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Compton scattering is one of the fundamental
interaction processes of light with matter. Al-
ready upon its discovery [1] it was described as a
billiard-type collision of a photon kicking a quasi-
free electron. With decreasing photon energy, the
maximum possible momentum transfer becomes
so small that the corresponding energy falls be-
low the binding energy of the electron. Then
ionization by Compton scattering becomes an in-
triguing quantum phenomenon. Here we report a
kinematically complete experiment on Compton
scattering at helium atoms below that threshold.
We determine the momentum correlations of the
electron, the recoiling ion, and the scattered pho-
ton in a coincidence experiment finding that elec-
trons are not only emitted in the direction of the
momentum transfer, but that there is a second
peak of ejection to the backward direction. This
finding links Compton scattering to processes as
ionization by ultrashort optical pulses [2], elec-
tron impact ionization [3, 4], ion impact ioniza-
tion [5, 6], and neutron scattering [7] where simi-
lar momentum patterns occur.

Doubts about energy conservation in Compton scatter-
ing on the single-event level were the trigger motivating
the invention of coincidence measurement techniques by
Bothe and Geiger [8]. This historic experiment settled the
dispute on the validity of conservation laws in quantum
physics by showing that for each scattered photon there
is an electron ejected in coincidence. Surprisingly how-
ever, even 95 years after this pioneering work, coincidence
experiments on the Compton effect are extremely scarce
and they are restricted to solid-state systems [9, 10]. This
lack of detailed experiments left further progress in the
field of Compton scattering to large extent to theory. Due
to missing experimental techniques, much of the poten-
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tial of using Compton scattering as a tool in molecular
physics remained untapped [11]. The small cross section
of 10−24 cm2 (six orders of magnitude below typical pho-
toabsorption cross sections at the respective thresholds),
together with the small collection solid angle of typical
photon detectors prohibited coincidence experiments on
free atoms and molecules up to now. In the present work,
we have solved that problem by using the highly effi-
cient COLd Target Recoil Ion Momentum Spectroscopy
(COLTRIMS) technique [12] to detect the electron and
the ion momentum in coincidence. The He+ ion and
electrons with an energy smaller than 25 eV are detected
with 4π collection solid angle. The momentum vector of
the scattered photon can be obtained using momentum
conservation, therefore circumventing the need for a pho-
ton detector. This allows us, for the first time, to obtain a
kinematically complete data set of ionization by Compton
scattering of atoms addressing the intriguing low-energy,
near-threshold regime. It has been frequently pointed
out in the theoretical literature that such complete mea-
surements of the process – as opposed to detection of
the emitted electron or scattered photon only – are the
essential key for sensitive testing of theories [13] as well
as to allow for a clean physics interpretation of the results
[14].

For the case of Compton scattering at a quasi-free elec-
tron, the angular distribution of the scattered photon is
given by the Thomson cross section (see Fig. 1a). A bind-
ing of the electron modifies the binary scattering scenario
by adding the ion as a third particle. The often invoked
impulse approximation accounts for one of the effects of
that binding, namely the electron’s initial momentum
distribution. According to this approximation, the initial
electron momentum is added to the momentum balance,
while the binding energy is neglected. In this model the
ion momentum is defined such that it compensates only
for the electron’s initial momentum. The impulse approx-
imation works well when the binding energy is negligible
compared to the energy of the electron carrying the mo-
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FIG. 1. Scheme of ionization by Compton scattering
at hν = 2.1 keV. a, The wavy lines indicate the incoming
and outgoing photon, the green arrow depicts the momentum
vector of the emitted electron. Dashed line: Thomson cross
section, i.e. angular distribution of a photon scattering at a free
electron. Black dots: experimental photon angular distribution
for ionization of He by Compton scattering, integrated over
all angles and energies of the emitted electrons below 25 eV.
The statistical error is smaller than the dot size. Solid black
line: A2 approximation for all electron energies. Solid red
line: A2 approximation for electron energies below 25 eV.
The calculations were done using approach A (see Methods).
The solid and dotted lines are multiplied by a factor of 1.9.
b, Momentum distribution of electrons emitted by Compton
scattering of 2.1 keV photons at He. The coordinate frame
is the same as in a, i.e. the plane is defined by the incoming
(horizontal) and scattered photon (upper half plane). The
momentum transfer points to the forward lower half plane. The
data are integrated over the out-of-plane electron momentum
components. c, He+ ion momentum distribution for the same
conditions as in b. Refer to the main text for an explanation
of the feature R.

mentum Q transferred by the photon. The maximum
value of Q is reached for photon back-scattering, and is
twice the photon momentum E1/c, with E1 being the in-
coming photon energy. For helium with a binding energy
of 24.6 eV this gives a threshold of E1 ≈ 2.5 keV, below
which photon back-scattering at an electron at rest does
not provide enough energy to overcome the ionization
threshold. In the present experiment we use a photon
energy E1 = 2.1 keV, well below that threshold. There,
the cross section for ionization by Compton scattering
has dropped to about 20% of its maximum value of about
10−24 cm2 [15]. As expected, we observe that the photon
scattering angular distribution differs significantly from
the Thomson cross section (Fig. 1a). The most striking

difference is that all forward angles of photon emission
are suppressed and almost only back-scattered photons
lead to ionization. This measured cross section shows
excellent agreement with our theoretical model which is
described in detail in the Methods section.

What is the mechanism facilitating ionization at these
low photon energies and small momentum transfers? Our
coincidence experiment can answer this question by pro-
viding the momentum vectors of all particles, i.e. the
incoming (k1) and outgoing photon (k2), the electron
(pe), and the ion (pion) for each individual Compton ion-
ization event. This event-by-event momentum correlation
gives access to the various particles’ momentum distri-
butions in the intrinsic coordinate frame of the process,
which is a plane spanned by the wave vectors of the in-
coming and the scattered photon (Fig. 1). This plane
also contains the momentum transfer vector Q = k1−k2.
In Fig. 1b,c, by definition, the photon is scattered to the
upper half plane and the momentum transfer Q, i.e. the
kick by the photon, points forward and into the lower half
plane. The electron momentum distribution visualized in
this intrinsic coordinate frame shows two distinct islands,
one in the direction of the momentum transfer and a sec-
ond, smaller one, to the backward direction, i.e. opposite
to the momentum transfer direction. These two maxima
are separated by a minimum. The He+ ions (Fig. 1c) are
also emitted to the forward direction. In addition to a
main island close to the origin, there are also ions which
are emitted strongly in forward direction towards the re-
gion noted by R (Recoil) in Fig. 1c. This ion momentum
distribution shows strikingly that in the below-threshold
regime, the situation is very different from the quasi-free
electron scattering considered in the standard high-energy
Compton process. In the latter case, the ion is only a
passive spectator to the photon-electron interaction and,
consequently, the ion momenta are centered at the origin
of the coordinate frame employed in Figs. 1b,c [15–18].

The observed bimodal electron momentum distribution
becomes even clearer when we examine a subset of the
data for which the photon is scattered to a certain direc-
tion (Fig. 2). This shows that the momentum distribution
follows the direction of momentum transfer and the nodal
plane is perpendicular to Q. Such bimodal distributions
are known from different contexts. For example, for ion-
ization by electron impact (e,2e) [4] and ion impact [5],
the forward lobe has been termed binary lobe, for obvious
reasons, while the backward peak is referred to as recoil
peak. The name alludes to the fact that in order for
the electron to be emitted opposite to the momentum
transfer, momentum conservation dictates that the ion
recoils to the opposite direction. Mechanistically, this
would occur if the electron was initially kicked in forward
direction but then back-reflected at its own parent ion.
Such a classical picture would suggest that the ion receives
the momentum originally imparted to the electron (i.e.
Q) minus the final momentum pe of the electron. This
expectation is verified by our measured ion momentum
distributions shown in Figs. 2g-i. The ions show also a
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FIG. 2. Electron and ion momentum distributions for
different momentum transfer gates. All panels use the
same coordinate frame as Figs. 1b,c. a-c, Electron momen-
tum distributions obtained from modelling within the A2

approximation using approach B (see Methods). d-f, Electron
momentum distributions measured by our experiment. g-i,
Measured momentum distributions of the ions. From top to
bottom, the rows correspond to different momentum transfers
Q = 1.0, 0.8, and 0.6 a.u., respectively. The arrows in the
third column indicate the photon momentum configuration for
each row. Here, the magenta arrows represent the momentum
of the incoming photon, the blue arrows the momentum of
the scattered photon, and the green arrows the momentum
transfer. A movie of the electron and ion momentum distribu-
tions for different photon scattering directions is available in
the supplementary materials.

bimodal momentum distribution with the main island
slightly forward shifted and a minor island significantly
forward shifted in momentum transfer direction, in nice
agreement with the back-reflection scheme.

The observations suggest a two-step model for below-
threshold Compton scattering referred to as the A2 ap-
proximation (see Methods). The first step is the scat-
tering of the photon at an electron being described by
the Thomson cross section. This step sets the direction
and magnitude of the approximate momentum transfer.
The second step is the response of the electron wave func-
tion to this sudden kick which displaces the bound wave
function in momentum space. This momentum-shifted
electron wave function then relaxes to the electronic eigen-
states of the ion where it has some overlap with its initial
state and with the bound excited states. However, the
fraction which overlaps with the Coulomb continuum
leads to ionization and is observed experimentally. The
bimodal electron momentum distribution for small mo-
mentum transfer follows naturally from such a scenario.
The leading ionizing term in the Taylor expansion of the
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FIG. 3. Electron energy distribution. The scattering
angle for the outgoing photon is restricted to 140 < θ <
180 deg in all panels. a, The electron energy spectrum is
shown independent of the electron emission direction. b, The
electron emission angle is restricted to forward scattering
(0 < θe < 40 deg). c the electron emission angle is restricted
to backward scattering (140 < θe < 180 deg). The black dots
are the experimental data. The error bars are the standard
statistical error. The solid lines are the theoretical results
of approach A, the dashed lines the results of approach B
(see Methods). The experimental data in panels a and b is
normalized such that the maximum intensity is 1; the theory is
normalized such that the integrals of the experimental data and
the theoretical curves are equal. The normalization factors in
panel c are identical to the ones in panel b, since here we depict
the forward/backward direction of the same distribution.

momentum transfer operator eiQ·re is the dipole operator
with the momentum transfer replacing the direction of
polarization. This dipolar contribution resembling the
shape of a p orbital is the origin of the bimodal electron
momentum distribution.

The observed electron momentum distributions are in
excellent agreement with the prediction of the A2 ap-
proximation shown in Fig. 2a-c. Note that these theo-
retical distributions are calculated without any reference
to Compton scattering. What is shown is the overlap
of the ground state with the continuum (altered by the
momentum transfer). Exactly the same distributions are
predicted for an attosecond half-cycle pulse (see Fig. 2 in
[2]) and identical results are expected for a momentum
transfer to the nucleus by neutron scattering [7].



4

Within the A2 approximation, the magnitude of the
energy transfer is determined by energy conservation. It
is worth mentioning that, under the present conditions,
the photon loses only a few percent of its primary energy.
Thus the momentum transfer is largely a consequence of
the angular deflection of the photon and not a consequence
of its change in energy. This can be seen by inspecting
the energy distribution of the ejected electron in Fig. 3a.
The electron energy distribution peaks at zero and falls
off exponentially. For electron forward emission (Fig. 3b)
it peaks at 11 eV for photon back-scattering, while the
backward-emitted electrons for the same conditions are
much lower in energy (Fig. 3c). This also manifests itself
in the fully differential cross section showing the electron
angular distribution for fixed electron energy and fixed
photon scattering angle of 150 ± 20 deg. These angu-
lar distributions (Fig. 4) show that the intensity in the
backward directed recoil lobe compared to the intensity
in the forward directed binary lobe strongly drops with
increasing electron energy. The physics governing the
relative strength of the binary and recoil lobe is unveiled
by two sets of calculations, i.e. by comparing theoretical
calculations for different initial electron wave functions
and different final states. Firstly, we use a correlated
two-electron wave function in the initial state with out-
going Coulomb waves with charge 1 as the final state.
Secondly, we use a single-active-electron model for the
initial state with a final scattering state in an effective
potential (Figs. 3 and 4). We find that the binary peak is
similar in all cases, the recoil peak, however, is enhanced
by more than a factor of two when scattering states in
an effective He+ potential are used instead of Coulomb
states. This directly supports the mechanistic argument
that the recoil peak originates from back-scattering of
forward-kicked electrons at the parent ion. This back-
scattering is enhanced due to the increased depth of the
effective potential compared to the Coulomb potential
close to the origin.

In conclusion we have shown the first fully differential
cross sections for Compton scattering at a gas-phase atom
unveiling the mechanism of near-threshold Compton scat-
tering. Coincidence detection of ions and electrons, as
demonstrated here, paves the road to exploit Compton
scattering for imaging of molecular wave functions not
only averaged over the molecular axis but also in the
body-fixed frame of the molecule. As has been pointed
out recently, measuring the momentum transfer to the
nucleus in this case will give access to the Dyson orbitals
[11].

METHODS

Experimental methods. The experiment was per-
formed at the beamline P04 of the synchrotron PETRA
III, DESY in Hamburg with 40-bunch timing mode,
i.e. the photon bunches were spaced 192 ns apart.
A circularly polarized pink beam was used, i.e. the
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FIG. 4. Fully differential electron angular distribu-
tions. The photon scattering angle is 130 < θ < 170 deg.
Displayed is the cosine of the angle χ between the outgoing
electron and the momentum transfer Q. a, The electron en-
ergy is 1.0 < Ee < 3.5 eV. b, 3.5 < Ee < 8.5 eV. The inlet in
the upper left is the same data in polar representation, where
the arrow indicates the direction of momentum transfer. The
lines and normalization are the same as in Fig. 3.

monochromator was set to zero order. To effectively
remove low-energy photons from the beam, we put foil
filters in the photon beam, namely 980 nm of aluminum,
144 nm of copper, and 153 nm of iron. With this setup,
we suppressed photons < 100 eV by at least a factor
of 10−9 and photons < 15 eV by at least a factor of
10−25 [19]. The beam was crossed at a 90 deg angle
with a supersonic gas jet, expanding through a 30 µm
nozzle at 30 bar driving pressure and room temperature
within a COLTRIMS spectrometer. The supersonic gas
jet passed two skimmers (0.3 mm diameter), hence the
reaction region roughly had the size of 0.2×1.0×0.1 mm3.
The electron side of the spectrometer had 5.8 cm of
acceleration. To increase resolution, an electrostatic lens
and time-of-flight-focusing geometry was used for the
ion side to effectively compensate for the finite size of
the reaction region. The total length of the ion side
was 97.4 cm. The electric field in the spectrometer was
18.3 V/cm, the magnetic field was 9.1 G. The charged
particles were detected using two position-sensitive
microchannel plate detectors with delay-line anodes [19].

Theoretical methods. In general, Compton scattering
is a relativistic process. In the special case of an initially
bound electron, this process may be described by the
second-order quantum electrodynamics perturbation
terms with exchange in the presence of an external
classical electromagnetic field due to the residual
ion (see for example [21]). In the low-energy limit
of small incoming photon energy E1 compared to
the rest energy of an electron mec

2, we can apply a
non-relativistic quantum-mechanical description. (In the
following, we use atomic units unless stated otherwise,
i.e. e = me = ~ = 1.) The energy and momentum
conservation laws are of the form

E1 = E2 + Ip + Ee + Eion, k1 = k2 + pe + pion, (1)
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where Ip is the ionization potential, Ee (pe) is the energy
(momentum) of the escaped electron, Eion (pion) is the
energy (momentum) of the residual ion and E1/2 (k1/2)
are the energies (momenta) of the incoming and outgoing
photons, respectively. For the given keV photon energy
range, the momenta are of the order ki = Ei/c ∼ 1 a.u.
with the speed of light c = α−1 so that the energy of the
escaped electron is only a few eV. Since Mion � 1, the
ionic kinetic energy Eion = p2

ion/(2Mion) can be neglected.
Hence, the photon energy is nearly unchanged and the
ratio of photon energy after and before the collision is

t =
E2

E1
= 1− Ip + Ee + Eion

E1
≈ 1. (2)

The transferred momentum from the photon to the atomic
system is given by Q = k1 − k2 = pe + pion. The mag-
nitude and direction of the transferred momentum Q
may be expressed as a function of the scattering angle θ
between the incoming and outgoing photon.

Under the above kinematic conditions, the fully differ-
ential cross section (FDCS) may be written as

dσ

dEedΩedΩ2
= r2epet|M |2, (3)

with the classical electron radius re and the well-known
Kramers-Heisenberg-Waller matrix element (compare, for
example, Refs. [21, 22]) based on the A2 (seagull) term

M(Q,pe) = (e1 · e2)〈Ψ(−)
pe
|
N∑
j=1

eiQ·rj |Ψ0〉. (4)

Here, e1/2 are the polarization vectors of the incoming and
outgoing photons. Initially, the N electrons of the system
with positions rj are in the bound state Ψ0. Since in the
detection scheme we select singly-ionized helium ions, the
final state of the electronic system is a scattering state

Ψ
(−)
pe

with one electron in the continuum (corresponding
to an asymptotic electron momentum pe) and the other
electron remaining bound.

Assuming an unpolarized incoming photon beam and
we do not detect the final polarization state of the out-
going photon, we additionally average over the initial
polarization and sum up the probabilities corresponding
to both possible orthogonal polarization states. Under
these assumptions, the FDCS can be written as

dσ

dEedΩedΩ2
=

(
dσ

dΩ2

)
Th

pet|Me|2 . (5)

The whole Compton scattering process may be divided
into two steps: In the first step, the incoming photon
scatters off the electronic bound-state distribution. The
corresponding scattering probability is described by the
Thomson formula for photons scattered off a single free
electron (

dσ

dΩ2

)
Th

=
1

2
r2e(1 + cos2 θ). (6)

During the short interaction with the photon, the elec-
trons are simply “kicked” by the transferred momentum
Q. In the second step the “kicked”, field-free atomic
system evolves in time. One part of the boosted wave
function remains bound, while the other part is set free
in the continuum. These escaping electrons are strongly
influenced by the asymptotically Coulomb-like ionic po-
tential so that the electronic matrix elements are given
by

Me(Q,pe) = 〈Ψ(−)
pe
|
N∑
j=1

eiQ·rj |Ψ0〉. (7)

From the FDCS the different observables shown in the
main text can be calculated.

In order to calculate the electronic matrix elements,
complementary approaches have been used: The first
model (approach A) describes both electrons and takes
into account correlation in the ground state, but uses
Coulomb waves as scattering states. In contrast, the
second model (approach B) uses a single-active-electron
description, but includes accurate one-electron scattering
states.

Approach A: Model with correlated ground
state. In the first approach, both electrons of the
helium atom are explicitly treated such that the “direct”
ionization of the “kicked” electron as well as the
“shake-off” (i.e. ejection of the unkicked electron) are
considered. In equation (7), the initial state is given
by a correlated symmetric two-electron ground state
Ψ0(r1, r2), obtained from [23]. To approximate the final
state, the main idea is that one electron remains bound
in the ionic ground state given by

ψHe+

0 (r) =

√
8

π
e−2r (8)

and the free electron may be approximated by Coulomb
wave functions

ψCpe
(r) =

√
e−πζ

(2π)3
Γ(1− iζ)eipe·r

1F1(iζ, 1,−iper − ipe · r)

(9)

with ζ = −1/pe and 1F1 being the confluent hyperge-
ometric function. Since the correct scattering states

Ψ
(−)
pe

(r1, r2) have to be orthogonal to the initial bound
states, the resulting symmetrized final state

Ψ̃(−)
pe

(r1, r2) =
1√
2

[
ψCpe

(r1)ψHe+

0 (r2) + ψCpe
(r2)ψHe+

0 (r1)
]

(10)

is afterwards explicitly orthogonalized with respect to the
initial state Ψ0 such that the electronic matrix elements
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of equation (7) read

Me(Q,pe) =〈Ψ(−)
pe
|eiQ·r1 + eiQ·r2 |Ψ0〉

=〈Ψ̃(−)
pe
|eiQ·r1 + eiQ·r2 |Ψ0〉−

〈Ψ̃(−)
pe
|Ψ0〉〈Ψ0|eiQ·r1 + eiQ·r2 |Ψ0〉 (11)

Approach B: Single-active-electron model. In the
second approach only the “kicked” electron may escape,
while the other electron stays frozen at the core. In order
to model the influence of the remaining electron on the
escaping electron, we use a single-active-electron effective
potential [24]. This potential has an asymptotic charge
of Z = 2 for r → 0, which is screened by the second
electron such that asymptotically for large r, it reaches
Z = 1. The one-electron ground state ψ0 and the one-

electron continuum state ψ
(−)
pe

with incoming boundary
conditions are calculated numerically via solving the ra-
dial Schrödinger equation. Hence, the electronic matrix
element in equation (7) is approximated as

Me(Q,pe) =
√

2 〈ψ(−)
pe
|eiQ·r|ψ0〉. (12)

This expression is calculated using a plane wave expansion

of eiQ·r and an expansion of the scattering states ψ
(−)
pe

in

terms of spherical harmonics.

ACKNOWLEDGMENTS

This work was supported by DFG and BMBF. O. Ch.
acknowledges support from the Hulubei-Meshcheryakov
program JINR-Romania. Calculations were performed
on Central Information and Computer Complex and het-
erogeneous computing platform HybriLIT through su-
percomputer “Govorun” of JINR. Yu. P. is grateful to
the Russian Foundation of Basic Research (RFBR) for
the financial support under the grant No. 19-02-00014a.
We are grateful to the staff of PETRA III for excellent
support during the beam time.

AUTHOR CONTRIBUTION

M.K., F.T., S.G., I.V.-P., J.R., S.E., K.B., M.N.P.,
T.J., M.S.S., and R.D. contributed to the experimental
work. S.B., N.E., S.H., O.Ch., Y.V.P., I.P.V., and M.L.
contributed to theory and numerical simulations. All
authors contributed to the manuscript.

[1] Compton, A. H. Secondary radiations produced by x-rays,
in Bulletin of the National Research Council, no. 20 (v. 4,
pt. 2), (Published by the National Research Council of the
National Academy of Sciences, Washington D.C., 1922)
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