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Abstract
Quantum tunnelling of a cluster comprised of several identical particles, coupled via an
oscillator-type potential, through short-range repulsive barrier potentials is studied in the s-wave
approximation of the symmetrized coordinate representation. A procedure is briefly described
that allows the construction of states, symmetric or asymmetric with respect to permutations of A
identical particles, from the harmonic oscillator basis functions expressed via the newly
introduced symmetrized coordinates. In the coupled-channel approximation of the -matrix
approach, the effect of quantum transparency is analysed; it manifests itself in non-monotonic
resonance dependence of the transmission coefficient upon the energy of the particles, their
number A = 3, 4 and the symmetry types of their states. The total transmission coefficient is
shown to demonstrate resonance behaviour with probability density growth in the vicinity of the
potential energy local minima, which is a manifestation of the barrier quasi-stationary states,
embedded in the continuum.

Keywords: quantum tunnelling, cluster, system of identical particles, permutation symmetry,
transmission coefficient, quantum transparency, symmetrized coordinates

(Some figures may appear in colour only in the online journal)

1. Introduction

The mechanism of quantum penetration (tunnelling) of two
bound particles through repulsive barriers is a subject of both
theoretical and experimental interest in relation to such pro-
blems as those of near-surface quantum molecular diffusion,
fragmentation in the production of neutron-rich light nuclei,
and heavy ion collisions through multidimensional barriers
[1–6]. Generalization of the two-particle model over a quan-
tum system of >A 2 identical particles is urgently needed for
an appropriate description of molecular and heavy ion colli-
sions, as well as for the study of nuclei possessing tetrahedral
and octahedral symmetry [7].

Here we consider the penetration of a cluster, consisting
of A identical quantum particles, coupled via the short-range
oscillator-type potential, through a repulsive potential barrier.
We assume that the total spin of the cluster is fixed, so only

the coordinate wavefunction is to be considered, which may
be symmetric (S) or antisymmetric (A) with respect to the
permutation of A identical particles. The initial problem is
shown to be reduced to that of the motion of a composite
system, with the internal degrees of freedom describing an

−( )A d1 -dimensional oscillator, and the external degrees of

freedom describing the cluster centre-of-mass motion in the d-
dimensional Euclidean space. For simplicity, we restrict our
consideration to the so-called s-wave approximation, in which
d = 1. The reduction is provided by using appropriately
chosen symmetrized coordinates, rather than the conventional
Jacobi coordinates. The advantage of the symmetrized coor-
dinates over the Jacobi ones is that they provide invariance of
the resulting Hamiltonian with respect to permutations of A
identical particles. This, in turn, allows the construction of
basis functions that are symmetric or antisymmetric under the
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permutations not only of −A 1 relative coordinates, but also of
A Cartesian coordinates, i.e., of A real particles that form the
cluster. Using this basis to expand the solution is referred to as
adopting the symmetrized coordinate representation (SCR).

In the SCR we seek the solution in the form of Galerkin
or Kantorovich expansions with unknown coefficients having
the form of matrix functions of the centre-of-mass variables.
Thus the initial problem is reduced to a boundary-value
problem (BVP) for a system of coupled-channel equations in
the centre-of-mass variable with conventional asymptotic
boundary conditions. The solution procedure involves com-
bined symbolic–numeric algorithms [8, 9]. The results are
analysed with particular emphasis on the quantum transpar-
ency phenomenon, i.e., the non-monotonic energy depen-
dence of the transmission coefficient, revealing the resonance
nature of quantum tunnelling of clusters in S or A states.

2. The setting of the problem

Consider A identical quantum particles having mass m and the

set of Cartesian coordinates ∈x Ri
d in the d-dimensional

Euclidean space, forming a vector ˜ = ˜ … ˜ ∈ ×x xx R( , , )A
A d

1 in
the A × d-dimensional configuration space. The particles form

a cluster due to the coupling via the pair potential ˜ ˜V x( )
pair

ij

depending on the relative coordinates ˜ = ˜ − ˜x x xij i j in a similar

way to the potential of a harmonic oscillator

˜ ˜ = ˜ωV x x( ) ( )
hosc

ij
m

ij2
22

with the frequency ω. The particles are

considered to penetrate through the repulsive potential barrier
˜ ˜( )V xi . Adopting the dimensionless coordinates = ˜ /x x xi i osc,

= ˜ = −/x x x x xij ij osc i j and energy = ˜ /E E Eosc, =V x( )i
˜ /V x x E( )i osc osc , = ˜ =/ /V x V x x E x A( ) ( )hosc

ij

hosc

ij osc osc ij
2 , using the

oscillator units (osc.u.)  ω= /( )x m Aosc and =Eosc

ω A /2 , one can write the appropriate Schrödinger equation
as

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥∑

∑ ∑

Ψ− ∂
∂

+ + − =

= +

= <

= < =

( )x

A
U E

U U x V x

x
x x

x

( ) ( ) 0,

( ) ( ) ( ), (1)

i j i j

A
ij

i j i j

A
pair

ij

i

A

i

2

2
, 1;

2

, 1; 1

where = −( ) ( ) ( )U x V x V xpair
ij

pair
ij

hosc
ij is the non-oscillator

part of the coupling potential, i.e., if =( ) ( )V x V xpair
ij

hosc
ij ,

then =( )U x 0pair
ij , = … ∈ ×x xx R( , , )A

A d
1 .

We seek for the solutions Ψ x( ) of equation (1), totally
symmetric or antisymmetric under the permutations of A
particles that belong to the permutation group Sn. A permu-
tation of particles is nothing but a permutation of the appro-
priate Cartesian coordinates ↔x xi j, = …i j A, 1, , .

The construction of states that retain the symmetry
(antisymmetry) under the permutations of A initial Cartesian
coordinates (below referred to as S (A) states) is most clearly

implemented using the symmetrized relative coordinates
rather than the Jacobi ones. One of the possible definitions for
the symmetrized coordinates is

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟

ξ
ξ

ξ
⋮

=

⋯
⋯
⋯

⋮ ⋮ ⋮ ⋱ ⋮
⋯

⋮
−

A

a a a

a a a

a a a

x
x

x

1

1 1 1 1
1
1

1

, (2)

A A

0

1

1

1 0 0

0 1 0

0 0 1

1

2

where = −( )a A1 10 , = +a a A1 0 . If A = 2, then the
above symmetrized coordinates are similar to the symme-
trized Jacobi coordinates of [10], while for A = 4 they cor-
respond to those of [11] (up to a normalizing factor).

With the relations − =a a A1 0 , − =a a A10 0 taken
into account, the relative coordinates ≡ −x x xij i j of a pair of

particles i and j are expressed in terms of the internal −A 1
symmetrized coordinates only:

ξ ξ ξ≡ − = − ≡− − − −x x x , (3)ij i j i j i j1 1 1, 1

∑ξ ξ≡ − = + = …−
′=

−

′x x x a i j A, , 2, , . (4)i i i

i

A

i1 1 1 0

1

1

In the symmetrized coordinates, equation (1) takes the
form

⎡
⎣⎢

⎤
⎦⎥

∑ ∑

ξ
ξ ξ ξ

ξ ξ ξ

ξ
ξ Ψ ξ

ξ ξ

− ∂
∂

− ∂
∂

+ + − =

= +
= < =

( )( )

U E

U U x V x

( , ) ( , ) 0,

( , ) ( ( , ) ), (5)
i j i j

A
pair

ij

i

A

i

2

0
2

2

2
2

0 0

0

, 1; 1

0

with ξ ∈ Rd
0 and ξ ξ ξ= … ∈−

− ×R{ , , } ( )
A

A d
1 1

1 , which is
invariant under the permutations ξ ξ↔i j with

= … −i j A, 1, , 1, i.e., the invariance of equation (1) under
the permutations ↔x xi j with = …i j A, 1, , survives the

symmetrizing coordinate transformation (2). This remarkable
fact is one of the most prominent features of the proposed
approach.

3. The symmetrized coordinate representation

We restrict ourselves to considering =( ) ( )V x V xpair
ij

hosc
ij in

the s-wave approximation (d = 1). We define the set of SCR

cluster functions ξ ξΦ〈 | 〉 ≡ ( )j ( ) ( )S A
j
S A and the corresponding

energy eigenvalues ϵ ( )
j
S A as a solution of the BVP for the

equation

⎛
⎝⎜

⎞
⎠⎟ξ

ξ ξϵ Φ− ∂
∂

+ − =( ) 0. (6)( ) ( )
j
S A

j
S A

2

2
2

The solution is sought for in the form of an expansion:

∑ξ ξΦ α Φ=
Δ… ∈

… …
−

− −( ) ( ). (7)( )
[ ]
( )

[ ]
{ }

j
S A

i i
j i i
S A

i i
osc

, ,
, , , ,

A j

A A

1 1

1 1 1 1

Here the set Δ ≡ … −{ }i i, ,j A1 1 is defined by the condition
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Δ ϵ= … ∑ + − =− =
−{ }( )i i i A, , 2 1 ( )

j A k

A
k j

S A
1 1 1

1
, and

ξΦ = ∏
ξ ξ

π… =
− −

!− ( ) ( )
[ ]

( )
i i
osc

k

A H

i
, , 1

1 exp 2

2A

k ik k

ik
k

1 1

2

4
is the eigenfunction,

corresponding to the energy eigenvalue ϵ ϵ≡ =… −[ ]i i
osc

f
osc

, , A1 1

+ −f A2 1 , = ∑ =
−

f i
k

A
k1

1
, of the −( )A 1 -dimensional oscil-

lator. The energy levels are degenerate with the degeneracy

multiplicity (DM) = + − ! ! − !( ) ( )p A f f A2 2 [12]. The

coefficients α … −[ ]
( )

j i i
S A

, , A1 1
of the orthonormal eigenfunctions

ξΦ ( )( )
j
S A , symmetric (S) (or antisymmetric (A)) under the

permutations of A particles and the corresponding eigen-

values ϵ ( )
j
S A with the DM ≪p p( )S A are calculated using the

SCR algorithm [8] in two steps. First, the eigenfunctions
symmetric (or antisymmetric) under the permutations of ξi

(see equation (3)) are constructed in a standard way. These

eigenfunctions are symmetric (antisymmetric) under the
permutation of −A 1 particles. Second, the eigenfunctions
symmetric (antisymmetric) under the permutation of a sin-
gle pair ⟷x xi 1, e.g., ⟷x x2 1 (see equation (4)), are
constructed and orthonormalized using the Gram–Schmidt
procedure.

In the particular case A = 3, d = 1, the S (or A) functions
can be expressed in polar coordinates ξ ρ φ= cos1 ,
ξ ρ φ= sin2 as

Φ ρ φ ρ φ π

ρ ρ ρ

= = +

= ! + ! ρ−

/

/

A R Y m

R k k m e L

( , , 3) ( ) (3 ( 12) ),

( ) 2 ( 3 ) ( ) ( ),

( ) ( )

/ /

k m
S A

km m
S A

km

m

k
m

,

2 3 2 2 3 22

where = …k 0, 1, , and ρ( )Lk
m3 2 are the generalized Laguerre

polynomials [13], φ φ δ π= +( )/Y ( ) cos ( ) 1m
S

m0 , =m 0,

…1, , for S states, and φ φ π= /Y ( ) sin ( )m
A , = …m 1, 2, ,

for A states, that are classified in terms of irreducible repre-
sentations of the D m3 symmetry group. The corresponding

energy levels ϵ = + +( )k m2 2 3 1( )
k m
S A
, have the DM

= +p K 1( )S A if the energy ϵ ϵ− = + ′K K12( ) ( )
k m
S A

ground
S A

, ,

where ′ =K 0, 4, 6, 8, 10, 14, ϵ = 2ground
S and ϵ = 8ground

A .

For A = 4, d = 1, the energy levels ϵ =( )
i i i
S A
, ,1 2 3

+ + +( )i i i2 3/21 2 3 have the DM = +p K3( )S A 2 + ′( )K3

δ+ ′ + ′K K K0 if the energy ϵ ϵ− =( ) ( )
i i i
S A

ground
S A

, ,1 2 3
+ ′( )K K4 6

+ ″K , where ′ =K 0, 1, 2, 3, 4, 5, ″ =K 0, 6, ϵ = 3ground
S ,

ϵ = 15ground
A . Here = …i 0, 1,1 , = + …i i i, 2,2 1 1 , =i i ,3 2

+ …i 2,2 for S states and = + + …i i i2, 4,2 1 1 , = +i i 2,3 2

+ …i 4,2 for A states. The S states with even values of the
quantum numbers i i i, ,1 2 3 and the A states with odd ones have
the octahedral Oh symmetry, while the A states with even
values of i i i, ,1 2 3 and the S states with odd ones have the
tetrahedral Td symmetry. Figure 1 shows example profiles of
S and A oscillator eigenfunctions for A = 4, d = 1. Note that

four maxima (black) and four minima (grey) of 3
S
are

positioned at the vertices of two tetrahedra forming a stella

octangula. Eight maxima and six outer minima for 4
S
are

positioned at the vertices of a cube and an octahedron. The

positions of twelve maxima of 1
A
coincide with the vertices

of a polyhedron with 20 triangle faces (only 8 of them being
equilateral triangles) and 30 edges, 6 of them having the
length 2.25 and the other having the length 2.66 (in oscillator
units (osc.u.)).

4. Coupled-channel equations in the SCR

We restrict our consideration to the so-called s-wave
approximation (d = 1). The asymptotic boundary conditions

for the solution ξ ξΨ ξ Ψ ξ=
=

{ }( ) ( ), ,( ) ( )S A
i
S A

i

N

0 0
1o

o

o
, describing

the incident wave and outgoing waves at ξ → +∞+
0 and
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Figure 1. Profiles of the first six 3D oscillator eigenfunctions

ξ j
( )S A

symmetric and antisymmetric under a permutation of

A = 4 particles in the internal 3D space (ξ ξ ξ, ,1 2 3). The vertices of the
figures illustrate the positions of maxima (black) and minima (grey)

for the eigenfunctions 3
S
, 4

S
, and 1

A
.



ξ → −∞−
0 , can be written in the matrix form ΦΨ = F( ) ( )S A S A

T

,
where

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

ξ ξ
ξ ξ

ξ
ξ

ξ
ξ

=

+

→
+

←
+

→
−

←
−

− +

+ −

+ +

− −

F F
F F

0 X

X 0

0 X

X 0
S

( ) ( )
( ) ( )

( )

( )

( )

( )
. (8)

0 0

0 0

( )
0

( )
0

( )
0

( )
0

Here ξ =
ξ∓ ∓ ı( )( ) ( )

Xi

p

p
( )

0

exp

o

io

io

0
, = ← →v , indicates the initial

direction of the particle motion along the ξ0 axis, and No

is the number of open channels with the fixed energy

E and momentum ϵ= − >p E 0( )
i i

S A2

o o
. The quantities

=← ← ( )R R Eji jio o
, =→ → ( )R R Eji jio o

, =← ← ( )T T Eji jio o
, and =→Tjio

→ ( )T Ejio
are the unknown amplitudes of the reflected and

transmitted waves. S is the scattering matrix, which is unitary
and symmetric [6]:

⎛
⎝⎜

⎞
⎠⎟= = =→ ←

→ ←

† †S
R T
T R

S S SS I, . (9)

Now we proceed to seek for the solution of the problem
(5) in symmetrized coordinates in the form

∑ξ ξΨ ξ Φ χ ξ=
=

( , ) ( ) ( ), (10)( ) ( ) ( )
i
S A

j

j

j
S A

ji
S A

0

1

0o o

max

where χ ξ( )( )
ji
S A

0
o

are the unknown functions and ξΦ ( )( )
j
S A are

the SCR cluster functions (7).

Phys. Scr. 89 (2014) 054011 A A Gusev et al

4

Figure 2. The total probabilities of transmission through the repulsive Gaussian barrier for the system of A = 3, 4 particles, coupled by the
oscillator potential and initially in the ground symmetric (left) or antisymmetric (right) state, versus the energy E (in osc.u.).



In the SCR the set of coupled-channel Galerkin-
type equations in the centre-of-mass variable has the
form

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥∑

ξ
δ ξ χ ξ− − + =

=

p V
d

d
( ) ( ) 0, (11)( ) ( )

j

j

i ij ij
S A

ji
S A

1

2

0
2

2
0 0

o

max

where ξ( )V ( )
ij
S A

0 are the effective potentials defined as

⎛
⎝⎜

⎞
⎠⎟∫ ∑ξ ξ ξξ Φ Φ=′

=
′V V x( ) d ( ) ( ) ( ). (12)( ) ( ) ( )

ij
S A

i
S A

k

A

k j
S A

0

1

The boundary conditions at ξ ξ= t0 and =t min, max have
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Figure 3. The probability densities χ ξ( )i 0

2
for the coefficient functions of the decomposition (10), representing the incident wavefunction of

the ground S state of the particles at the values of the collision energy E corresponding to individual maxima and minima of the transmission
coefficient in figure 2. The parameters of the Gaussian barrier are α = 10 and σ = 0.1.



the form

ξ
ξ

ξ ξ=
ξ ξ=

F
F

d ( )
d

( ) ( ). (13)t t
0

0
t0

Here ξ ( ) is an unknown ×j j
max max

-matrix function and

χξ ξ χ ξ= == = =( )F { ( )} {{ ( ) } }
i i

N
ji j

j
i
N

0 0 1 0 1 1o o

o

o o

omax is the required

× ⩾( )j N j No omax max
matrix solution of the BVP (11)–(13)

with asymptotes (8)–(9).

5. Results

Consider the repulsive barrier V x( )i in (12) described by the

Gaussian potential = −α
π σ σ

V x( ) exp( )i
x

2
i
2

2 . Figure 2 shows the

energy dependence of the total transmission probability

| | | |= ∑ = ( )T T Eii j

N
ji

2
1

2o . This is the probability of a transition

from a chosen state i into any of the No states, found from
(8)–(9) by solving the BVP (11)–(13) [6]. For this purpose we
solve the BVP at A = 3, 4: =j 21, 39

max
( =j 16, 15

max
) for S

(A) states with an accuracy of about four significant figures,
using the KANTBP program [9] on the finite-element grid

Ω ξ ξ−ξ{ },0
max

0
max , ξ = 10.5, 12.80

max , with =N 800, 976elem

the fourth-order Lagrange elements between the nodes.
Figure 2 illustrates the non-monotonic dependence of the
transmission probability upon the energy; the observed
resonances are manifestations of the quantum transparency
effect. With the barrier height increasing, the peaks become
narrower and their positions shift towards higher energies.
The multiplet structures of the peaks are similar for symmetric
and antisymmetric states.

The effect of quantum transparency, accompanied with
the enhancement of the probability density in the vicinity of
the potential energy local minima, is due to the existence of
barrier quasi-stationary states, embedded in the continuum.
Figure 3 shows that in the case of resonance transmission the
wavefunctions, depending on the centre-of-mass variable ξ0,

are localized in the vicinity of the potential barrier centre
(ξ = 00 ). The correspondence between the probability density
distributions shown in figure 3 and the transmission prob-
ability features in figure 2 is the following: figures 3(a)–(d)
correspond to the first four peaks in figure 2(a), the third panel
from the top; figures 3(e), (f) correspond to the first two peaks
in figure 2(c), the third panel from the top; figure 3(g) cor-
responds to the dip between the second and the third peaks in
figure 2(a), the third panel from the top; figure 3(h) corre-
sponds to the dip between the first and second peaks in
figure 2(c), the third panel from the top.

Table 1 presents the resonance values of the energy ES

(EA) calculated by solving the BVP (11)–(13) for S (A) states
at A = 3, 4 σ = 1/10, α = 20, which correspond to the

maxima of the transmission coefficients | |T ii
2 in figure 2 for

<E 18, and the corresponding approximate energy eigenva-

lues Ei
D of the quasi-stationary states of the BVP for equation

(1), calculated using the Galerkin sets of 816, 1820 basis
functions of the truncated A-dimensional oscillator at A = 3, 4,
calculated by means of the DC algorithm [8]. The approx-
imation of a narrow barrier with impermeable walls used in

the DC algorithm is seen to provide a good approximation Ei
D

of the above high-accuracy results ES and EA, with the error
smaller than 2%.

When A = 3 there are six similar wells, three of them on
each side of the plane ξ = 00 . The symmetry with respect to
the plane ξ = 00 explains the presence of doublets. The pre-
sence of states with definite symmetry is associated with the
fact that the axis ξ0 is a third-order symmetry axis.

When A = 4 there are 14 wells. Six wells in the centre
correspond to the case where two particles are located on one
side of the barrier and the other two are on the other side. The

corresponding energy eigenvalue is denoted by Ei
D22. The

remaining eight wells correspond to the case where one par-
ticle is located on one side of the barrier and the remaining
three are on the other side. The corresponding energy

eigenvalue is denoted by Ei
D31. For these states, one expects

doublets to be observed, like for the case of three particles.
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Table 1. Comparison of the resonance energy values ES and EA (in osc.u.) for S and A states with the approximate eigenvalues Ei
D, for the first

ten quasi-stationary states = …i 1, , 10, at A = 3, 4 (σ = 1/10, α = 20).

A = 3 A = 4

i ES EA Ei
D ES Ei

D31 Ei
D22

1 8.18 8.31 8.19 10.12 10.03
2 11.11 11.23 11.09 11.89 11.76
3 11.55 11.61 11.52 12.71 12.60
4 12.60 12.51 14.86 14.71
5 13.93 14.00 13.86 15.19 15.04
6 14.46 14.56 14.42 15.41 15.21
7 14.84 14.88 14.74 15.86 15.64
8 15.79 15.67 16.37 16.18
9 16.18 16.25 16.11 17.54 17.34
10 16.67 16.73 16.53 17.76 17.56



However, the separation between the energy levels is much
smaller, because the four-well groups are strongly separated
by two barriers, rather than only one barrier as for the case
A = 3.

6. Conclusion

A cluster model consisting of A identical particles bound by
an oscillator-type potential in the external field of a target was
formulated in new symmetrized coordinates. Typical exam-
ples of clusters with A = 3 and A = 4 identical particles were
analysed in the s-wave approximation, and the correspon-
dence was revealed between the representations of the sym-
metry groups D3 for A = 3 SCR cluster function shapes, and Td

and Oh for A = 4 ones. We demonstrated the quantum
transparency effect that manifests itself in a non-monotonic
resonance-type dependence of the transmission coefficient
upon the energy of the particles, their number A = 3, 4, and
the symmetry types of their states. We found that this effect
accompanies an enhancement of the probability density in the
vicinity of local potential minima and is related to the exis-
tence of sub-barrier quasi-stationary states, embedded in the
continuum.

The proposed approach can be adapted to analyse nuclei
having tetrahedral and octahedral symmetry, the quantum
diffusion of molecules and microscopic clusters through
surfaces, and the fragmentation mechanism involved in the
production of neutron-rich light nuclei.
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