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We consider the calculation schemes for solving elliptic boundary-value problems (BVPs)
within the framework of the Kantorovich method that provides the reduction of an elliptic BVP
to a system of coupled second-order ordinary differential equations (ODEs). The surface basis
functions of the expansion depend on the independent variable of the ODEs parametrically.
Here we use the basis functions calculated by means of the finite element method(FEM), as well
as the probe parametric surface basis functions calculated in the analytical form.

We propose new calculation schemes and algorithms for solving the parametric self-adjoint el-
liptic boundary-value problem (BVP) in a 2D finite domain, using high-accuracy finite element
method (FEM) with rectangular and triangular elements. The algorithm and the programs
calculate with the given accuracy the eigenvalues, the surface eigenfunctions and their first
derivatives with respect to the parameter of the BVP for parametric self-adjoint elliptic differ-
ential equation with the Dirichlet and/or Neumann type boundary conditions on the 2D finite
domain, and the potential matrix elements, expressed as integrals of the products of surface
eigenfunctions and/or their first derivatives with respect to the parameter. The parametric
eigenvalues (potential curves) and the potential matrix elements computed by the program can
be used for solving bound-state and multi-channel scattering problems for systems of coupled
second-order ODEs by means of the Kantorovich method.

We demonstrate the efficiency of the proposed calculation schemes and algorithms in bench-
mark calculations of 2D elliptic BVPs describing quadrupole vibrations of a collective nuclear
model.

Key words and phrases: parametric elliptic boundary-value problem, finite element
method, Kantorovich method, systems of second-order ordinary differential equations

1. Introduction

The adiabatic representation is widely applied for solving multichannel scattering and
bound-state problems for systems of several quantum particles in molecular, atomic and
nuclear physics [1-4].

Such problems are described by elliptic boundary value problems (BVPs) in a mul-
tidimensional domain of the configuration space, solved using the Kantorovich method,
i.e., the reduction to a system of self-adjoint ordinary differential equations(SODESs) us-
ing the basis of surface functions of an auxiliary BVP depending on the independent
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variable of the SODEs parametrically. The elements of matrices of variable coefficients
of these SODEs including the matrix of the first derivatives are determined by the inte-
grals of products of surface eigenfunctions and/or their first derivatives with respect to
the parameter. Thus, the key problem of such method is to develop effective algorithms
and programs for calculating with given accuracy the surface eigenfunctions and the cor-
responding eigenvalues of the auxiliary BVP, together with their derivatives with respect
to the parameter, and the corresponding integrals that present the matrix elements of
the effective potentials in the SODEs [5-7].

In this paper we propose new calculation schemes and algorithms for the solution of
the parametric 2D elliptic boundary-value problem using high-accuracy finite element
method (FEM) with rectangular and triangular elements. The algorithms were imple-
mented in a package of programs that calculate with the given accuracy eigenvalues,
eigenfunctions and their first derivatives with respect to the parameter of the parametric
self-adjoint elliptic differential equations with the boundary conditions of the Dirichlet
and/or Neumann type in the 2D finite domain and the integrals of products of the sur-
face eigenfunctions and their first derivatives with respect to the parameter that express
the matrix elements of the effective potentials in the SODEs.

We also propose a method of constructing the etalon potential in the auxiliary para-
metric BVP that allows the calculation of the parametric surface basis functions in the
analytical form. These functions can be then used for the reduction of the original 2D
BVP to the SODEs containing the additional potential matrix, representing the discrep-
ancy between the original potential and the etalon one, averaged with the basis functions.
The efficiency of the calculation schemes and algorithms is demonstrated by benchmark
calculation of the 2D BVPs describing quadrupole vibrations in the collective nuclear
model [4,8,9].

The structure of the paper is the following. In Section 2 the Kantorovich method for
solving the 2D and 3D BVPs is considered. In Sections 3 and 4 the 2D FEM schemes and
algorithms for solving the parametric 2D BVP and calculating derivatives with respect
to the parameter together with the corresponding matrix elements are presented. In
Section 5 the benchmark calculations of 2D FEM algorithms and programs are analyzed.
In Conclusion we discuss the results and perspectives.

2. Kantorovich method with the etalon potential
Let us consider the BVP in the domain Q(z ¢, z5) C R"™1 x R":

1 0 0 D(xzy;xs)
(‘fﬂ(xs)a:csfﬂ(%)amﬁ Fos ()

where D(x;x5) is a self-adjoint elliptic differential operator in the finite region
Qzg;zs) C R"~ !, E is the spectral parameter, corresponding to the energy of the
quantum system, fs(xs) > 0, Og, fsi(xs) and V(xy¢,x5) 0., V(zf,zs) are real-valued
continuous bounded functions in Q(zs,xs), and V(xs,x;) satisfies the Dirichlet and/or
Neumann boundary condition (BC) at the boundary 02 = 09Q(xs,xs) of the domain
Q(zs,xs) and the orthonormalization conditions

+V(xf,x5)—E) U(xs,xs)=0, (1)

<‘I’i|‘I’j>:/Q( )fs1(xs)\11i(xf,xs)\I/j(a:f,a:s)d:c’;fl dzs=0;;. (2)
TfTs

The solution ¥(xs,xs)EWZ(Q) of the BVP (1) is sought in the form of the Kan-
torovich expansion [3]

Jmax

Vilas,as)= ) ®;(zsa,)x5i(@s), (3)

J=1
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using the set of parametric eigenfunctions ®;(z¢;zs) € F(xs) ~ Wi (Q(zy;z5)) of the
parametric BVP in the domain Q(z;z5) C R"!

(D(xg;w5)—ej(ws)) B(xp;25)=0. (4)

For example, D(x¢;x) at n — 1 = 2 is determined in a conventional form in Section
3. To avoid cumbersome notations, below we will use the simplest definition of D(x; x5)

atn—1=1
2

Dlagias) = =55 +Volwgi 2, 9(2.)), )
f

where V,(xf;zs,9(zs)) is the etalon potential defined in the interval zy €
(:E}“i“(xs),:E;nax(xs)):Qxf(xs) and depending on the variable x; € 1, as a parame-
ter. We assume that these functions obey the BCs

@j(x?lin(xS);xS):Q (bj(m?ax(xS)QxJZO (6)

at the boundary points {zP™(z), 2% (24)}=0Q0, (), of the interval Q, (). The
eigenfunctions satisfy the orthonormality condition

PP ()

(;|D;) = / (i) Dy (2 ay) da =0, (7)

Irfx_\in (zﬁ)

Here e(zs) : e1(xs) < ... < €ju.(xs) < ... is the desired set of real eigenvalues.

During the simulation the etalon potential Vy(z f; x5, g(z5)) in Eq. (5) will be chosen
as Vo(zf; 26, 9(xs)) = V(xy,xs) or calculated separately for different values of z, € Q,,
from the conditions

ml;]ax (zs)

min [ (Vg V(i glen) doy, (s)
ng
w’f“i“(ms)

If this parametric eigenvalue problem has no analytical solution, then it is solved numer-
ically by the FEM: at n — 1 = 1 using the program ODPEVP [6] and at n — 1 = 2 using
the program, implementing the algorithm presented in Section 3.

Substituting the expansion (3) into Eq. (1) with Egs. (6) and (7) taken into account,
we arrive at the set of self-adjoint ODEs for the unknown vector functions x(V (z,, E) =

XD (@)= (), - xS (2)T € WR(Q,,):

1 d d
(_Ifsl(ajs) dixsfsg(xs)dixs—FW(fEs)—QE I+

+fs2($s) dQ(xs)+ 1 dfs2($s)Q(ms)
fsl(xs> dxs fsl(xs) dxs

) X (z)=0. (9)

Here I, W(z,) and Q(zs) are the jmax X jmax matrices

ei(xs) 5ij+fs2($s)Hij($5)+vij(g;s), L;j = 6i, (10)

Wij (l’s)— fsl(xs>

_fs3(33S)
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00i(zf;x5) 0Pj(x5;75)
Hij(xs):Hji(xs): / axs J@{L's d;ljf, (11)
xlfnin(xs)
I?lax(zs) 8 ( )
D (x;xs
Qila)=-Qulr)= [ Wulapiz) I . (12
mrfnin(ms)

The effective potentials V;;(zs)=Vji(zs) are calculated by integrating the difference
WV (xs,xs) =V(xy,xs)—Vo(zs; s, g(xs)) with the basis functions:

oc’;‘ax(zs)
Vij(xs)= / Qi(xf;25)0V (g, 25)P (s 25) day. (13)

a:;,“i“ (zs)

If the etalon potential is equal to the original one, V,(z¢; x5, g(z5))=V (xf,z,) then
Vij(xs)=0. If the original potential V(zf,z,) is presented in the tabular form, e.g.,
as in Ref. [4], then the etalon potential V,(z;zs,g(xs)) can be considered as a cer-
tain approximation or interpolation of the original one, and the approximation error
O0V(zs,xs) # 0. In this case the etalon potential V,(x¢;xs, g(zs)) can be determined
minimizing 6V (xf, z,) in accordance with the condition (8) of the least squares method.
Then the integrals V;;(x) of the approximation error 6V (x ¢, x5) averaged with the para-
metric basis functions are included into the final system of ODEs. It means that we take
the approximation error of the original potential into account and require the solutions
of the 2D BVP (1) to have the given accuracy, see, e.g., Section 5.4.

The solutions of the discrete spectrum F : By < Ey < ... < E, < ... obey the
BCs at the points xi={z™" z1%*}=0Q, , bounding the interval Q, and satisfy the
orthonormality conditions

max

X (@0)=0, xi=aP™ 2™, /fﬂ(l’s)(x(“ ()XY (w5) das=0y;. (14)

min
Ts

3. FEM algorithm for solving the parametric 2D BVP

Let us consider a boundary value problem for the parametric self-adjoint 2D PDE in
the domain Q%y = (xminy I‘max) X (yminv ymax)

(D(Jf y; z)—€i(2)) ®4(z, y; 2)=0,
) 10 B (15)

D=D(z,y; 2)=— f = = f5(r,y)—+U(z,y; 2),
(05 ) Gy o o) Wy U059
with the Dirichlet and/or Neumann boundary conditions
. 00, (x,y; 2
whjgt f2($7y)% =0or ®;(zs,y;2) =0, Y € [Ymin, Ymax)s

(16)
a¢l » Ys
yli_{%t f5(x7y)(axyy2) =0or (I)i(x)yt;z) = 07 S [$min7xmax]7
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where ¢ = min, max. Here z € ., = [2min, Zmax] 1S & parameter, the functions f;(z) > 0,
f2(x7y) > 07 f3(x) > 07 f4(y) > 07 f5(x7y) > 07 and 8mf2(x,y), ayf5(xay)7 U(x,y;z),
8U(g;y;z) and aq)igcz’y;z) are continuous and bounded for (z,y) € €, ,. Also assume that
the BVP (15), (16) has only the discrete spectrum, so that e(xs) : e1(zs) < ... <

€jmax(Ts) < ... 1Is the desired set of real eigenvalues. The eigenfunctions satisfy the
orthonormality conditions

pmax max

(@) // F1(2) ()i (2,3 2); (2, 2) do dy=o5. (17)

wlnln min

The FEM calculation scheme is derived from the variational functional

Tmax Ymax
0 i\, Y5 0P, » Y
@ip-cleg= [ ao [ au( st falea PG I ORI
Zmin Ymin
f1( )f5( )3‘1%(33,932) 8<I>j(:c,y;z)+

f( ) Jy dy
ey )i >f4<y><U<x,y;z>—e(z))@(x,y;z)). (18)

1. The domain A = [Zyin, Tmax] X [Ymin, Ymax) 1S covered by the system of n x m
subdomains A;; = [z;—1,2;] X [y;-1,y;] in such a way that A = J;_, U;~, Ai;. In each
subdomain A;; the nodes {7, f«):o and {y" P

Yy

T

P _ i T _ P o_ J y_

T;  =Ti1 +?T, hi=z;—x;_1, yj,r—yj—1+?7", hi=yj—yj—1,

and the Lagrange elements {qﬁf’r(x)}fzo and {@Df’r(y)}fzo

p p p p
T = z s Y—Y;s
d)p qsz ( ) — Js
7, 7‘ p _ J}p ’ 7,r Yy) = p _ P
s=0,s#r Lir %8 s=0,s#r Yjr = Yjs

are determined. By means of the Lagrange elements qﬁfyr(x) and L/)f’r(y), we define the
set of piecewise polynomial functions N’ (z) and M} (y) as follows:

fo( ), w€ Ay, —o
r & Aqy, -
i S Aija

{ 0, x & Aij, I=r+p(i—1), r=1,p—1,
N/ (z) = op (),  x€ Ay,
ri10(@), =€ Aipay, I=ip, i=1,n—1,
0, v & Ay UJAivy,

{ ¢p S Anj,

n?p

07 z g An]) l:np’
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for any j and

@bf,o(y), y € Aq, =0

O’ y g Aily 0

77/’?,7«(?/)7 y € Ay, . -
{ 0, y & Aij, l=r+p(j=1), r=1,p—1,

Uio) ¥ € Aij, I=jp, j=T,m—1,

0, y & A UAG+1,

Vo) Y€ Dim, ~

0 y ¢ Aim7 _mp7

for any 1.

The functions { N} (z)},%, and {M](y)}% form a basis in the space of polynomials
of the p-th order. Now, the function ®(z,y;z) € F* ~ H'(Qp, p,) is approximated by a
finite sum of piecewise polynomial functions N} (z) and M} (y)

mp np

(x,y; 2 Z Zé ol (@) MF (y)- (19)

ly=01,

2. The domain Q(z,y) = UqQ:1 A,, specified as a polygon in the plane (z =
21,y = 2z2) € R?, is covered with finite elements, the triangles A, with the vertices
(211, 221), (212, 222), (213, 223) (here 2z = Zikgy © = 1,2, k = 1,3, ¢ = 1,Q). On each
of the triangles A, (the boundary is considered to belong to the triangle) the shape
functions ¢} (21, zz) are introduced. For this purpose we divide the sides of the triangle
into p equal parts and draw three families of parallel straight lines through the partition
points. The straight lines of each family are numbered from 0 to p, so that the line pass-
ing through the side of the triangle has the number 0, and the line passing through the
opposite vertex of the triangle has the number p.

Three straight lines from different families intersect in one point A4; € A,, which
will be numbered by the triplet (n1,n2,n3), n; > 0, ny + ny + ng = p, where ny, ngy
and ng are the numbers of the straight lines passing parallel to the side of the triangle
that does not contain the vertex (zi1,221), (212,222) and (213, 223), respectively. The
coordinates of this point z; = (z1;,29;) are determined by the expression (zi;,29;) =
(211, 221)n1/p + (212, 222)n2/p + (213, 223)n3 /.

As shape functions we use the Lagrange triangular polynomials ¢} (21, z2) of the order
p that satisfy the condition ¢} (211, z2) = du, i.e., equal 1 in one of the points A; and
zero in the other points.

In this method the piecewise polynomial functions N/ (z1,22) in the domain Q are
constructed by joining the shape functions ¢7 (21, z2) in the triangle Ag:

Nlp(Zl,ZQ) {901 (21,22), A1 € Ay;0, A4 & A }

and possess the following properties: functions N}’ (z1, z2) are continuous in the domain
Q; the functions N/ (z1, 22) equal 1 in one of the points A; and zero in the rest points;
N/ (211, zor) = oy in the entire domain 2. Here [ takes the values [ =1, N.
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The functions N (z,y) form a basis in the space of polynomials of the p-th order.
Now, the function ®(x,y;z) € F! ~ Hl(Qhwhy) is approximated by a finite sum of
piecewise basis functions N} (z,y)

N
" (2,y;2) = E(2)NP (). (20)
=1
The vector function &% = {£7"(z) L o= Or ¢" = {€/(2)}N, has a generalized

first-order partial derivative and belongs to the Sobolev space H!'(Qs, 5,) [10]. After
substituting the expansion (19) or (20) into the variational functional (18) and minimizing
t [10,11], we obtain the generalized eigenvalue problem

APeh = hBreh, (21)

Here AP is the stiffness matrix; BP is the positive definite mass matrix; ﬁh is the

vector approximating the solution on the finite-element grid; and " is the corresponding
eigenvalue. The matrices AP and BP have the following form:

n

=Y ) al, B = ZZ Gis or AP={af }i_y, BP={b};, }{i_1,
iois

j=1i=1

where the local matrices af; and b¥; are calculated for rectangular elements as

141
. , LACLLACY,
a m—/l/l{fz ) Gy ) ()
h(z) i dwj,#<y> a0

Fs(@) f5(z, y)ﬁq(ﬁ)(ﬁr(m) (hg)z

hr hY
@ U s ()08 L, (008, ) P

+1+
O3t = [ [ @000, (208,008, 0) -5 dn i,
-1

—1

dny dny
(22)

x:xl—1+05hf(l+nl‘)a y:y]—1+05h3;(1+77y)a ‘M,I/,q,’f':ﬁ,

or the matrix elements al), and b}, are calculated for triangular elements as

o, = / F1@) Fa(y)h (21, 2) 0 (21, 29)U (21, 225 2) dzy oot
Aq

00" (21, 22) 00 (21, 2
+/f2:£yf4() %((9;1 2) 801(%211 2) dzy dzo+

/f1 x) fola 6901 (z1,22) Oph (21, 22)

dzy dzg =
Z 82 F162
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=1 [ £ 1)t G )t o1 25U o, 2 2) s s

2)

+|J|_1A/f2(l‘7y)f4(y) <(Z21—Z23)éii+(zm—z2 )((92>> X

A C Oph (24, 25
X <(2’21—223)¢l(§ ; 2*)‘1‘(222—221)4%; 7 2)> dz; dzg+
<1 22

HJ\lA/ ;;ngs(x,y) ((lezls)a@léz;{ 22)+(212211)((91é )> X

o (tnrmang 205

+(z12—211 )7(;% )> dzy dzh,  (23)
)

by = /fl(x)f4(y)90f(21,2’2)@?(21,zz)d21 dzy =

Ag

— |J] / F@) Fa ()P (2 )0 (24, 24) A2 deh, (24)

where A, is a triangular element with the vertices (211, 221)(212, 222) (213, 223), A is the
triangle with vertices (0,0)(1,0)(0, 1), and

821 8z1
9z 92
— 1 2| — _ B _
J Ozy Oz 229213 + 222211 + 221213 + 223212 — 223211 — 221212
2, 8z

is the Jacobian of the transformation from the global frame (z = 21,y = 23) to the local
one (21, 24); dz1dze = Jdz{dz} and (21, 22) are expressed via (21, z5) by the relations:

/ / ! /
zi=z11+(z12—211) 21+ (213—211) 25, 22=221+(222—201) 21 +(223—221)25- (25)
In this case we have explicit expression for shape functions ¢} (21, 25):
7’11—1

1— 2 - n3—1 I
OP(2), 2) = H =2 —m/p'y H 2 —ny/p H Zy — 13/p '
n

it nl/p—nl/p ng/p n2/p nS/P_”é/p
1=

Remark. We start from the initial (global) coordinate frame (z = z,y =
z2) in which the coordinates of vertices of the triangle A, are equal to
(211, 221), (212, 222), (213, 223), and the local coordinate frame (r = zi,y = 24) in
which the coordinates of the same vertices of the triangle A are equal to (21, 2%;) =

(070)3 (ZiQaZQZ) - (130)’ (233’253) - (0’ 1)'

We seek the relation between the global and the local coordinates of the triangle
vertices in the form

! ! ! !
Z1 = €19 + C112] + C1223, 22 = C0 + 2127 + C2225. (26)



44 RUDN Journal of MIPh. Vol. 25, No1,2017. Pp. 36-55

Substituting the coordinates of three vertices in the global and the local frame into
Eq.(26), we obtain the system of algebraic equations for calculating the coefficients c,.:

Z11=C10, Z21=C20, Z12=C10+C11, Z22=C20+C21, 213=C10+C12, Z23=C20+C22.

Substituting the calculated coefficients into Eq.(26), we arrive at the formula (25) for
the transformation of coordinates (z1,z2) — (21, 25), from which we express the inverse
transformation of coordinates (21, z5) — (21, 22)

2y=—J 223211 —201213)+J (223 —201)21—J (13— 211) 22,

! -1 —1 —1
zo=J " (z22211—221212)+J (—222+221) 21+ (212—211) 22,
J=(—z20213+220211+221 213+ 223212 — 223211 —221212) s

where J~1 is the Jacobian of the inverse transformation from the local frame (21, z5) to
the global one (x = 21,y = 22): dz{dz} = J~'dzdzs.

The integrals (22) and (23)—(24) are evaluated using the Gaussian quadrature of
the order p + 1. Note that in the present approach the maximum half-band width of
the matrices AP and BP is small compared to their dimension and is not greater than
(p+D(p+1).

In order to solve the generalized eigenvalue problem (21), the subspace iteration
method [10, 11] elaborated by Bathe [11] for the solution of large symmetric banded-
matrix eigenvalue problems has been chosen. This method uses the skyline storage mode
which stores the components of the matrix column vectors within the banded region
of the matrix, and is ideally suited for banded finite-element matrices. The procedure
chooses a vector subspace of the full solution space and iterates upon the successive
solutions in the subspace (for details, see [11]). The iterations continue until the desired
set of solutions in the iteration subspace converges to within the specified tolerance on
the Rayleigh quotients for the eigenpairs. If the matrix AP in Eq. (21) is not positively
defined, the problem (21) is replaced with the following problem:

Argh —chBrgh AP = AP — oBP. (27)

The number « (the shift of the energy spectrum) is chosen such that the matrix A?
is positive defined. The eigenvector of the problem (27) is the same, and " = &" + a.

4. The algorithm for calculating the parametric derivatives of
eigenfunctions and the matrices of effective potentials

Taking a derivative of the boundary problem (15)—(17) with respect to the parameter
z, we find that 0,®;(x,y; 2) is a solution of the following boundary problem

) 0P;(z,y; 2) 0

(D(z,y; 2)—ei(2) 9% =— %(U(xvy;z)_gi(z)) Qi(x,y; 2), (28)
. O?®;(x,y;2) 0Pi(zy,y;2)

whﬁrr;t fQ(ZE, y)W =0 or T =0,y¢ [ymina ymax}a
. 0*®;(x,y; 2) 0V;(x,ys; 2)

i Jo(wy) =5 5. =0 or =g = = 0, € [Tmin Tmasl;

where t = min, max. The parametric BVP (28), (29) has a unique solution, if and only
if it satisfies the conditions
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Tmax Ymax

8559:/ / Q@) fa(y) (@i 2) T EY D0y, (20)
[ @ aufi@) i) @2 S0 (30)

ZLmin Ymin

Below we present an efficient numerical method that allows the calculation of
0,P;(x,y; z) with the same accuracy as achieved for the eigenfunctions of the BVP (15)—
(17) and the use of it for computing the matrices of the effective potentials defined as

Tmax Ymax
0%;(z,y;2) 0%;(, y; 2)
Hy(@)=H(o)= [ defi(e) [ dy ) G2 IR,
wminzmux yminymax (31)
0P;(x,y; 2
Qi(=-Que)=— [ awhite) [ aypu)oiteyn D),
Lmin Ymin

The boundary problem (28)-(30) is reduced to the linear system of inhomogeneous
algebraic equations with respect to the unknown 8£h /0z:

08" o ham 08 B OAP 0t N

The normalization condition (17), the condition of orthogonality between the function
and its parametric derivative (30), and the additional conditions (29) for the solution of
(32) read as

T oe"\" Deh T 9A
(¢") Brg" =1, <;> B¢ =0, = (¢ 8—;£h. (33)

Then the potential matrix elements H[;(z) and Q?j(z) (31) corresponding to Egs.
(11)—(12) can be calculated using the formulas

T
o€! i3 T_ ogh
h = [ == p_>) h — _ (R p_>J

HY(2) ( = ) B'L, Qlyz)=— (&) B (34)

Since £” is an eigenvalue of (21), the matrix L in Eq. (32) is degenerate. In this case

the algorithm for solving Eq. (32) can be written in three steps as follows:

Step k1. Calculate the solutions v and w of the auxiliary inhomogeneous systems
of algebraic equations

Lv=b, Lw=d, (35)
with the non-degenerate matrix L and the right-hand sides b and d

E o Lss’7 (S_S)(S/_S) 7&07
st { dssry  (s—=9)(s = S) =0,
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- bs, S#S, d. — LsSa S#Sa
0, s=235, 71 0, s=25,

where S is the number of the element of the vector BP£" having the greatest absolute
value.

Step k2. Evaluate the coefficient ~

¥ = —¢7 Y1 = VTBpéh, Y2 = WTBp£h7 DS = (Bpéh)s' (36)
(Ds — 72)

Step k3. Evaluate the vector 9,&"

852_ Vs — yws, S#S,
oz | 7, s=20.

(37)

From the above consideration it is evident, that the computed derivative has the same
accuracy as the calculated eigenfunction.

Let D(z,y;2) in Eq. (15) be a continuous and bounded positively defined operator on
the space H! with the energy norm, ¢;(z), ®;(z,y; z) € H? being the exact solutions of
Egs. (15)-(17), and e?(z), ®"(x,y; z) € H' being the corresponding numerical solutions.
Then the following estimates are valid [10,12]

|ei(z) — el (2)| < ek, ||®iw,y; 2) — @ (2,5 2) ||, < c2hPH, (38)

where

Tmax Ymax

1@,y )2 = / / folr,y) de fs(z, y) dyi(a, y; )@z, ; 2),

Zmin Ymin

h is the largest distance between any two points in A, (see [12], p. 161), p is the order
of the finite elements, 4 is the number of the corresponding solutions, and the constants
c1 and ¢y are independent of the step h.

The following theorem can be formulated.

Theorem 1. Let D(xz,y;z) in Eq. (15) be a continuous and bounded positively de-
fined operator on the space H' with the energy norm. Also let 8,U(z,y; z) be continuous
and bounded for each value of the parameter z. Then for the exact values of the solutions
0,ei(2), 0,9;(z,y;2) € H?, Hij(2), Qij(z) from (28)-(31) and the corresponding nu-
merical values 0,e"(z), 00" (x,y; 2) € H1, Hihj(z), Z(z) from (32)—(34) the following
estimates are valid:

dei(z) el (2) 0P;(z,y;2) OPh (2, y; 2) < et
0z 0z 0z 0z 0 = ’ (39)
|QZ](Z) - QZ(Z’)| < C5h2p, |Hij(2) — HZ(Z)‘ < 66h2p,

2
< CBh p’ H

where h is the largest distance between any two points of the finite element Ay, p is the
order of finite elements, i, j are the numbers of the corresponding solutions, and the
constants c3, ¢4, c5 and cg are independent of the step h.

The proof is straightforward following the proof schemes in accordance with [10, 13].
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5. Benchmark calculations
5.1.  The solution of 2D BVP in the triangular domain

As a benchmark example we consider the exactly solvable BVP for a membrane in
the form of equilateral triangle with side equal to 47/3, in the conventional variables
(z,y) € Q(z,y) , ,

0 0
(WW&) Pi(z,y) =0 (40)

with the Dirichlet or Neumann conditions at the boundary 9(x, y) of the region Q(x, ).
In both cases the eigenvalues €; are integer [14-16].

The BVPs were solved on the uniform finite-element grid composed of n? equilateral
triangles with the side equal to 47/(3n). In Table 1 we present the estimations of the
finite-element scheme order p depending on the size of elements.

Table 1

Discrepancies d¢;(n) = |el'(n) — ;| of the first 1 = 3 and the fourth ¢, = 3 eigenvalues
of the BVP(40) with Dirichlet and Neumann boundary conditions, respectively,
and the Runge coefficients Ru; = log,((dei(n) — dei(2n))/(0e:(2n) — de;(4n))) for the

schemes of the first p =1 and the second p = 2 orders; n is the number of elements

p n oe1(n) de1(2n) de1(dn)  Ruyy
1 6 0.06914677126132 0.01717343333794 0.00428595766335 2.011
2 3 0.00470310603030 0.00030790240009 0.00001932528605 3.928
p n deq(n) de4(2n) deq(4n)  Ruy
1 6 0.06914677126135 0.01717343333808 0.00428595766371 2.011
2 3 0.00470310603029 0.00030790240005 0.00001932528593  3.928

They are seen to correspond rigorously to the theoretical estimations (38) of the order

O(h?P) of the eigenvalues approximation. The first eight eigenfunctions of the BVPs (40)
with the Neumann and Dirichlet boundary conditions are shown in Figs. 1 and 2.

Figure 1. The first eight eigenfunctions of the BVPs (40) in the triangle region
with the Neumann boundary conditions. The eigenvalues ¢; =0,1,1,3,4,4,7,7 at
i=1,..,8.
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) 6 7

Figure 2. The first eight eigenfunctions of the BVP (40) in the triangle region
with the Dirichlet boundary conditions. The eigenvalues ¢; = 3,7,7,12,13,13,19, 19
ati=1,...,8.

5.2. Solution of the parametric 2D BVP for the oscillator potential

We consider the parametric 2D BVP (15)-(17) at fi(z) = fa(z,y) = fa(x) = faly) =
f5(x,y) = 1, with the potential function

U(z,y;2) = U(z1, 22 23) = (21 — 23)° + (3/2)%22, (41)

which has the known spectrum e;_¢; ;3 = (2(j1 — 1) + 1) + 3/2(2(j2 — 1) + 1) and
the eigenfunctions ®;, j,(21,22;23) = ®j,—1(21;23)Pj,—1(22;0), where ®; (z1;23) and
®;,_1(22;0) are determined in (45) at wq(zs) = 1, z01(zs = 23) = 23 and wa(z,) = 3/2,
202(x5) = 0, respectively. The matrix elements Qi—(;, i,},j={j1,jo} 3 Hi—{i is}.i={j1.ja}
are calculated in the analytical form

. ..\ V2n
Qij(75)=0iyj, SlgH(Jl—h)T5\j1—i1|,1a
(42)
(2n+1) n(n—1)
H;j(z5)=0i,j, (2 Oji—ir, 0= =5 Olji—is] 2

where n=max(i, j;)—1.

Solving the BVP, we use 294 finite elements, i.e. equilateral triangles with the side
equal to 1 that form a regular hexagon with the vertices {(7cosmn/3, Tsinmn/3)}>_,.
In each element the interpolation polynomials of the six order were applied. Stiffness
and mass matrices with dimensions of 5167 x 5167 were used. The calculated eigenvalues
el are: el = (2.500000001, 4.500000002, 5.500000005, 6.500000014, 7.500000025),
and the exact ones ¢; are: ¢; = (2.5, 4.5, 5.5, 6.5, 7.5).

The calculated matrices Q,Z and H,L-hj, i,j=1,...,5 from Eq. (34) of the parametric
2D BVP with the potential function (41) are

—0.00000000  0.70710678  —0.00000000 —0.00000000 0.00000000
—0.70710678 —0.00000000 —0.00000000  1.00000000  0.00000000
ho— | —0.00000000  0.00000000  0.00000000  —0.00000000 0.70710678

ij
0.00000000  —1.00000000  0.00000000  —0.00000000 0.00000000
—0.00000000  0.00000000 —0.70710678  0.00000000  0.00000000
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0.50000000  —0.00000000  0.00000000 —0.70710678  0.00000000
—0.00000000  1.49999999  —0.00000000 —0.00000000 —0.00000000

HZ = | 0.00000000 —0.00000000 0.49999999  —0.00000000 0.00000000
—0.70710678 —0.00000000 —0.00000000  2.50000001  —0.00000000

0.00000000  —0.00000000  0.00000000  —0.00000000  1.49999999

From the comparison of the calculated and the exact values of ¢; and Q;;, H;; from
(42), one can see that the achieved accuracy of results is of the order of 8-9 significant
digits.

The parametric surface eigenfunctions and their derivatives with respect to the pa-
rameter under the dipole splitting are shown in Fig. 3.

2_ 2_ .2._.I 2_ 0,6:
_I4 A AR 2 d‘l_ _I 4 .r.'.: 2y ..o-‘ai gll_ _I 4 ‘ C:l: :n:o i) 4 _‘ 4 -“:‘u. iy .55‘ gll_ 43
a2 2 oy 2 i s & 2 a 02
1 2 3 4 I
- 2 2] Bt
_'4 mEEalowe 2" 4'. = secmmmn E‘ﬁ 4 7'4 ! s.'. T ::.I'TQQ‘, 4 - am -.:.- I.:.- 2.;» 4 70‘0§
=1 “7 -2 = :
1 2 3 4

Figure 3. The first four eigenfunctions of the parametric 2D BVP with the
potential function (41) and their derivatives with respect to the parameter at
z = 0.

5.3. The solution of 2D BVP for the Cj3, oscillator potential

Let us consider the 2D BVP (15)—(17) for x=as2, y=agp with the potential function
U(z,y) = 2mV(z,y) and the spectral parameter ¢ = 2mE, and fi(z) = fa(z,y) =
fs(x) = fa(y) = fs(x,y) = 1. The quadrupole potential energy is approximated by the
quartic potential:

V(asgz, azo)=c1(a3,+a30)+c2(a3ya20—a50/3)+cs(az,+y°) +co (43)

We use the set of parameters ¢;=—120, c2=240, ¢3=1200, cp=65/16 that provide
a crude approximation for the shape of $3°Gdgs, which has been fitted in the following
points’: the minima at (aga, asg)=(0,1/4), V(0,1/4)=0; the maxima at (aga, azo)=(0,0),
V(0,0)=65/16; and the saddle point at (a2, az0)=(0,—1/5), V(0, —1/5)=729/400 (see
Fig. 4).

We choose the mass parameter to be m=Bs=124. Thus, there are ground and doubly
degenerate excited states, localized in three wells.

The BVP was solved using three algorithms (and the forth in Section 5.4):

1. The solution of the BVP was calculated using the FEM scheme from Section 3 on the
rectangular grid [—0.4, —0.3, ..., 0.4] x[-0.4, —0.3, ..., 0.4] with Lagrange interpolation
polynomials of the order p = 12. The first 18 eigenvalues were calculated with 9
significant digits and are presented in Table 2.

IThe fitting points in our parametrization are related to those of Ref. [4] as a22 = V2022, a0 = a2g.



50

RUDN Journal of MIPh. Vol

.25, No1,2017. Pp. 36-55

V(MC\")()

03 04 1 0.4+ 0.4

02 02 ] 021/ (@) 02] -

. oo ] ~ 1R . N
a eV (0 S0 & o] &)
o N} 1 N 1 /rk\ N 1 L\ /4

0.1 0.2 2024 ./ 202 2

02 Lo 1 g — 1

0.4 0.4 -0.41
-0.3
» 10 e e - T
0 0102 03 04} -04 02 0 02 04 04 -02 0 02 04 04 02 0 02 04
A =0 o ay dy

Figure 4. The potential energy of the Cs, oscillator having the quadrupole shape,
the eigenfunction ¥;(a22,a20) of the ground state (irr. A1) and the degenerate
eigenfunctions Vs (a2, a2) (irr. E1) and ¥s(a22,a2) (irr. E2)

The first energy levels of the 2D BVP using triangular siA and rectangular ¢;

Table 2
O

finite elements and the Kantorovich method ¢? using jm.x=28 parametric basis
functions, classified by irrs (Class.) of the C3, point group, F; (MeV)

i| el el eh El=cl/2m | Class.
1 | 381.754344 | 381.754355 | 381.754351 | 1.53933206 | Al
2 | 387.240633 | 387.240644 | 387.240641 | 1.56145419 | E1
3 | 387.240633 | 387.240646 | 387.240641 | 1.56145419 | E2
4 | 617.024951 | 617.024967 | 617.024963 | 2.48800388 | E1
5 | 617.024951 | 617.024989 | 617.024963 | 2.48800388 | E2
6 | 667.104970 | 667.105020 | 667.104992 | 2.68993948 | A2
7 | 695.166557 | 695.166590 | 695.166575 | 2.80309103 | Al
8 | 785.680037 | 785.680100 | 785.680078 | 3.16806483 | E1
9 | 785.680037 | 785.680136 | 785.680078 | 3.16806483 | E2
10 | 898.045395 | 898.045497 | 898.045434 | 3.62115094 | Al
11 | 915.823095 | 915.823200 | 915.823167 | 3.69283535 | E1
12 | 915.823095 | 915.823309 | 915.823167 | 3.69283535 | E2
13 | 993.158636 | 993.158784 | 993.158708 | 4.00467221 | E2
14 | 993.158636 | 993.158872 | 993.158708 | 4.00467221 | E1
15 | 1063.73690 | 1063.73709 | 1063.73692 | 4.28926178 | Al
16 | 1119.21670 | 1119.21668 | 1119.21649 | 4.51296973 | A2
17 | 1174.72840 | 1174.71177 | 1174.71166 | 4.73674057 | E1
18 | 1174.75531 | 1174.71183 | 1174.71166 | 4.73674057 | E2

2. In the solution of the BVP we used 54 finite elements in the form of equilateral
triangles with the side equal to 1/6, forming a regular hexagon with the vertices
{(0.5cosmn/3, 0.5sinmn/3)}>_,. In each finite element the interpolation polyno-
mials of the fifth order were applied. The stiffness and the mass 721 x 721 matrices
were used. The calculated eigenvalues are presented in Table 2.
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3. The problem (1)—(43) was also solved using the Kantorovich method implemented
in the FEM program KANTBP 2 [5], with jna.x=28 parametric basis functions
calculated using the FEM program ODPEVP [6]. The solution was calculated in
the domain +/a3,+a3,<1/2 with Dirichlet BCs at the boundary \/a3,+a3,=1/2
using the scheme presented in Section 2. The calculations were performed in the
case of (z ¢, xs)= (ag2,a20) as well as (zf, z5)=(a20, a22) on the FE grid {-1/2, -1/3,
-1/6,0,1/6,1/3,1/2} with Lagrange interpolation polynomials of the order p = 12.

The point symmetry group Cs, of the problem (1), (43) has four irreducible repre-
sentations (irrs.) Al, A2, E1 and E2 to classify the solutions, the E-type states being
doubly degenerate [17,18]. The calculated eigenvalues are presented in Table 2. The first
eigenfunctions for each of the irrs. Al, E1, E2 are shown in Fig. 4.

5.4. Parametric surface functions for KM in the analytical form

Let us consider the BVP for Eq. (5) with the etalon potential V,(z; x5, g(s)):

82
(—M—&-Vo(xf;xs,g)—si(xs)) D, (zs;25)=0, (44)
Vo, s, 9)=Vo(s)+w? (zs) (x5 —20(5))?,

where g(x,) is the set of parameters, g(x) = {Vo(xs),w?(zs), 20(zs)}. In the considered
case the parametric eigenvalue problem (5)—(7) has an exact solution, i.e., the parametric
eigenfunctions ®; (z¢; z,) and potential curves ¢; (z5) are expressed in the analytical form

i (zs) =Vo(xs)+w(zs)(2(i—1)+1),

wl/4(z
Oy (zf;25) :% exp(—w(ms)(:Ef—zo(xs))Q/Q)), (45)
@i (Jff,xs) :\/§ w(xs)i(f}i_ZO(xs))éi_l (-Tf; -Ts) _\/\/E::iq)i—Q (xfwrs) .

The integration in the effective potentials (11) with the basis functions (45) is carried
out analytically, which yields the expressions

Qij(xs)=sign(j—1i) (@dzo(%)

Sii il 1—
dz, [ =il

vn(n—1) dw(ms)é‘l '| >
4 j—,2 | »

dx

Hiy ()= (n —H”L—H(S \/n(n—l)(n—2)(n—3)6j_i|,4> (dw(:ﬂg))

8w?(zg) 7 16w?(z5) dzs
w(zs)(2n+1 w(zs)y/n(n—1 dzo(xs 2
+< (z)entl);, | wle) Vi >5|j_¢,2>( o))

[ _nv2n PO 2n(n—1)(n—2)5‘ ‘ dzo(zs) dw(zs)
tel) M ety ) des
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where n=max(i, j)—1. The effective potentials are calculated by integrating the differ-
ence V(xs,x5)—V,(xs; x5) with the basis functions:

2P ()
Vi ()= / By 2 (V (2, 1)~V (g 22))®; (2 20) day.

I?lin (Eé)

During the simulation the adiabatic parameters Vy(zs), w(zs), 20(xs) of the etalon
potential (44) were found from the conditions

wrfax(acs)
min Vixrzs)—Vy(xrxs))? de . 46
. | W) -Vitesia))? dsy (46)
2R (z,)
f

For the potential (43) from the condition (46) we have

w(xs):\/%\/gg)—k240$3+2400x§, 20(xs)=0, at T,=as, T;=a2,

96

20221
w(zs)=v2m 7O+2400xg, 20(z5)= 7(20z, 1)

—_—— at rg=a92, Tf=agg.
80(3522+2) sThEm R0
We performed the calculations for these parameters in the case when
(xf,25)=(age,a20), as well as (xf,xs)=(a20,a22). The results coincide with those of
the calculations of s,f-‘ performed in the previous Section 5.3 and presented in Table 2
with 9 significant digits.

6. Conclusion

We elaborated new calculation schemes and algorithms for solving the parametric 2D
elliptic BVP using the high-accuracy FEM with rectangular (22) and triangular (23)-
(24) elements. The algorithm and the programs calculate with the given accuracy the
eigenvalues, the eigenfunctions and their first derivatives with respect to the parameter
of the parametric self-adjoint elliptic differential equations with boundary conditions of
the Dirichlet and/or Neumann type in the finite 2D domain (15)—(17), (18) and the
corresponding inhomogeneous boundary-value problem (28)—(33), obtained by taking a
parametric derivative of the original 2D BVP. The program also calculates the potential
matrix elements, the integrals of the eigenfunctions multiplied by their first derivatives
with respect to the parameter (34). The parametric eigenvalues (potential curves) and
the matrix elements computed by the program can be used for solving the bound-state
and multi-channel scattering problems for a system of the coupled second-order ODES
with using the Kantorovich method. We demonstrated the efficiency of the proposed
calculation schemes, algorithms and codes by the example of solving the boundary-value
problem of a quadruple vibration collective nuclear model.

We proposed the construction of parametric surface functions in the analytical form
as eigenfunctions of the etalon equation (44), which provides the solution of the 2D BPV
with given accuracy and reduces the expenditures of computer resources compared to
the conventional basis, numerically calculated using FEM. One can construct parametric
functions using different types of etalon potentials, e.g., that of the two-center problem
with harmonic oscillator potentials [19]. This approach can be generalized for the BVP
in a multidimensional domain using, e.g., the multistep Kantorovich method [3].
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The proposed algorithms and codes can be adapted and applied to the analysis of
quantum transparency effect, to the study of resonance three-body scattering problems,
the quantum diffusion of molecules, the penetration of micro-clusters through surfaces,
the fragmentation mechanism in producing very neutron-rich light nuclei, and heavy-ion
collisions, as well as the microscopic study of tetrahedral-symmetric nuclei.
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AJropuTMmbl JIJIs1 pellleHns ITapaMeTPUIecKOil CaMOCONPsIXKEHHOM
JJIMITUYECKOIl KpaeBoil 3a/a4n B JIByMepHOI 00JIacT MeTOIOM
KOHEYHBIX 3JIEMEHTOB BBICOKOI'O IOPSJIKAa TOYHOCTU

A. A. T'yces*, O. Yynyyn6aarap*!, C. 1. Buannukuii**, B. JI. Tep6os®,
A. Tyxmx’

* 063e0uHEHHBLT UHCTUMYM AJEPHVIT UCCAEO08aHUT
ya. Koauvo-Kropu, 0. 6, 2. dybra, Mockosckas obaacmo, Poccus, 141980
¥ Hnemumym mamemamuxu
Monzonrveruti Hayuorarbrul yrusepcumem, Yaan-Bamop, Monzoaus
¥ Poccutickuti ynusepcumem dpysic6o, 1apodoe
ya. Muxayxo-Maxaas, 0. 6, Mocksa, Poccus, 117198

§ Capamosckuti 2ocydapcmsennuti yrusepcumem, 2. Capamos
Y Unemumym gusuru, Ynusepcumem um. M. Kiopu-Craodoscxa, Jhobaun, Horvwa
) b b

PaccMoTpenbl BeIYuCIATEBHBIE CXEMBI PEIIEHUs] KPAEBBIX JUIMITHYECKAX 33349 B paMKax
Merosa KanTopoBuia — peayKIuu SJUIMITAYECKON KPaeBoil 3a/1adn K CUCTeMe OOBIKHOBEHHBIX
nuddepeHnaIbHbIX YPABHEHUI BTOPOTO MOPSJIKA C MCIOJb30BAHUEM ITOBEPXHOCTHBIX (DYHK-
Ui, 3aBUCIIUX OT HE3aBUCUMON MEPEMEHHON CHCTEMbI OOBIKHOBEHHBIX UM dEpPEHINATbHBIX
ypaBHEHUI KaK ITapaMeTpa, BBIUUCIEHHbIE KAK METOJIOM KOHEUYHBIX 3JIEMEHTOB, TaK U IIPOOHBIX
mapaMeTPUYECKUX MTOBEPXHOCTHBIX 0A3UCHBIX (DYHKINM, BBIYUCIEHHBIX B aHAJUTUYIECKON BUJIE.

IIpeyioxkenbl HOBBIE BBIYUCIIATEIBHBIE CXEMBI U AJITOPUTMBI JJIs1 PENIEHNS ITapaMeTPUIeCKOi
CaMOCOIIPSKEHHOMN JITMITUIECKON KPaeBOi 331avi B JBYMEPHON 0OJIACTH, MUCIOJIL3YS METO/
KOHEYHBIX 3JIEMEHTOB BBICOKOI'O MOPAIKA TOYHOCTU C HPAMOYI'OJBHBIMU U TPEYTOJIbHBIMU 3JIe-
MEHTaMHU.

KomMmtekcs! mporpaMM, peasu3yIonye aJIlOPUTMbI, BBIUUCISIOT C 38JaHHOH TOYHOCTBHIO COD-
CTBEHHBIE 3HAYEHUs, COOCTBEHHBIE (DYHKIMY U MX TEPBbIE TPOU3BOIHBIE 110 TAPAMETDPY, CBI3aH-
HBbIE C IIAPAMETPUIECKON CaMOCOIPSI?KEHHON KpPaeBoi 3aJateil s IunTndeckux nuddepen-
IMAJIbHBIX ypaBHeHuit ¢ yciaoBuamu Jlupuxie nin Heifimana Ha rpaHuile B KOHEYHOM JIBY MEPHOMN
00J1acTH, a TaK»Ke MOTEHINAIbHBIE MATPUTHBIE SJIEMEHTHI — WHTETPAJIBI OT MPOU3BEIEHU COD-
CTBEHHBIX (PYHKINI U UX IEPBBIX IPOU3BOAHBIX 110 TapaMmeTpy. [lapamerputdeckue cobcTBeHHbIE
3HaYeHUs (TaK HA3BIBAEMbIE IIOTEHIMAJbHbBIE KPUBbIE) U MATPUYHBIE SJIEMEHTHI, BBIUNC/IEHHBIE C
IIOMOIIBIO KOMILJIEKCA IPOrPaMM, MOXKHO IIPUMEHATD JJId PEeIIeHUs 3a1a49i Ha CBA3aHHbIE COCTO-
STHUSI 1 MHOTOKAHAJILHOM 319N PACCESTHUSA JJIs CUCTEMbI OOBIKHOBEHHBIX UM dEPEHINATHHBIX
ypaBHEHUI BTOPOro MOPsAIKA ¢ IOMOIIbI0 MeToa KanToposuya.

Db DEKTUBHOCTD MPETIOKEHHBIX CXEM PACUETa M AJTOPUTMOB JIEMOHCTPUPYETCST PEIeHreM
JBYMEPHBIX SJUIMITAIECKAX KPAEBBIX 33141, OMUCHIBAIONINX KBAAPYIOJbHbBIE KOJIEOAHNS B KOJI-
JIEKTUBHOM MOJIeJIM @TOMHOTIO sJipa.

KiroueBbie ciioBa: mapaMeTpuydecKue dJIIANTUYIECKIE KPAEBble 3aa9l, METOJl KOHETHbBIX
3JieMeHTOB, MeTos, Kantoposuua, cucrembr O/1Y BTOpOro mnopsiaka
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