o − 15)

3π7n7
oa

3
(54 + 118nρo + 16|m|2 + 59|m|+ 118n2

ρo + 118nρo|m|)

−γ4
F

(
4c13(1874π4n4

o − 273120π2n2
o + 2536425)

9π13n13
o a

3
(2nρo + |m|+ 2n2

ρo + 2nρo|m|)

+
224c13(8π4n4

o − 1140π2n2
o + 10575)

9π13n13
o a

3
|m|2 +

8c13(326π4n4
o − 48480π2n2

o + 450675)

3π13n13
o a

3

)]
,

2) For PSQD in terms of minor a and major c semiaxes, the set of adiabatic quantum

numbers [m,np = nρp + 1, nzp] and positive zeros αnp,|m| of the Bessel functions of the first
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kind [37]

V (0)
np;nzp =

α2
np,|m|

a2
− γ2

F

a2c2

4α2
np,|m|

+ γ4
F

a6c4

16α6
np,|m|

, (45)

E (0)
np;nzp =

[
αnp,|m|

ac
+ γ2

F

3a3c

4α3
np,|m|

− γ4
F

9a7c3

16α7
np,|m|

]
(2nzp + 1),

E (1)
np;nzp =

[
3

4c2
+ γ2

F

27a4

16α4
np,|m|

− γ4
F

105a8c2

64α8
np,|m|

]
(2n2

zp + 2nzp + 1),

E (2)
np;nzp =

3a

16c3αnp,|m|
(2nzp + 1)(n2

zp + nzp + 3)

+γ2
F

(
5a5

64cα5
np,|m|

(2nzp + 1)(25n2
zp + 25nzp + 51)− a4

4α4
np,|m|

(30n2
zp + 30nzp + 11)

)

−γ4
F

(
45a9c

256α9
np,|m|

(2nzp + 1)(23n2
zp + 23nzp + 37)− 3a8c2

8α8
np,|m|

(30n2
zp + 30nzp + 11)

)
.

In Tables VI and VII we demonstrate how the approximate eigenvalues in the lower part

of spectrum for OSQD and PSQD at m = 0 and γF = 0 converge to the values calculated

numerically with required accuracy in the crude adiabatic approximation with increasing of

the PT order k. The accuracy was from 8 to 5 digits at nzo = 0, from 10 to 8 digits at

nzo = 2, from 6 to 4 digits at nρp = 0, and from 8 to 7 digits at nρp = 1, respectively. Note,

that the difference between the adiabatic shift V
(0)
i and the eigenvalues Ei;n = V

(0)
i + E (0)

i;n in

the zero order k = 0 of the PT is small, but increases with growing nρo and nzp for OSQD

and PSQD, respectively. The shifts V
(0)
i give the main contribution and provide the lower

adiabatic estimate of each set of eigenvalues, generated by the perturbed harmonic oscillator

terms with adiabatic frequency ωi. From Tables VI and VII one can see that with increasing

quantum numbers nzo (or nρp), related to the fast variable, the accuracy of approximation

of the lower part of the spectrum is increasing. This is because the accuracy of the Taylor

approximations of potential function (34) in Eq. (32) is improved with increasing the number

i = nzo + 1 > 2 (or i = nρp + 1 > 2), which is demonstrated in Fig. 3.

In Figs. 4 and 5 we show the eigenvalues E of the lower part of the spectrum of oblate and

prolate QDs versus the electric field strength within small (left panels) and large (right pan-

els) intervals of γF , calculated in the crude adiabatic approximation (solid and dashed lines)

to compare them with the numerical results (dotted lines). One can see that the eigenvalues

calculated using the PT (solid and dashed lines), corresponding to the eigenfunctions with

smaller number of nodes along the electric field (i.e., with smaller nzo for OSQD and nzp
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TABLE VI: Convergence of eigenvalues E(kmax)
nzo,nρo = V

(0)
nzo +

∑kmax
k=0 E

(k)
nzo,nρo for oblate spheroid c = 0.5,

a = 5 vs PT order kmax at γF = 0 . First line ∗ notes adiabatic shift V
(0)
nzo,nρo . Last line are results

of numerical calculations (Num).

kmax nzo = 0,nρo = 0 nzo = 0,nρo = 1 nzo = 0,nρo = 2 nzo = 0,nρo = 3 nzo = 0,nρo = 4

* 11.12624146 13.63951558 16.15278970 18.66606383 21.17933795

0 11.20624146 14.19951558 17.67278970 21.62606383 26.05933795

1 11.21006118 14.23389305 17.80647986 21.97365822 26.78126477

2 11.21026382 14.23433886 17.80254859 21.95100281 26.71094787

3 11.21028027 14.23441723 17.80242765 21.94908610 26.70256215

4 11.21028227 14.23443790 17.80265195 21.95065251 26.70959163

5 11.21028259 14.23444049 17.80264785 21.95052291 26.70875037

Num 11.21028268 14.23444147 17.80265065 21.95050805 26.70857727

kmax nzo = 2,nρo = 0 nzo = 2,nρo = 1 nzo = 2,nρo = 2 nzo = 2,nρo = 3 nzo = 2,nρo = 4

* 92.59635079 100.1361731 107.6759955 115.2158178 122.7556402

0 92.67635079 100.6961731 109.1959955 118.1758178 127.6356402

1 92.67762403 100.7076323 109.2405589 118.2916826 127.8762825

2 92.67764654 100.7076818 109.2401221 118.2891654 127.8684695

3 92.67764715 100.7076847 109.2401176 118.2890944 127.8681589

4 92.67764718 100.7076850 109.2401203 118.2891137 127.8682457

5 92.67764718 100.7076850 109.2401203 118.2891132 127.8682422

Num 92.67764718 100.7076850 109.2401204 118.2891132 127.8682419

for PSQD) and with greater number of nodes across the electric field (i.e., with greater nρo

for OSQD and nρp for PSQD), provide better approximation of the eigenvalues, calculated

numerically with required accuracy (dotted lines). This property follows from the fact that

such functions have better localization in the vicinity of the plane, passing through the QD

center transverse to the electric field, i.e., in the region with minimal contribution of the

electric field potential to the Hamiltonian of the system. As shown in the right panels of

Figs. 4 and 5, the differences between the egienvalues, calculated using the PT and the nu-

merical method, increase faster in a smaller interval of γF for larger PSQD than for smaller

OSQD, the size being measured along the direction of the electric field.
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TABLE VII: Convergence of eigenvalues E(kmax)
nρp ,nzp = V

(0)
nρp +

∑kmax
k=0 E

(k)
nρp ,nzp for prolate spheroid

c = 2.5, a = 0.5 vs PT order kmax at γF = 0 . First line ∗ notes adiabatic shift V
(0)
nρp ,nzp . Last line

are results of numerical calculations (Num).

kmax nρp = 0,nzp = 0 nρp = 0,nzp = 2 nρp = 0,nzp = 4 nρp = 0,nzp = 6 nρp = 0,nzp = 8

* 25.05660430 32.75204608 40.44748787 48.14292965 55.83837144

0 25.17660430 34.31204608 45.36748787 58.34292965 73.23837144

1 25.18408925 34.42432034 45.88394944 59.80249498 76.41947535

2 25.18465987 34.42810718 45.87103269 59.69485535 76.04779441

3 25.18472054 34.42867746 45.87114189 59.68460238 75.99436976

4 25.18472960 34.42880826 45.87257549 59.69618640 76.05191800

5 25.18473139 34.42883580 45.87259458 59.69511288 76.04351256

Num 25.18472985 34.42884694 45.87265876 59.69512314 76.04210082

kmax nρp = 1,nzp = 0 nρp = 1,nzp = 2 nρp = 1,nzp = 4 nρp = 1,nzp = 6 nρp = 1,nzp = 8

* 126.3011119 143.9653618 161.6296118 179.2938617 196.9581117

0 126.4211119 145.5253618 166.5496118 189.4938617 214.3581117

1 126.4243727 145.5742742 166.7746086 19 0.1297223 215.7439616

2 126.4244810 145.5749929 166.7721571 190.1092932 215.6734198

3 126.4244860 145.5750400 166.7721661 190.1084455 215.6690025

4 126.4244863 145.5750447 166.7722178 190.1088627 215.6710754

5 126.4244864 145.5750452 166.7722181 190.1088459 215.6709435

Num 126.4244896 145.5750487 166.7722220 190.1088484 215.6709278

The range of the parameter values, for which the PT algorithms are valid, was estimated

by means of numerical calculations using the KANTBP program [30], as well as the condition

that the mean value of the slow variable is smaller than the size of the major axis of OSQD

or PSQD, i.e., ρ ≤ a or z ≤ c, or known estimates of the distribution of nodes of Laguerre

or Hermite polynomials [37]. To calculate also the approximate eigenfunctions of the lower

part of the spectrum n = 0, ..., nmax with required numbers n of nodes in the interval

ρ ∈ (0, a) (or z ∈ (−c, c)) for OSQD (or PSQD), one should choose such value of parameter

a =
√

2x0/ωi (or c = x0/
√
ωi), that outside this interval x ∈ (x0 = 4n + 2|m| + 2,∞) (or

|x| ∈ (x0 = (2n + 1)1/2,∞)) the Laguerre (or Hermite) polynomials have no nodes. As an
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FIG. 4: Dependence of eigenenergies E (in units of Ee) of lower part of spectrum of electronic

states of OSQDs (a = 2.5, c = 0.5) at m = 0 on electric field strength γF (in units of F ∗0 ): Solid and

dashed lines are eigenenergies calculated by PTRS till 5 order in crude adiabatic approximation:

seven solid lines (nzo = 0, nρo = 0, 1, ..., 6) and four dashed lines (nzo = 1, nρo = 0, 1, 2, 3) are

shown on left panel in interval γF ∈ (0, 1); the first three of solid lines (nzo = 1, nρo = 0, 1, 2) and

the first two of dashed lines (nzo = 1 , nρo = 0, 1) are shown on lower-right and upper-right panel,

respectively, in bigger intervals γF ∈ (0, 20) and γF ∈ (0, 10). Numerical solutions of Eqs. (4) at

jmax = 4 are shown by points.

example, in Fig. 2 we show contour plots in zx and xz plane of the first four eigenfunctions

of OSQD and PSQD, respectively, that have a required number of nodes (crossings of the

function plot with zero plane) in the interval ρ ∈ (0, a) and z ∈ (−c, c) at the values c = 0.5,

a = 5, c = 2.5, a = 0.5. One can see that the asymmetry with respect to z-axis of the

eigenfunctions of PSQD is greater than that of OSQD, because the variation of well depth

of PSQD is greater than of OSQD.
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FIG. 5: Dependence of eigenenergies E (in units of Ee) of lower part of spectrum of electronic

states of PSQDs (a = 0.5, c = 2.5) at m = 0 on electric field strength γF (in units of F ∗0 ): Solid and

dashed lines are eigenenergies calculated by PTRS till 5 order in crude adiabatic approximation:

fifteen solid lines (nρp = 0, nzp = 0, 1, ..., 14) and three dashed lines (nρp = 1 , nzp = 0, 1, 2) are

shown on left panel in interval γF ∈ (0, 0.1); the first six of solid lines (nρp = 0, nzp = 0, 1, ..., 5) are

shown on lower-right panel and the dashed lines (nρp = 1 , nzp = 0, 1, 2) are shown on upper-right

panel in bigger interval γF ∈ (0, 3). Numerical solutions of Eqs. (4) at jmax = 4 are shown by

points.

VI. ABSORPTION COEFFICIENT FOR AN ENSEMBLE OF QDS

One can use the differences in the energy spectra to verify the considered models of QDs by

calculating the absorption coefficient K(ω̃ph, ã, c̃, ) of an ensemble of identical semiconductor

QDs [14]. Since we do not discuss exciton effects in the present paper, the absorption
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coefficient may be approximately expressed as

K̃(ω̃ph, ã, c̃, u) =
∑
ν,ν′

K̃ν,ν′(ω̃
ph, ã, c̃, u) = Ã

∑
ν,ν′

Ĩν,ν′(u)δ(~ω̃ph − W̃νν′), (46)

Ĩν,ν′(u) =

∣∣∣∣∫ Ψ̃e
ν(r̃; ã, c̃, F, µe)Ψ̃

h
ν′(r̃; ã, c̃, F, µh)d

3r̃

∣∣∣∣2 ,
where Ã is proportional to the square of the matrix element in the Bloch decomposition,

Ψ̃e
ν(u) and Ψ̃h

ν′ are the eigenfunctions of the electron (e) and the heavy hole (h), Ẽe
ν and

Ẽh
ν′ are the energy eigenvalues for the electron (e) and the heavy hole (h), depending on the

semiaxis size c̃, ã for OSQD (or ã, c̃ for PSQD) and the adiabatic set of quantum numbers

ν = [nzo, nρo,m] and ν ′ = [n′zo, nρo′ ,m
′] (ν = [nρp, nzp,m] and ν ′ = [n′ρp, n

′
zp,m

′]), where

m′ = −m, Ẽg is the band gap width in the bulk semiconductor, ω̃ph is the incident light

frequency, W̃νν′ = Ẽg + Ẽe
ν(ã, c̃) + Ẽh

ν′(ã, c̃) is the inter-band transition energy for which

K̃(ω̃ph) has the maximal value. We rewrite the expression (46) in the terms of frequency

shift of the incident light ∆ωph/(2π) = (~ω̃ph − Ẽg)/(2π~) corresponding to the inter-band

transition energy shift ∆W̃νν′ = W̃νν′ − Ẽg = Ẽe
ν(ã, c̃) + Ẽh

ν′(ã, c̃) for which K̃(∆ω̃ph) has the

maximal value, using dimensionless variables in the reduced atomic units

K̃(∆ω̃ph, ã, c̃) = ÃẼ−1
g

∑
ν,ν′

Ĩν,ν′(u)δ[fν,ν′(u)], fν,ν′(u) = λ1 −
2Ee

ν(a, c) + 2Eh
ν′(a, c)(µh/µe)

2Eg
,(47)

where the parameter u will be defined below, λ1 = (~ω̃ph−Ẽg)/Ẽg is the energy of the optical

interband transitions scaled to Ẽg, 2Eg = Ẽg/Ẽ
e
R is the dimensionless band gap width.

For GaAs the functions fh→eν,ν′ (u) describing the (h → e) interband transitions have the

form

fh→eν,ν′ (u) = λ1 − (2Eg)
−1(2Ee

ν(a, c, γF ) + 2Ee
ν′(a, c,−(µh/µe)γF )(µe/µh)), (48)

where µe = 0.067m0 and µh ≡ µhh = 0.558m0 are the masses of electron and hole, respec-

tively, Ẽg = 1430 meV is the band gap width and κ = 13.18 is the dc permittivity and

Ee
R = e2/(2κaeB) = 5.275 meV, aeB = ~2κ/(µee

2) = 104Å, Eh
R = e2/(2κahB) = 49 meV,

ahB = ~2κ/(µhe
2) = 15Å, 2γF =F/F ∗0 , F ∗0 = Ee

R/(ea
e
B) = e/(2κ(aeB)2) = 5.04kV/cm.

For InSb the dispersion law for heavy holes (hh) is parabolic while for electrons (e) and

light holes (lh) it is non-parabolic and may be described by the Kane model [18, 19, 22] at
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γF = 0. The energy values in our notation are:

2Ẽhh
ν (InSb) = 2Ẽh

ν′(ã, c̃), (49)

2Ẽe
ν(InSb) = 2Ẽlh

ν (InSb) = −Ẽg/2 +
√
Ẽ2
g/4 + Ẽg(2Ẽe

ν(ã, c̃)). (50)

As follows from Eqs. (49) and (50), to determine the energy spectrum and the wave

function of the light hole and the electron one should solve the Klein-Gordon equation ([39,

40]), while for heavy hole the Schrödinger equation is applicable. The functions fhh→eν,ν′ (u)

and fhh→eν,ν′ (u) describing the (hh→ e) and the (lh→ e) interband transitions have the forms

fhh→eν,ν′ (u) = λ1 − (1/2 +
√

1/4 + (2Ee
ν(a, c)/(2Eg)) + (2Eg)

−12Ee
ν′(a, c)(µe/µh)), (51)

f lh→eν,ν′ (u) = λ1 − 2(
√

1/4 + (2Ee
ν(a, c)/(2Eg))), (52)

where µe = µlh = 0.15m0 and µh ≡ µhh = 0.5m0 are the masses of electron, light and heavy

holes, respectively, Ẽg = 180 meV is the band gap width, κ = 16 is the dc permittivity,

and Ee
R = Elh

R = e2/(2κaeB) = 7.972 meV, aeB = alhB = ~2κ/(µee
2) = 56.44Å, Eh

R = Ehh
R =

e2/(2κahhB ) = 26.57 meV, ahB = ahhB = ~2κ/(µhe
2) = 16.93Å.

For both electron and hole carriers the dimensionless energies 2Ee
ν = Ẽe

ν/Ẽ
e
R and

2Eh
ν (µh/µe) = Ẽh

ν /Ẽ
e
R are expressed in the same reduced atomic units Ẽe

R, and the over-

lap integral (46) between the eigenfunctions, corresponding to Ee
ν(γF ) and Eh

ν (γF ) =

(µe/µh)E
e
ν(−(µh/µe)γF ), takes the form

Ĩν,ν′(u) =

∣∣∣∣∫ (aeB)3Ψe
ν(r; a, c, γF , µe)Ψ

e
ν′(r; a, c,−(µh/µe)γF , µe)d

3r

∣∣∣∣2 . (53)

Now consider an ensemble of OSQDs (or PSQDs), differing in the minor semiaxis values

c = uoc̄ (or a = upā), determined by the random parameter u = uo (or u = up). The

corresponding minor semiaxis mean value is c̄ at fixed major semiaxis a (or ā at fixed major

semiaxis c), and the appropriate distribution function is P (uo) (or P (up)). Commonly, in

this case the normalized Lifshits-Slezov distribution function [15] is used:

P (u) = {34eu2 exp(−1/(1− 2u/3))/25/3/(u+ 3)7/3/(3/2− u)11/3, u ∈ (0, 3/2); 0, otherwise}

having conventional properties
∫
P (u)du = 1, ū =

∫
uP (u)du = 1. The absorption coeffi-

cients K̃o(ω̃ph, ¯̃a, c̃) or K̃p(ω̃ph, ã, ¯̃c) of an ensemble of semiconductor OSQDs or PSQDs with

different dimensions of minor semiaxes are expressed as

K̃o(ω̃ph, ¯̃a, c̃) =

∫
K̃(ω̃ph, ¯̃a, c̃, uo)P (uo)duo, K̃p(ω̃ph, ã, ¯̃c) =

∫
K̃(ω̃ph, ã, ¯̃c, up)P (up)dup.

(54)
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Substituting (47) into (54) and taking into account the known properties of the δ-function,

we arrive at the analytical expression for the absorption coefficient K̃(ω̃ph, ã, c̃) of a system

of semiconductor QDs with a distribution of random minor semiaxes:

K̃(ω̃ph)

K̃0

=
∑
ν,ν′,s

K̃ν,ν′(ω̃
ph)

K̃0

,
K̃ν,ν′(ω̃

ph)

K̃0

= Ĩν,ν′ (us)

∣∣∣∣ dfν,ν′(u)

du

∣∣∣∣
u=us

∣∣∣∣−1

P (us) , (55)

where K̃0 = Ã−1Ẽg is the normalization factor, us are the roots of the equation fν,ν′(us) = 0.

At γF = 0 for IPBM we have the interband overlap Ĩν,ν′ = δnρo,n′
ρo
δnzo,n′

zo
δm,−m′

for OSQD, or Ĩν,ν′ = (J1+|m|(αnρp+1,|m|)/J1−|m|(αnρp+1,|m|))
2δnzp,n′

zp
δnρp,n′

ρp
δm,−m′ for PSQD,

where αnρp+1,|m| is the positive root of the Bessel function, and the selection rules m = −m′,

nzo = n′zo, nρo = n′ρo, or nρp = n′ρp, nzp = n′zp [27], while at γF 6= 0 one should calculate

the interband overlap (53) in accordance with the selection rules m = −m′, nρo = n′ρo, or

nρp = n′ρp, respectively. Note,that in the adiabatic limit and at small γF the contributions

of non-diagonal matrix elements to the energy values are about 1% for IPBM of OSQD and

PSQD; then in the Born-Oppenheimer approximation of the order bmax for the AC we get

fν,ν′(u) = λ1 −
fmax∑
j=0

f
(j)
ν,ν′u

j−2. (56)

The coefficients of the expansion (56) for parabolic dispersion law for small γF 6= 0 were

constructed using the expansions (44) and (45) and at γF = 0 they are given in [27]. In

general case for the calculation fν,ν′(u) by formula (48), (51), or (52) we used the eigenvalues

Ee
ν(a, c) and Eh

ν′(a, c) calculated numerically with given accuracy. After that we evaluated

the coefficients of expansion like (56) by the method of least squares and by the polynomial

interpolation in the case of parabolic and non-parabolic dispersion laws, respectively. Be-

cause of monotonic behavior of function fν,ν′(u) vs u in the case under consideration, we

have only one root us of the equation fν,ν′(us) = 0, which was used in formula (55).

For the Lifshits-Slezov distribution Figs. 6 and 7 display the total absorption coefficients

K̃(ω̃ph)/K̃0 and the partial absorption coefficients K̃ν,ν(ω̃
ph)/K̃0, that form the correspond-

ing partial sum (55) over a fixed set of quantum numbers ν, ν ′ at m = −m′ = 0. As a

result of averaging (54) a series of curves with finite with and height are observed instead

of a series of δ-functions. One can see that the summation over the quantum numbers

no = nzo + 1 = 1, 2, 3, 4, 5 (or np = nρp + 1 = 1, 2, 3) enumerating the nodes of the wave

function with respect to the fast variable gives the corresponding principal maxima of the
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FIG. 6: Absorption coefficient K/K0, Eq. (55), consisting of a sum of the first partial contributions

vs the energy λ = λ1 of the optical interband transitions for the Lifshits-Slezov distribution, using

the functions fh→eν,ν′ (u) for GaAs (h → e) without electric field: for ensemble of OSQDs c̄ = 0.5,

a = 2.5 (left panel) and for ensemble of PSQDs ā = 0.5, c = 2.5 (right panel).
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FIG. 7: The same as in Fig. 6, but in the presence of electric field 2γF =F/F ∗0 . For comparison,

the corresponding absorption coefficient without electric field is given by dashed line.

total AC for the ensemble of QDs with distributed dimensions of minor semiaxis, while the

summation over the quantum number nρo = 0, 1, 2, 3, ..., 8 (or nzp = 0, 1, 2, ..., 15) that labels

the nodes of the wave function with respect to the slow variable leads to the increase of

amplitudes of these maxima and to secondary maxima arising in the case of sparer energy

levels of IPBM of OSQDs (or PSQDs).

In the regime of strong dimensional quantization the frequencies of the interband tran-

sitions (h → e) in GaAS between the levels no = 1, nρo = 0,m = 0 for OSQD or

np = 1, nzp = 0,m = 0 for PSQD at the fixed values ã = 2.5ae and c̃ = 0.5ae for

OSQD or ã = 0.5ae and c̃ = 2.5ae for PSQD, are equal to ∆ω̃ph100/(2π) = 16.9THz at

γF = 0 and ∆ω̃ph100/(2π) = 15.9THz at γF = 10, or ∆ω̃ph100/(2π) = 33.3THz at γF = 0 and

∆ω̃ph100/(2π) = 31.5THz at γF = 2, where ∆ω̃ph100/(2π) = (2π~)−1(W̃100,100 − Ẽg) corresponds
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FIG. 8: The same as in Fig. 6, but for InSb (hh→ e) interband transition.

FIG. 9: The same as in Fig. 6, but for InSb (lh→ e) interband transition.

to the IR spectral region [7, 8], taking the band gap value (2π~)−1Ẽg = 346 THz into ac-

count. In Fig. 7 one can see the quantum-confined Stark effect that consist in the reduction

of the absorption energy (light frequency) at the expense of lowering the energy of both (e)

and (h) bound states due to the electric field effect. The total ACs at F 6= 0, shown by

solid lines, qualitatively correspond to the total AC at F = 0, shown by dashed lines, but

have lower magnitudes and smooth behavior, in spite of the additional contribution to the

partial ACs of the overlap integral (53) from the interband transition nzo 6= n′zo or nzp 6= n′zp

in OSQD or PSQD, also shown in Fig. 7.

At the same parameters of the QDs the frequencies of the interband transitions (lh→ e)

in InSb are equal to ∆ω̃ph100/(2π) = 68.5THz for OSQD or ∆ω̃ph100/(2π) = 87.2THz for PSQD,

while the frequencies of the interband transitions (hh→ e) in InSb are equal to ∆ω̃ph100/(2π) =

78.6THz for OSQD or ∆ω̃ph100/(2π) = 102THz for PSQD. These values correspond to the

infrared spectral region with longer wavelength, similar to [22], with the band gap value

(2π~)−1Ẽg = 44THz taken into account. One can see that the behavior of total ACs for

parabolic dispersion law for IPBM of InSb, shown in Fig. 8, is similar to that for GaAs (Fig.
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6), while the behavior of AC for nonparabolic dispersion law, shown in Fig. 9, is essentially

different. In particular, for OSQDs it grows faster with increasing λ1, while for PSQDs it

goes to a plateau before starting to grow. Indeed, with increasing quantum numbers nρo or

nzp that characterize the excitation of slow motion, the maxima of partial ACs decrease for

parabolic dispersion law, while for the nonparabolic one the maxima of partial ACs increase.

With decreasing semiaxis the threshold energy increases, because the “effective” band

gap width increases, which is a consequence of the dimensional quantization enhancement.

Therefore, the above frequency is greater for PSQD than for OSQD, because the SQ im-

plemented in two direction of the plane (x,y) is effectively larger than that in the direction

of the z axis solely at similar values of semiaxes. Higher-accuracy calculations reveal an

essential difference in the frequency behavior of the AC for interband transitions in systems

of semiconductor OSQDs or PSQDs having a distribution of minor semiaxes, which can be

used to verify the above models.

VII. CONCLUSION

The 3-D BVP for spheroidal quantum dots with respect to fast and slow variables of

cylindrical coordinates was reduced by Kantorovich or adiabatic method to BVP for set of

second-order differential equations (ODE) with effective potentials given in the analytic form

with respect to the slow variable, using the basis function of fast variables, that depended

on the slow variable as a parameter. Separation of variables of 3D BVP in spheroidal coordi-

nates provides exact classification of energy eigenvalues by means of nodes of eigenfunctions

which transforms exactly to an adiabatic classification of eigensolutions of a diagonal ap-

proximation of ODE at small parameter, i.e. ratio of minor and major semiaxes of oblate

or prolate spheroid. The effective potential of a crude diagonal adiabatic approximation

(CDAA) of the ODE has been approximated by power expansions by slow variable. Energy

eigenvalues and eigenfunctions of the BVP for CDAA were sought in expansions over eigen-

functions of 2D or 1D oscillator with adiabatic frequencies and power of small parameter

by the PT. Required coefficients of these expansion were calculated in analytical form as

polynomials of the sets of adiabatic quantum numbers.

To specify the region of the model parameters, in which the PT asymptotic series are

valid, we we compared the PT results with those of numerical calculations carried out with

34



required accuracy. The PT eigensolutions were used in analytic evaluation of the photoab-

sorption coefficient for ensembles of oblate and prolate spheroidal QDs with given random

distribution of small semiaxes without and with small values of external electric fields. In

general case for calculation fν,ν′(u) by formula (48), (51), or (52) we used eigenvalues calcu-

lated numerically with given accuracy and we evaluated the coefficients of expansion like (56)

by the method of least squares and by the polynomial interpolation in the case of parabolic

and nonparabolic dispersion laws, respectively. Note, in the case of numerical calculations of

the photoabsorption coefficient the required derivatives of eigenenergies and eigenfunctions

with respect to a parameter, e.g., the small semiaxis, can be calculated also with the help

of the numerical algorithms [29, 35].

The elaborated methods, symbolic-numerical algorithms (SNAs) and programs [23–35]

can be applied for solving the BVPs of discrete and continuous spectra of the Schrödinger-

type equations and the analysis of spectral and optical characteristics of QWs, QWr’s and

QD’s in external fields, as well as the spectra of models of deformed nuclei [41].
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