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Abstract. In the framework of effective mass approximation and in strong size quantization
regime the absorption coefficients for ensembles of spheroidal quantum dots (SQDs) are analyzed
using the eigenvalues and eigenfunctions, calculated by means of Kantorovich and adiabatic
methods. The comparison of absorption coefficients for oblate and prolate SQDs with parabolic
and non-parabolic dispersion laws reveals different behavior depending on the aspect ratio (ratio
of minor to major semiaxis) and the external homogeneous electric fields. The possibility of
verification of the considered models is discussed.

1. Introduction
Quantum dots (QDs) are considered to be promising as the elementary basis for the new
generation of semiconductor devices [1]. The unique opportunity to perform the energy level
control and flexible manipulation in QDs is due to the full quantization of charge carrier energy
spectra in these systems. This allows design and manufacturing of artificial structures with
prescribed quantum physical characteristics [2]. That is why the scope of QDs potential
applications is very wide, from heterostructure lasers to nanomedicine and nanobiology. An
impressive example of such application is represented by QD lasers possessing low threshold
current and high efficiency [2].

The peculiarities of physical processes in QDs are caused by both their composition and
geometry. Electronic, kinetic, optical and other properties of QDs have been investigated
experimentally and theoretically in many papers [3]–[15]. Particularly, the optical absorption
characteristics of QDs have been shown to be strongly correlated with their geometry, on one
hand, and their physical–chemical properties, on the other hand. In one of the first publications
on optical transitions in QD [16] the interband absorption of light was considered in the ensemble
of weakly interacting spherical QDs implanted in a dielectric matrix. The dispersion of QD sizes
was characterized in the framework of Lifshitz–Slezov theory [17]. It was shown that in the
absence of size dispersion, due to the full quantization of charge carriers energy spectra in QD,
the absorption coefficient behaves like a delta function, and the absorption threshold frequencies
depend on the peculiarities of electron and hole energy spectra. When the QD size dispersion
is taken into account, the averaging procedure yields the absorption profile having finite width
and height.
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Recently several reports concerning the experimental implementation of narrow-band InSb
QDs have appeared [18, 19], in which the dispersion law for electrons and light holes is non-
parabolic and described according to the double-band mirror Kane model [20, 21]. For non-
interacting band of heavy holes the dispersion law is considered as quadratic. The investigation
of optical absorption peculiarities in InSb QDs is an interesting problem, taking the electron
transitions from light and heavy hole bands induced by the absorbed photon energy to the
conduction band into account. Interband transitions in an ensemble of cylindrical or spherical
InSb QDs were considered theoretically in dipole approximation with and without magnetic
field, including excitonic effects, by means of perturbation and adiabatic methods [22]–[24]. The
realization of ellipsoidal QDs were done recently and experiments are intensified just nowadays.
Unfortunately, the experiments of growth of ellipsoidal QDs we are aware of, are about InAsSbP
compounds the zone structure of which is investigated poorly.

Quantum dots with ellipsoidal geometry are difficult to describe analytically. Therefore, one
has to use numerical description of electronic and optical properties of such systems [25]–[31]. It
is clear that for the first stage of investigation it is reasonable to discuss one particle states (strong
size quantization regime), as far as in that case the problem becomes relatively simple. The
criteria of applicability of such approximation are conditioned by the correctness of the following
inequalities: dmax � aeB and dmax � ahB, where dmax is the biggest linear size of localization area
of electron and hole with respect to the corresponded Bohr radius,ae,hB = (h̄2κ)/(µe,he2), in the
effective mass approximation of the k · p-theory. Here, κ is the dc permittivity, µe(h) = βe(h)m0

is the effective mass of electron or hole, m0 is the mass of electron. As known, a comparison of
theory with experiment show, if a sample thickness in a direction of size quantization contains
more then ten crystal layers, i.e. start from 30-40 angstrom, then one can use effective mass
approximation [1]. It should be mention, that in paper [7] in the same approximation the
authors discussed the absorption of light in ellipsoidal quantum dot with asymmetric parabolic
confinement potential in the presence of magnetic field. The problem of optical absorption was
discussed on the base of normal mode approach [8] and exact expressions for interband transition
threshold frequencies were found.

The consideration of excitonic effects is possible to do in several steps. In the case of weak
size quantization regime the main energy contribution of the system is defined by the Coulomb
energy of electron-hole interaction, and the presence of size quantization it is possible to define
by the influence of walls on the center of mass of exciton (see, for example, [16]). Thereby, in
this case the relative motion can be separated from the motion of center of mass and the shift
(displacement) of excitonic line is taking place at the expense of size quantization of the motion
of exciton as a whole. In the case of intermediate size quantization when for the heavy hole the
size quantization is not significant, but for the electron it is strong enough, it is necessary to
apply adiabatic approximation, when the motion of the hole is described in an effective field of a
fast moving electron. The solution of excitonic problems of QD with ellipsoidal geometry needs
separate and detailed study [9, 10]. Therefore within the frameworks of this paper we would not
discuss excitonic effects, as well as electron-electron and hole-hole interactions.

Earlier we elaborated calculation schemes, symbolic-numerical algorithms (SNAs) and
programs for numerical solution of boundary-value problems (BVPs) in axially-symmetric
models of quantum wells, quantum wires and QDs in external fields, using the effective mass
approximation [30]–[41]. The programs were based on the generalized Kantorovich method and
the adiabatic method, allowed calculation of both discrete and continuous spectra and provided
the prescribed accuracy.

In the present paper we apply the developed approach to the analysis of spectral and optical
characteristics of oblate and prolate spheroidal QDs in strong size quantization regime with
parabolic and non-parabolic dispersion laws under the influence of homogeneous electric fields
(HEFs), i.e., the quantum-confined Stark effect.
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2. Statement of the problem
Let us consider in the effective mass approximation of the k ·p-theory spheroidal QDs in strong
size quantization regime with possible influence of the uniform electric field F = (0, 0, F ). Then
the Schrödinger equation for the slow-varying envelope wave function Ψ̃i(r̃i) of an electron (i = e)
or a hole (i = h) reads as [10]:{

1
2µi

˜̂pi
2 − qi(F · r̃i) + Ũconf (r̃i)− Ẽi

}
Ψ̃i(r̃i) = 0. (1)

Here r̃i is the radius-vector, r̃i = (x̃i, ỹi, z̃i), ˜̂pi = −ıh̄∇r̃i is the momentum, Ẽi is the energy
of particles, qe = −e and qh = +e are the Coulomb charges of the electron and the hole, For
the model under consideration, Ũconf (r̃) is the potential of a spherical or axially-symmetric well
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Figure 1. Dependence of energy eigenvalues E (in units of EeR) of the lower part of the spectrum
of electronic states of QDs at m = 0 upon the electric field strength γF (in units of F ∗0 ): for
spherical quantum dot (SQD) with radius a = c = 2.5, oblate and prolate spheroidal quantum
dots (OSQD and PSQD) at different minor semiaxis (for OSQD c = 0.5, 1, 1.5, 2, a = 2.5, for
PSQD c = 2.5, a = 0.5, 1, 1.5, 2).
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Ũconf (r̃i) = {0, S(r̃i) < 0; Ũ0, S(r̃i) ≥ 0}, bounded by the surface S(r̃i) = 0 with walls of infinite
height (infinite potential barrier model, IPBM) or finite height 1 � Ũ0 < ∞ (finite potential
barrier model, FPBM). Here S(r̃i) depends on the parameters ã, c̃, which are semiaxes of a
spheroidal QD, S(r̃i) ≡ (x̃2

i + ỹ2
i )/ã

2 + z̃2
i /c̃

2 − 1. The eigenvalues and eigenfunctions needed to
evaluate the absorption coefficients (ACs) were calculated with prescribed accuracy by means
of program packages ODPEVP and KANTBP [34, 35, 36]. For example, the energy eigenvalues
E = 2Ee = Ẽe/EeR of the lower part of the electronic spectrum of the QDs at m = 0 versus
the electric field strength 2γF = F/F ∗0 (in the reduced atomic units [4]) for the IPBMs of
spherical, oblate, and prolate spheroidal QDs with parabolic dispersion law at different values of
minor semiaxis are shown in Fig. 1. Detailed explanation of these dependencies is given in the
forthcoming paper [41]. The dependence of the IPBMs and FPBMs of spheroidal and dumbbell
ODs on the minor semiaxis was studied in [30, 31].

3. Absorption coefficient for an ensemble of QDs
One can use differences in the energy spectra to verify the considered models of QDs by
calculating the absorption coefficient K(ω̃ph, ã, c̃, ) of an ensemble of identical semiconductor
QDs [16]. Since we do not discuss exciton effects in the present paper, the absorption coefficient
may be approximately expressed as

K̃(ω̃ph, ã, c̃, u) =
∑
ν,ν′

K̃ν,ν′(ω̃ph, ã, c̃, u) = Ã
∑
ν,ν′

Ĩν,ν′(u)δ(h̄ω̃ph − W̃νν′), (2)

Ĩν,ν′(u) =
∣∣∣∣∫ Ψ̃e

ν(r̃; ã, c̃, F, µe)Ψ̃h
ν′(r̃; ã, c̃, F, µh)d3r̃

∣∣∣∣2 ,
where Ã is proportional to the square of the matrix element in the Bloch decomposition,
Ψ̃e
ν(u) and Ψ̃h

ν′ are the eigenfunctions of the electron (e) and the heavy hole (h), Ẽeν and
Ẽhν′ are the energy eigenvalues for the electron (e) and the heavy hole (h), depending on the
semiaxis size c̃, ã for OSQD (or ã, c̃ for PSQD) and the adiabatic set of quantum numbers
ν = [nzo, nρo,m] and ν ′ = [n′zo, nρo′ ,m

′] (ν = [nρp, nzp,m] and ν ′ = [n′ρp, n
′
zp,m

′]), where
m′ = −m, Ẽg is the band gap width in the bulk semiconductor, ω̃ph is the incident light
frequency, W̃νν′ = Ẽg + Ẽeν(ã, c̃) + Ẽhν′(ã, c̃) is the inter-band transition energy for which K̃(ω̃ph)
has the maximal value. We rewrite the expression (2) in the terms of frequency shift of the
incident light ∆ωph/(2π) = (h̄ω̃ph−Ẽg)/(2πh̄) corresponding to the inter-band transition energy
shift ∆W̃νν′ = W̃νν′− Ẽg = Ẽeν(ã, c̃)+ Ẽhν′(ã, c̃) for which K̃(∆ω̃ph) has the maximal value, using
dimensionless variables in reduced atomic units

K̃(∆ω̃ph, ã, c̃) = ÃẼ−1
g

∑
ν,ν′

Ĩν,ν′(u)δ[fν,ν′(u)], fν,ν′(u) = λ1 −
2Eeν(a, c) + 2Ehν′(a, c)(µh/µe)

2Eg
, (3)

Here the parameter u will be defined below, λ1 = (h̄ω̃ph − Ẽg)/Ẽg is the energy of the optical
interband transitions scaled to Ẽg, 2Eg = Ẽg/Ẽ

e
R is the dimensionless band gap width.

For GaAs the functions fh→eν,ν′ (u) describing the (h→ e) interband transitions have the form

fh→eν,ν′ (u) = λ1 − (2Eg)−1(2Eeν(a, c) + 2Eeν′(a, c)(µe/µh)), (4)

where µe = 0.067m0 and µh = 0.558m0 are the masses of electron and holes, respectively, Ẽg =
1430meV is the band gap width and κ = 13.18 is the dc permittivity and EeR = e2/(2κaeB) =
5.275 meV, aeB = h̄2κ/(µee2) = 104Å, EhR = e2/(2κahB) = 49 meV, ahB = h̄2κ/(µhe2) = 15Å and
F ∗0 = EeR/(ea

e
B) = e/(2κ(aeB)2) = 5.04kV/cm.
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For InSb the dispersion law for heavy holes (hh) is parabolic while for electrons (e) and light
holes (lh) it is non-parabolic and may be described by the Kane model [20, 21, 24]. The energy
values in our notation are:

2Ẽhhν (InSb) = 2Ẽhν′(ã, c̃), (5)

2Ẽeν(InSb) = 2Ẽlhν (InSb) = −Ẽg/2 +
√
Ẽ2
g/4 + Ẽg(2Ẽeν(ã, c̃)). (6)

As follows from Eqs. (5) and (8), to determine the energy spectrum and the wave function
of the light hole and the electron one should solve the Klein-Gordon equation [42, 43], while
for heavy hole the Schrödinger equation is applicable. The functions fhh→eν,ν′ (u) and fhh→eν,ν′ (u)
describing the (hh→ e) and the (lh→ e) interband transitions have the forms

fhh→eν,ν′ (u) = λ1 − (1/2 +
√

1/4 + (2Eeν(a, c)/(2Eg)) + (2Eg)−12Eeν′(a, c)(µe/µh)), (7)

f lh→eν,ν′ (u) = λ1 − 2(
√

1/4 + (2Eeν(a, c)/(2Eg))), (8)

where µe = µlh = 0.15m0 and µh ≡ µhh = 0.5m0 are the masses of electron, light and heavy
holes, respectively, Ẽg = 180 meV is the band gap width, κ = 16 is the dc permittivity, and
EeR = ElhR = e2/(2κaeB) = 7.972 meV, aeB = alhB = h̄2κ/(µee2) = 56.44Å, EhR = EhhR =
e2/(2κahhB ) = 26.57 meV, ahB = ahhB = h̄2κ/(µhe2) = 16.93Å.

For both electron and hole carriers the dimensionless energies 2Eeν = Ẽeν/Ẽ
e
R and

2Ehν (µh/µe) = Ẽhν /Ẽ
e
R are expressed in the same reduced atomic units ẼeR, and the

overlap integral (2) between the eigenfunctions, corresponding to Eeν(γF ) and Ehν (γF ) =
(µe/µh)Eeν(−(µh/µe)γF ), takes the form

Ĩν,ν′(u) =
∣∣∣∣∫ Ψe

ν(r; a, c, γF , µe)Ψe
ν′(r; a, c,−(µh/µe)γF , µe)d3r

∣∣∣∣2 . (9)

Now consider an ensemble of OSQDs (or PSQDs), differing in the minor semiaxis values c = uoc̄
(or a = upā), determined by the random parameter u = uo (or u = up). The corresponding
minor semiaxis mean value is c̄ at fixed major semiaxis a (or ā at fixed major semiaxis c), and the
appropriate distribution function is P (uo) (or P (up)). Commonly, in this case the normalized
Lifshits-Slezov distribution function [17] is used:

P (u) = {34eu2 exp(−1/(1− 2u/3))/25/3/(u+ 3)7/3/(3/2− u)11/3, u ∈ (0, 3/2); 0, otherwise}

having conventional properties
∫
P (u)du = 1, ū =

∫
uP (u)du = 1. The absorption coefficients

K̃o(ω̃ph, ¯̃a, c̃) or K̃p(ω̃ph, ã, ¯̃c) of an ensemble of semiconductor OSQDs or PSQDs with different
dimensions of minor semiaxes are expressed as

K̃o(ω̃ph, ¯̃a, c̃) =
∫
K̃(ω̃ph, ¯̃a, c̃, uo)P (uo)duo, K̃p(ω̃ph, ã, ¯̃c) =

∫
K̃(ω̃ph, ã, ¯̃c, up)P (up)dup. (10)

Substituting (3) into (10) and taking into account the known properties of the δ-function, we
arrive at the analytical expression for the absorption coefficient K̃(ω̃ph, ã, c̃) of a system of
semiconductor QDs with a distribution of random minor semiaxes:

K̃(ω̃ph)
K̃0

=
∑
ν,ν′,s

K̃ν,ν′(ω̃ph)
K̃0

,
K̃ν,ν′(ω̃ph)

K̃0

= Ĩν,ν′ (us)

∣∣∣∣∣ dfν,ν′(u)
du

∣∣∣∣
u=us

∣∣∣∣∣
−1

P (us) , (11)

where K̃0 = Ã−1Ẽg is the normalization factor, us are the roots of the equation fν,ν′(us) = 0.
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At γF = 0 for IPBM we have the interband overlap Ĩν,ν′ = δnρo,n′
ρo
δnzo,n′

zo
δm,−m′ for OSQD, or

Ĩν,ν′ = (J1+|m|(αnρp+1,|m|)/J1−|m|(αnρp+1,|m|))2δnzp,n′
zp
δnρp,n′

ρp
δm,−m′ for PSQD, where αnρp+1,|m|

is the positive root of the Bessel function, and the selection rules m = −m′, nzo = n′zo, nρo = n′ρo,
or nρp = n′ρp, nzp = n′zp [31], while at γF 6= 0 one should calculate the interband overlap (9) in
accordance with the selection rules m = −m′, nρo = n′ρo, or nρp = n′ρp [41], respectively. Note
that the contributions of non-diagonal matrix elements to the energy values are about 1% for
IPBM of OSQD and PSQD; then in the Born-Oppenheimer approximation of the order bmax for
the AC we get [31, 41]

fν,ν′(u) = λ1 −
bmax∑
j=0

Ě(j)uj−2. (12)

For example, at γF = 0 the coefficients Ě(j) are defined by [31]

Ě(j) = (2Eg)−1E
(j)
io ω

2−j
ρ;no(c̄)(1 + µe/µh) or Ě(j) = (2Eg)−1E

(j)
ip ω

2−j
z;nρp(ā)(1 + µe/µh),

ωρ;no(c̄) = πno/(ac̄), ωz;nρp(ā) = αnρp+1,|m|/(āc); (13)

E
(0)
io = a2/4, E

(1)
io = (2nρo+|m|+1), E

(2)
io = (6nρo|m|+2+6nρo+6n2

ρo+|m|2+3|m|)a−2,

E
(3)
io =3(6nρo+3|m|+2+|m|2+6n2

ρo+6nρo|m|+4n3
ρo+6|m|n2

ρo+2|m|2nρo)a−4/2;

E
(0)
ip = c2, E

(1)
ip = (2nzp+1), E

(2)
ip =+3(2nzp+2n2

zp+1)c−2/4,

E
(3)
ip =3(3n2

zp+7nzp+2n3
zp+3)c−4/16.

For the Lifshits-Slezov distribution Figs. 2 and 3 display the total absorption coefficients
K̃(ω̃ph)/K̃0 and the partial absorption coefficients K̃ν,ν(ω̃ph)/K̃0, that form the corresponding
partial sum (11) over a fixed set of quantum numbers ν, ν ′ at m = −m′ = 0. As a result of
averaging (10) a series of curves with finite with and height are observed instead of a series of
δ-functions. One can see that, in the first place, the summation over the quantum numbers
no = nzo+ 1 = 1, 2, 3, 4, 5 (or np = nρp+ 1 = 1, 2, 3) enumerating the nodes of the wave function
with respect to the fast variable gives the corresponding principal maxima of the total AC for
the ensemble of QDs with distributed dimensions of minor semiaxis. Secondly, the summation
over the quantum number nρo = 0, 1, 2, 3, ..., 8 (or nzp = 0, 1, 2, ..., 15) that labels the nodes of
the wave function with respect to the slow variable leads to the increase of amplitudes of these
maxima and to secondary maxima arising in the case of sparer energy levels of IPBM of OSQDs
(or PSQDs).

In the regime of strong dimensional quantization the frequencies ∆ω̃ph100/(2π) =
(2πh̄)−1(W̃100,100 − Ẽg) of the interband transitions (h → e) in GaAS between the levels
no = 1, nρo = 0,m = 0 for OSQD or np = 1, nzp = 0,m = 0 for PSQD at the fixed
values ã = 2.5ae and c̃ = 0.5ae for OSQD or ã = 0.5ae and c̃ = 2.5ae for PSQD, are
equal to ∆ω̃ph100/(2π) = 16.9THz at γF = 0 and ∆ω̃ph100/(2π) = 15.9THz at γF = 10, or
∆ω̃ph100/(2π) = 33.3THz at γF = 0 and ∆ω̃ph100/(2π) = 31.5THz at γF = 2 correspond to the
infra-red spectral region [9, 10], taking the band gap value (2πh̄)−1Ẽg = 346THz into account.
In Fig. 3 one can see the quantum-confined Stark effect that consist in the reduction of the
absorption energy (light frequency) at the expense of lowering the energy of both (e) and (h)
bound states due to the electric field effect. The total ACs at F 6= 0, shown by solid lines,
qualitatively correspond to the total AC at F = 0, shown by dashed lines, but have lower
magnitudes and smooth behavior, in spite of the additional contribution to the partial ACs of
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Figure 2. Absorption coefficient K/K0, Eq. (11), consisting of a sum of the first partial
contributions vs the energy λ = λ1 of the optical interband transitions for the Lifshits-Slezov
distribution, using the functions fh→eν,ν′ (u) for GaAs (h→ e) without electric field: for ensemble
of OSQDs c̄ = 0.5, a = 2.5 (left panel) and for ensemble of PSQDs ā = 0.5, c = 2.5 (right panel).
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Figure 3. The same as in Fig. 2, but in the presence of electric field 2γF =F/F ∗0 . For compa-
rison, the corresponding absorption coefficient without electric field is given by dashed line.

the overlap integral (9) from the interband transition nzo 6= n′zo or nzp 6= n′zp in OSQD or PSQD,
also shown in Fig. 3.

At the same parameters of the QDs the frequencies of the interband transitions (lh → e) in
InSb are equal to ∆ω̃ph100/(2π) = 68.5THz for OSQD or ∆ω̃ph100/(2π) = 87.2THz for PSQD, while
the frequencies of the interband transitions (hh→ e) in InSb are equal to ∆ω̃ph100/(2π) = 78.6THz
for OSQD or ∆ω̃ph100/(2π) = 102THz for PSQD. These values correspond to the infrared spectral
region with longer wavelength, similar to [24], with the band gap value (2πh̄)−1Ẽg = 44THz
taken into account. One can see that the behavior of total ACs for parabolic dispersion law
for IPBM of InSb, shown in Fig. 4, is similar to that for GaAs (Fig. 2), while the behavior of
AC for nonparabolic dispersion law, shown in Fig. 5, is essentially different. In particular, for
OSQDs it grows faster with increasing λ1, while for PSQDs it goes to a plateau before starting
to grow. Indeed, with increasing quantum numbers nρo or nzp that characterize the excitation
of slow motion, the maxima of partial ACs decrease for parabolic dispersion law, while for the
nonparabolic one the maxima of partial ACs increase.

With decreasing semiaxis the threshold energy increases, because the “effective” band gap

Dubna-Nano 2012 IOP Publishing
Journal of Physics: Conference Series 393 (2012) 012011 doi:10.1088/1742-6596/393/1/012011

7



Figure 4. The same as in Fig. 2, but for InSb (hh→ e) interband transition.

Figure 5. The same as in Fig. 2, but for InSb (lh→ e) interband transition.

width increases, which is a consequence of the dimensional quantization enhancement. Therefore,
the above frequency is greater for PSQD than for OSQD, because the SQ implemented in two
direction of the plane (x,y) is effectively larger than that in the direction of the z axis solely
at similar values of semiaxes. Higher-accuracy calculations reveal an essential difference in the
frequency behavior of the AC for interband transitions in systems of semiconductor OSQDs or
PSQDs having a distribution of minor semiaxes, which can be used to verify the above models.

4. Conclusion
In this paper we demonstrate the efficient methods of calculating the electron and hole states
in the presence of an electric field for spherical and spheroidal QDs with parabolic and non-
parabolic dispersion laws. Our analysis shows that the adiabatic approach provides a useful
theoretical tool for describing absorption coefficients in an ensemble of spheroidal QDs with
random distribution of minor semiaxes. Further development and applications of our approach
and SNAs are associated with the investigation of exciton effects, as well as electron-electron
and hole-hole interactions in spheroidal QDs.
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