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Abstract. We consider the interaction of hydrogen atom with a very intense low frequency
laser pulse. The Henneberger-Kramers representation of the time-dependent Schrödinger
equation is the most appropriate one for this purpose. It is shown that in the case of very
low frequencies, the quantum dispersion of the electron wave packet plays a dominant role in
the dynamics of the atom.

Introduction
Numerous theoretical and experimental research works on the interaction of quantum systems
with an electromagnetic field have been performed lately. This is mainly due to recent advances
in laser technologies allowing one to obtain very high intensities. However, in modern theories,
the case of intense low frequency fields is still not very well described.

A quantum system exposed to an electromagnetic field can change its state by absorbing or
emitting photons. Their energy corresponds in atomic units (h̄ = e = me = 1) to the frequency
ω0 of the external field. In the case of low frequencies the period of laser pulse with N cycles
T = (2πN)/ω0 becomes really huge.

Usually one solves numerically the time-dependent Schrödinger equation (TDSE) with initial
conditions by means of a finite difference grid method or a spectral method. This leads to a
system of ordinary first order differential equations in time. However, such numerical approach
is no longer tractable if the frequency of the laser pulse is very small and its intensity very high.
Indeed, the amplitude of the quiver motion becomes so big that the size of the spatial grid or of
the basis becomes prohibitively large making the numerical calculations impossible to perform
even on supercomputers. In this case, we need mathematical and physically reliable models to
understand deeply the interaction mechanisms. In this contribution, we consider such a model.
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Theory
The TDSE that describes the interaction of a pulsed electric field of period T with an
hydrogenlike atom writes as follows:[

i
∂

∂t
− 1

2

(
−i~∇+

1

c
~eA(t)

)2

+
Z

r

]
Ψ̃(~r, t) = 0, Ψ̃(~r, 0) = ϕ̃0(r) =

√
Z3

π
e−Zr. (1)

Z designates the nuclear charge. The vector-potential associated to the electric field is given by
1/c A(t) = −ω−10

√
I/I0 sin2(π t

T ) sin(ω0t), 0 ≤ t ≤ T , and ~e is the field polarization vector. The
electron wave packet satisfies the normalization condition:∫

d~r|Ψ̃(~r, t)|2 = 1,

that guaranties the conservation of the total probability. In our numerical calculations, the peak
intensity I = 1 · 1014 W/cm2 (I0 = 3.5 · 1016 W/cm2 is the atomic unit of intensity), the photon
frequency ω0 = 0.00228 in atomic units, and N = 5. It is easy to see that for any fixed time t,
the vector-potential vanishes like ω2

0, if ω0 → 0.

The electromagnetic field is a gauge-invariant. Any gauge transformation of electromagnetic
potentials can be compensated by a corresponding phase transformation of the wave function
Ψ̃(~r, t). In such a way, we obtain different gauge-equivalent forms of Eq. (1). For example, if
we use the Henneberger-Kramers (HK) representation [1]

Ψ̃(~r, t) = exp

[
b(t)(~e~∇r)−

i

2

∫ t

0
dt′(1/cA(t′))2

]
Φ̃HK(~r, t), b(t) = −1

c

∫ t

0
A(t′)dt′,

we obtain from (1)[
i
∂

∂t
+

1

2
4r +

Z

|~r − ~eb(t)|

]
Φ̃HK(~r, t) = 0; Φ̃HK(~r, 0) = ϕ̃0(r). (2)

Note, that at any time t, the wave packet is normalized to unity∫
d~r |Φ̃HK(~r, t)|2 = 1.

Here, we analyze the amplitude A0 which determlines the probability for the atom to stay in
its ground state. For this purpose, we define

< ϕ0|Φ̃HK(t) >= ei(Z
2/2)tA0(t)

and obtain from (2)

∂

∂t
A0(t) = −iZe−i(Z2/2)t < ϕ0

∣∣∣∣1r − 1

|~r − ~eb(t)|

∣∣∣∣ Φ̃HK(t) >, A0(0) = 1. (3)

In this particular case the integration volume is always limited by r ∼ Z−1.

Near t ≤ t0 ∼ 0 (
√
I/I0 ω0/(2N)2 t30 � 1), the amplitude is still vanishingly small. But

the value b(t) being proportional to ω−20 grows quickly in a course of time, and the ionization
begins. A further quick growth of b(t) leads to the disappearance of the term 1/|~r−~eb(t)| in (3).
The electron leaves the vicinity of the nucleus, follows the field oscillation and simultaneously
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undergoes the free evolution (dispersion). At the root-point t1, the b(t1) is zero again (see Fig.
1 left), and the amplitude stays constant during very short time around t ∼ t1. Afterward, the
term 1/|~r − ~eb(t)| disappears again.

For t ≥ t0 the free solution of Eq. (2) can be written in the form

Φ̃HK(~r, t) =

∫
d3r′G0(~r − ~r ′, t− t0)Φ̃HK(~r ′, t0) (4)

with

G0(~r, t) =

∫
d3k

(2π)3
exp

[
i~k · ~r − ik

2

2
t

]
θ(t).

Inserting (4) in (3) we obtain

A0(t) ≈ A0(t0)− iZe−i(Z
2/2)t0

∫ t−t0

0
dξe−i(Z

2/2)ξ
∫
d3r′

∫
d3r

r
ϕ0(r)G0(~r − ~r ′, ξ)Φ̃HK(~r ′, t0) =

A0(t0)−
(
Z

π

)5/2

e−i(Z
2/2)t0

∫
d3k

1− exp[−i(k2/2 + Z2/2)(t− t0)]
(Z2 + k2)2

ΦHK(~k, t0). (5)

where ΦHK(~k, t0) is a Fourier transform of Φ̃HK(~r ′, t0). We write approximately

ΦHK(~k, t0) ≈
8
√
πZ5

(k2 + Z2)2
ei(Z

2/2)t0

In this case for t > t0 we have

A0(t) ≈
8Z5

π2
e−i(Z

2/2)(t−t0)
∫
d3k

exp[−i(k2/2)(t− t0)]
(Z2 + k2)4

, A0(t0) ≈ 1 (6)

Eq. (6) is valid for the time period t0 ≤ t < t1. In a very narrow time-period near t ∼ t1 we
can fix A0(t) ≈ A0(t1) from (6). For t > t1 (second half-period of the first optical cycle) we can
repeat the scheme (4) - (6), but instead of (5) we obtain

A0(t > t1) = A0(t1)−
(
Z

π

)5/2

e−i(Z
2/2)t1

∫
d3k

1− exp[−i(k2/2 + Z2/2)(t− t1)]
(Z2 + k2)2

ΦHK(~k, t1),

(7)
etc. The amplitude A0(t1) is very small and continues to decrease at t > t1. At the end of pulse
after 5 optical cycles we obtain |A0(T )|2 = 5× 10−11.

Conclusion
What is the physical picture implied? Two distinct physical processes determine the motion of
the bound electron in the oscillating electric field. First, the quiver motion of this electron. In
the absence of Coulomb potential, the electron oscillates in the field with an amplitude given by
the ratio of the peak electric field and the square of the frequency in atomic units. In the present
case, this amplitude is very large, of the order of 30 000 atomic units. The second process is
the dispersion of the electron wave packet. For low frequencies, the dispersion time is extremely
long. After each half cycle, the electrons that go back to the nucleus interact only weakly and
during a rather short time with the nucleus so that the probability to stay in the ground state
is hardly affected. So, at very small frequencies, the only role of the field is to push out the
electron from its stationary state at the very beginning of the process. Afterward, the electron
wave packet freely disperses. By contrast, for higher frequencies and shorter pulse durations,
the role of the field becomes more and more dominant, while dispersion is much less important.
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Figure 1. On the rhs: x-axis, τ = ω0t, y-axis, the reduced b(t) = ω−20

√
I/I0 f(τ). |A0(t)|2

from (6) on the lhs. In this time scale t0 ≈ 0.
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