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This review outlines the main results which lead to understanding the dual nature of the chem-
ical bond in diatomic beryllium molecule in the ground X1Σ+

g state. It has been shown that the
beryllium atoms are covalently bound at low-lying vibrational energy levels (ν = 0−4), while
at higher ones (ν = 5−11) they are bound by van der Waals forces near the right turning points.
High precision ab initio quantum mechanical calculations of Be2 resulted in the development of
the modified expanded Morse oscillator potential function which contains all twelve vibrational
energy levels [A.V. Mitin, Chem. Phys. Lett. 682, 30 (2017)]. The dual nature of chemical bond
in Be2 is evidenced as a sharp corner on the attractive branch of the ground state potential curve.
Moreover, it has been found that the Douglas-Kroll-Hess relativistic corrections also show a
sharp corner when presented in dependence on the internuclear separation. The difference in
energy between the extrapolated and calculated multi-reference configuration interaction ener-
gies in dependence on the internuclear separation also exhibits singular point in the same region.
The other problems of ab initio quantum mechanical calculations of the beryllium dimer are also
discussed. Calculated spectrum of vibrational-rotational bound states and new metastable states
of the beryllium dimer in the ground X1Σ+

g state important for laser spectroscopy are presented.
The vibration problem was solved for the modified expanded Morse oscillator potential function
and for the potential function obtained with Slater-type orbitals [M. Lesiuk et al, Chem. The-
ory Comput. 15, 2470 (2019)]. The theoretical upper and lower estimates of the spectrum of
vibrational-rotational bound states and the spectrum of rotational-vibrational metastable states
with complex-valued energy eigenvalues and the scattering length in the beryllium dimer are
presented.
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I. INTRODUCTION

The ground X1Σ+
g state of the Be2 molecule arises from the interaction of two singlet states, which

corresponds to the closed shells of the Be atoms. Such a case occurs very rarely in diatomic molecules,
which, however, is attractive from the theoretical point of view. The ab initio quantum mechanical cal-
culations of such molecular ground states become significantly simple in comparison with other cases
due to the simplification of the configuration state functions (CSF). This fact, together with the small
number of electrons has led to numerous quantum mechanical calculations of the ground state of the Be2
molecule being performed beginning with the 30s of the 20th century1. Subsequent investigations were
reviewed in work2. The potential energy curve of the ground state of the Be2 molecule, calculated and
presented in publications2–5, for the first time explicitly shows the complicated character of the chemical
bonding in Be2. The potential curve has a sharp corner at an internuclear distance of around 3.3 Å. This
has been explained in 2009, both experimentally6 and theoretically7 (the last article was submitted for
publication in November 2009 and published online in August 2010). Almost all vibrational energy lev-
els of the ground state were determined in the experimental work and the Birge-Sponer8 dependence of
∆Gν+1/2 = Eν+1−Eν as a function of the vibrational quantum number ν was obtained. This dependence
shows different slopes of ∆Gν+1/2 for the first five and for the upper vibrational levels (see Figure 2 in
work6). This means that the vibrational constants of these groups of levels are different. On the other
hand, theoretical analysis of the leading configurations of the multi-reference configuration interaction
(MRCI) wave function7 shows that the chemical bonding in Be2 can be classified as a covalent bond at
the internuclear distances near the equilibrium point, while at larger distances it transforms to the van der
Waals interaction. Such a transformation of the electron density, which is associated with a change of the
type of chemical bonding in Be2, has been visualized in publication9.

The Be2 molecule is, thus, the first with a variable type of chemical bond depending on the vibrational
quantum number. In this connection, let us consider a few representative recent ab initio calculations of
the dissociation energy of Be2 together with the corresponding values obtained from experiments all of
which are presented in Table I. An analysis of these results shows that the values of De are close to each

TABLE I. Dissociation energy De (in cm−1) of the ground state X1Σ+
g of the Be2 molecule, calculated in a few

selected recent publications. Errors are shown, if estimated originally.
Year Basis Method De Reference
2005 23s10p8d6f3g2h Extended geminals 945 ± 15 Røggen, Veseth10

2007 aug-cc-pcvqz+bf CCSD(T)+FCI/CBS 938.7 ± 15 Patkovski et al.11

2009 ab initio morphed RPC 934.6 Patkowski et al.12

2010 aug-cc-pvqz FCI/CBS/correl corr 911.7 Schmidt et al.13

2011 aug-cc-pv6z CCSD(T)/FCI+corr 935.1 ± 10 Koput14

2014 DMRG 931.2 Sharma et al.15

2015 STO/atc-etcc-6 fc/ae FCI/CCSD(T)/CBS 929.0 ± 1.9 Lesiuk et al.16

2017 t-aug-ccpV6Z MRCI/CBS 929.8 Mitin9

2018 aug-cc-pVQZ CCSDTQ+corr 928.0 ± 1.9 Magoulas et al.17

2018 cc-pV6Z FCI/CBS+corr 922.9 ± 1.9 Rolik et al.18

2019 STO/atc-etcc-6 FCI/CBS+corr 934.6 ± 2.5 Lesiuk et al.19

2009 Experiment EMO 929.7 ± 2.0 Merrit et al.6

2014 Experiment EMO 929.6 Meshkov et al.20

2014 Experiment MLR 934.8 Meshkov et al.20

2017 Experiment MEMO 929.7 ± 2.0 Mitin9

other when they were computed directly as a difference of the total energies at the equilibrium point and
at the dissociation limit or determined as parameter De in the expanded Morse oscillator (EMO) potential
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function, defined as21:

V (r) = De[1− e−φ(r)(r−re)]2 , (1)

φ(r) =
n

∑
i=0

φi

(
rp − rp

re f

rp + rp
re f

)i

, (2)

which is used for approximation of the vibrational energy levels or points of the potential curve. Two
alternate values of De predominate in these results: values of De of about 930 cm−1 were obtained
in publications6,9,15–17,20. On the other hand, values of about 935 cm−1 have been obtained when the
approximated potential functions, for example EMO, were corrected by the addition of the long-range
asymptotic correction in the form of inverse-power terms and were used for fitting the experimental en-
ergy levels or the calculated theoretical points of a potential curve. This was the case in works12,19,20.
It is especially important to note that the values of De equaling 929.6 and 934.8 cm−1 were obtained in
work20 when the same experimentally determined vibration energy levels were approximated by using
EMO and Morse long-range (MLR) potential functions, i.e. without a correction for long range asymp-
totic behavior and with it. Additionally, in the same article, the experimental energy levels were fitted
using the Chebyshev polynomial expansion (CPE) function. In general, the use of orthogonal polynomi-
als, including Legendre and Chebyhev polynomials of the first and the second kind, for the approximation
of a potential curve by the optimal approximating polynomial was proposed in works22,23. These three
types of polynomials permit the assignment of different weights for approximated points, which might be
useful for accounting for variable experimental measurement errors more correctly.

The inconsistency in the values of De determined by the different ways mentioned above can be un-
derstand by considering the approximation methods employed for the determination of the corresponding
potential curves. They are usually defined by minimizing the root mean square (RMS) deviation of the
optimized potential curve from the ab initio calculated points or similarly by minimizing the RMS devi-
ation of the calculated vibrational energy levels from the measured ones. Thus, the values of De in the
different formulas of potential curves are defined in a such a way to give the minimum RMS for different
formulas. Therefore, from the approximation theory follows that the De is just a parameter, which values
have to be differ in different formulas and its value can not be compared from the different formulas.
Obviously, this case shows a problem of inconsistency between physics and mathematics, because De
is considered as a dissociation energy in physics. Although, it is well known that the dissociation ener-
gies can not be directly experimentally measured and D0 can only be approximately estimated from the
rotational vibrational spectra24.

The dual nature of the chemical bonding in Be2 is evident in the calculations of the vibrational en-
ergy levels of the ground state with the EMO potential function. The transition to the twelfth vibration
level, which was clearly observed in the spectrum, has not been identified in the experimental work6.
This happens because the EMO potential function used to calculate the vibrational energy levels in Be2
holds only eleven energy levels. However, the EMO potential function was originally proposed for the
description of the covalent chemical bond. On the other hand the van der Waals bond is weaker and more
important for larger internuclear distances in comparison to the covalent bond. For this reason, it is clear
that the EMO potential function of Be2 is more narrow near dissociation limit in comparison with the
correct one, which has to describe the van der Waals interaction at large distances in Be2. This was noted
first in work12. Later, this problem of the EMO potential function6 was corrected in the modified EMO
(MEMO) potential function by including the ab initio MRCI potential near the dissociation limit in the
EMO potential function9. The MEMO potential function, constructed in such a way, holds all twelve
vibrational energy levels of Be2.

An important question follows from the dual nature of the chemical bond in the Be2 molecule. Most
of the available Gaussian basis sets for ab initio calculations were developed for the description of the
covalent and ionic type of bonding. However, due to the dual nature of the chemical bond in Be2, the
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basis set used in ab initio calculations have to describe both covalent bonding in the vicinity of equilibrium
distance and van der Waals bonding at large distances at the same level of quality.

The significance of this problem can be demonstrated by considering the convergence of the calculated
results depending on the size of the employed basis sets, i.e. the number of basis functions. In this
connection, a few large Gaussian basis sets have been developed and used in extended quasi-relativistic
MRCI calculations of the dissociation energy De of the Be2 molecule. This energy was estimated as a
difference of the total energies computed at point near the equilibrium and at point corresponding to the
dissociation limit, i.e. at R = 2.44 and R = 80.0 Å, correspondingly. For the first time, the dependence of
De on the basis set size is given in Table II. The presented values of De were corrected for the basis set
superposition error (BSSE).

TABLE II. Dissociation energies De (in cm−1) of the ground state X1Σ+
g of Be2 calculated using the MRCI method

together with the corresponding basis sets and the number of CSF used in calculation.
Basis CSF De

(16s10p5d4f3g2h1i)/[7s6p5d4f3g2h1i]+(3s3p3d3f3g3h3i) 200 073 854 948.8
(18s12p5d4f3g2h1i)/[8s7p5d4f3g2h1i]+(3s3p3d3f3g3h3i) 203 636 850 937.7
(18s12p6d5f4g3h2i)/[8s7p6d5f4g3h2i]+(3s3p3d3f3g3h3i) 217 677 644 934.0
(20s14p6d5f4g3h2i)/[9s8p6d5f4g3h2i]+(3s3p3d3f3g3h3i) 242 592 786 930.4

(22s16p6d5f4g3h2i)/[10s9p6d5f4g3h2i]+(3s3p3d3f3g3h3i) 246 197 719 928.0

It is well known that the contribution of the van der Waals interaction to De is smaller in comparison
with the covalent one. In this connection it is reasonable to assume that the correlation energy corre-
sponding to the van der Waals interaction converge to their limit faster with increasing of the number od
basis functions and CSF in comparison with that for the covalent interaction. The results presented in this
Table II shows that the De reduces from over 935 to below 929.6 cm−1, which is the lowest experimental
value of Be2 dissociation energy. Hence, one can conclude that the fraction of correlation energy which
was taken into account in the calculations presented in this table reduces with increasing the number of
basis functions despite of small enlarging the number of CSF. Therefore, an equivalent description of the
van der Waals and covalent bonding in Be2 was not reached in these calculations despite large number of
CSFs included in the MRCI calculations25.

It should be noted that quantum mechanical ab initio calculations are based on the statement that
the obtained results must converge to the correct ones when increasing the number of employed basis
functions and CSFs. It is well known that all published ab initio calculations of Be2 were only performed
with a single selected basis set (or with two sets when extrapolation to the infinite number of basis
functions was employed). This means that a good agreement in some publications between the calculated
De and the experimental ones must be considered just as a lucky case.

II. AB INITIO CALCULATIONS OF BE2 AND MODIFIED EMO POTENTIAL ENERGY FUNCTION

In the light of the comments presented above, the MRCI calculation of the potential curve of the
ground X1Σ+

g state of the Be2 molecule given in publication9 looks like a compromise in accounting for
the outlined problems which, however, reproduce the experimental dissociation energy De well.

High-precision ab initio MRCI calculations of the Be2 potential curve have been performed using a
well known program26 with correlation consistent cc-pVQZ and cc-PV5Z basis sets27, extended by four
augmented functions28,29 for the better description of the van der Waals interaction. Molecular orbitals
obtained in the Hartree-Fock calculations were transformed into pseudo-natural orbitals to improve con-
vergence of the configuration expansion set. Relativistic effects have been taken into account using the
Douglas-Kroll-Hess approach30–32. The calculated total electronic energies have been corrected using the
Boys-Bernardi counterpoise method33 to eliminate the BSSE34 and then were extrapolated to the infinite
basis set for the case of using natural orbitals in accordance with the considerations given in work35. The
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scalar relativistic corrections and application of extrapolation to the infinite basis set in the Be2 molecule
were investigated in Refs.3,7,14,19,36. The total many configuration molecular wave function for the largest
MRCI calculation of Be2 was constructed from the list of reference configurations consists of a complete
active space of about 1.6 · 104 configurations formed by 24 molecular orbitals of D2h symmetry, which
describe the excitations of electrons to the 2p, 3s, 3p, and higher orbitals of Be. All singly and doubly ex-
cited configurations generated from this list of reference configurations have been included in the MRCI
calculations. The largest calculation includes about 37.2 ·106 configuration state functions.

The values of the total potential energy of Be2 calculated at 77 points of internuclear separation ob-
tained in these calculations are presented in Table III. A comparison of the theoretical potential energy

TABLE III. MRCI potential energy curve of the X1Σ+
g state of Be2. Internuclear separation is in angstrom (Å), the

total energy is in (cm−1).
R Etot R Etot R Etot R Etot

1.50 24554.9792 3.00 -478.4235 6.00 -29.8545 24.00 -0.0275
1.60 16238.9043 3.10 -415.5393 6.50 -17.9725 25.00 -0.0250
1.70 10237.2474 3.20 -366.2914 7.00 -11.1156 26.00 -0.0250
1.80 6045.0232 3.30 -328.1793 7.50 -7.0865 27.00 -0.0217
1.90 3201.9108 3.40 -298.4670 8.00 -4.6482 28.00 -0.0136
2.00 1344.4657 3.50 -274.7081 9.00 -2.1839 29.00 -0.0141
2.10 192.0413 3.60 -254.8773 10.00 -1.1249 30.00 -0.0089
2.20 -469.1904 3.70 -237.3498 11.00 -0.6198 32.00 -0.0160
2.30 -800.1700 3.80 -220.9879 12.00 -0.3804 34.00 -0.0099
2.40 -920.4464 3.90 -205.7910 13.00 -0.2399 36.00 -0.0086
2.42 -927.3053 4.00 -192.2289 14.00 -0.1588 38.00 -0.0062
2.43 -929.0688 4.20 -167.4891 15.00 -0.1080 40.00 -0.0072
2.44 -929.8058 4.40 -143.7740 16.00 -0.0818 42.00 -0.0052
2.45 -929.5907 4.60 -121.5195 17.00 -0.0658 44.00 -0.0030
2.46 -928.4713 4.80 -101.3230 18.00 -0.0448 46.00 -0.0028
2.50 -916.0723 5.00 -83.5874 19.00 -0.0395 48.00 -0.0026
2.60 -846.1587 5.20 -68.4332 20.00 -0.0318 50.00 0.0000
2.70 -749.2164 5.40 -55.7499 21.00 -0.0227
2.80 -648.4697 5.60 -45.2901 22.00 -0.0262
2.90 -556.4006 5.80 -36.7651 23.00 -0.0343

function given in this table with the EMO potential function derived from fitting the experimental energy
levels shows that, near the equilibrium point, the EMO function is broader compared with the theoretical
potential energy function. However, the EMO function is narrower in comparison to the theoretical one
near the dissociation limit, which is expected in light of the above analysis. For this reason, the EMO
potential function has only eleven vibration levels, while the twelfth energy level is pushed out to the
continuum spectrum.

From this analysis follows that the EMO potential function derived from the experimental results can be
improved by modifying its part near dissociation limit. Following this conclusion, the modified MEMO
potential function was constructed by replacing the repulsive branch of the EMO potential function above
the dissociation limit and its attractive branch above 895 cm−1 with the theoretical counterparts.

The parameters of the MEMO potential function obtained in such a way and the corresponding vi-
brational energy levels are given in Table IV. The values of the vibrational energy levels calculated with
other published potentials, where all twelve vibration energy levels were obtained, are also given in this
table. A comparison of the EMO and MEMO potential functions shows that the modified function has
all twelve vibrational levels and better describes the experimental vibrational energy levels due to smaller
RMS error. The twelfth level of MEMO potential has three rotational levels with J = 0,1,2 which are
about 0.3 cm−1 below the dissociation limit.

The ab initio potentials presented in publications12,14 have RMS errors of about 0.1 and 0.3 cm−1,
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TABLE V. Deviations of the calculated vibrational energy levels from the experimental ones (E(exp)−E(calc) for
different vibration number ν in cm−1.

morphed CV+F+R FCI/CBS STO* MEMO MEMO*
RPC +corr

ν / Ref. 12 14 19 37 9 37

1 0.0 -0.1 -0.8 -0.9 0.4 0.1
2 0.1 0.3 -3.0 -1.1 -0.5 -0.2
3 -0.1 0.3 0.8 -1.2 0.2 0.4
4 0.0 0.1 -0.3 -0.9 -0.3 0.0
5 0.0 -0.1 -0.2 -0.7 -0.6 -0.4
6 0.1 -0.1 0.1 -0.5 -0.3 -0.1
7 0.1 -0.3 -0.3 -0.4 -0.3 0.0
8 0.0 -0.4 -0.1 -0.4 -0.4 0.0
9 -0.1 -0.5 -0.2 -0.2 -0.1 0.2
10 0.1 -0.5 0.0 0.0 0.5 1.0

correspondingly, while the potential obtained in work19 has a somewhat larger RMS error of about 1.0
cm−1. The values of De for these three potentials, equal to 934.6, 935.1 and 934.6 cm−1, are close to each
other. Although, only for the second potential, De probably was estimated as the difference of the total
energy at the equilibrium point and at the distance near dissociation limit, while for the first and third
potentials De were determined by fitting the theoretical points calculated in limited regions by potentials,
which takes into account long-range asymptotic corrections.

Other differences between potentials can be observed by comparing the deviations of calculated vibra-
tional energies from the experimental ones presented in Table V. For the first potential, deviations are
distributed approximately uniformly over the whole range of energy levels. For the second potential, the
largest deviations are located close to the bottom and top of the vibrational energy spectrum, while for the
third potential the largest deviations are observed only for low lying vibration energy levels. Such vari-
ations in the distributions of deviation errors can be explained as being the manifestation of the problem
mentioned above: the equivalent description of the covalent and van der Waals chemical bonding in Be2
by the basis set used in ab initio calculations. For comparison, for the MEMO potential the deviations are
approximately uniformly spread over all energy levels just like for the first potential12.

A comparison of the vibrational energy levels calculated for EMO/MEMO and MLR/CPE potentials
shows that the main discrepancy between them arises from the different values of the zero vibrational
energy level G(0): 123.2 and 123.3 cm−1 for EMO/MEMO, while for MLR/CPE potentials the values
of G(0) are 126.6 and 126.8 cm−1, correspondingly. This difference gives the main contribution to the
different values of De equal to 929.7 and 934.8 cm−1, respectively. In general, the observed significant
influence of the values of a potential at large distances on G(0) is an unexpected result, which can not be
easily explained. This is a problem for further investigations.

In this connection, note that the good agreement of the experimental value of G(0) for MLR/CPE
potentials with the theoretical one obtained in work14 - 126.9 cm−1 can not be considered indicative of a
correct result. This result was obtained using a basis set with contracted s and p functions, however when
a basis set with with uncontracted s and p functions is used, as was done in work5, a value of G(0) of
124.8 cm−1 is obtained. This points out that the contraction of s and p functions in basis sets probably
noticeably reduces the basis set flexibility in describing the potential near the minimum point.

Summarizing the above notes we can conclude that the MEMO and MLR potentials are the best ones
among those derived from the experimental data, although the differences in value of G(0) and De are
now not explainable. Theoretical potentials presented in publications12,14 stand out favorably from the
known ones. Most importantly, however, special attention should be paid to comparing different forms of
employed asymptotic corrected potentials.
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III. CHEMICAL BONDING IN BERYLLIUM DIMER AND EXPERIMENTAL POTENTIAL ENERGY
FUNCTION

The X1Σ+
g ground state MEMO potential curve of Be2, constructed in work9, is presented on Figure

1 together with the calculated vibrational energy levels, designated by horizontal lines at corresponding
energies. The figure shows that the slope of the attractive part of the potential curve changes after the
fourth vibrational level, indicating the change of the character of the chemical bond in Be2: having a
predominantly covalent nature in the low part (shaded in gray), and a more strongly van der Waals bond
for the higher vibrational levels. This means that the low-lying (ν = 0−4) and upper vibrational energy
levels can only be correctly described by two separate sets of Dunham coefficients39,40, one of which is
used for describing the low-lying levels and the other one for the upper ones, i.e. the fundamental vibra-
tion frequencies ωe (Y10), or force constants of these vibration levels, are different. As mentioned above,
this fact has been experimentally shown in work6, where the dependence of ∆Gν+1/2 = Eν+1 −Eν as a
function of the vibrational quantum number ν was constructed. Figure 2 in this reference displays differ-
ent slopes of ∆Gν+1/2 for the first five vibrational levels compared to the higher lying ones. This leads
to the conclusion that the chemical bonding in Be2 on the low-lying and upper vibrational energy levels
are different. This conclusion has been confirmed by an investigation of the expansion coefficients of the
MRCI wave functions, published in work7, which shows that the distribution of the total electron density
in Be2 corresponds to the usual covalent interaction at low-lying vibrational levels near the equilibrium
point. On the other hand, for the upper levels, near the right turning points, the total electron density dis-
tributions are described as two asymmetric ellipsoidal distributions (pointed at each other) of the electron
densities centered on the positions of the nuclei. This type of total electron density distribution clearly
corresponds to the van der Waals interaction.

In this connection, to show dual nature of chemical bonding in the beryllium dimer, the total electron
densities of Be2 were calculated in work9 for internuclear separations corresponding to the right turning
points of the vibrational levels ν = 2− 6 and are presented on Figure 2. This figure visualizes the suc-
cessive transformation of the covalent bonding at the right turning points, which is realized in Be2 on
the low-lying vibrational levels ν = 0− 4, to the van der Waals bonding on the upper vibrational levels
ν = 5−11.

The transformation of the chemical bonding in Be2 depending on the vibrational quantum number
or the main configurations of the total molecular wave function depending on the internuclear separation
should be evident in other physical characteristics of the molecule as well. In particular, the investigations
of the relativistic corrections30–32 as a function of the internuclear separation, presented in work41, shows
that this dependence also has a sharp turn indicated by arrow in the inset on Figure 1. The dependence
of the difference of energies between the extrapolated MRCI and the MRCI energy obtained with the
cc-pV5Z basis sets in dependence on the internuclear distance41 presented on Figure 1 also has a specific
point in the same region of the internuclear separations. This is especially interesting because only the
energies obtained with two different basis sets are included in the formula of the employed extrapolation
method35.

In the experimental work6, the dual nature of the chemical bond in Be2 was overlooked. For this reason
the usual EMO potential function has been employed by the authors for the description of the interac-
tion potential in it. However, the Morse oscillator (MO) potential function introduced in work42 and its
generalization - expanded Morse oscillator EMO function21 were proposed to describe covalent chemical
bonds in molecules when the mutual attractive forces quickly decrease with increase of the internuclear
distance. The exponential dependences of MO and EMO potential functions from the internuclear sepa-
rations describe this type of chemical interaction well. Contrary to this case, the van der Waals interaction
in molecules is described by a potential function whose potential well is usually significantly smaller and
its depth reduces significantly slower in comparison with those of covalent bonding. The main asymp-
totic term with respect to the internuclear distance (R) of such a potential function is proportional to
1/R6. Therefore, the EMO potential function better describes covalent bonding rather than van der Waals
bonding.
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FIG. 1. The X1Σ+
g ground state Be2 MEMO potential energy curve together with the calculated vibrational energy

levels (black) corresponding to the left vertical axis. The relativistic corrections (red) and the differences between
extrapolated and calculated MRCI energies (green) corresponding to the right vertical axis as a function of the inter-
nuclear separation (R) given in Å. Energies are given in cm−1.

FIG. 2. The transformation of the total electron density isosurfaces for the Be2 molecule at the right turning points
for different vibrational quantum numbers ν , showing the modification of the covalent bonding at low-lying ν into
the van der Waals one with increasing ν .

Note, that in the article12, published shortly after the experimental work6 on Be2, the authors noted
that the problem with the assignment of the twelfth vibration energy level with ν=11 could have arisen
due to incorrect asymptotic behavior of the EMO potential function as internuclear distance increases
beyond 5 Å. However, in publications7,9 the argument has been made that the transformation of covalent
bonding to the van der Waals one begins at a distance of about 3.3 Å. The results of ab initio calculations
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presented in work12 support this conclusion. The ab initio calculations of the Be2 interaction potential
were performed for 20 internuclear distances and the obtained points were fitted using a function with
correct asymptotic behavior (eq. (1) in12). As a result, the twelve vibrational energy levels of this potential
reproduce the experimental ones with an RMS error of 3.4 cm−1. Comparing the calculated vibrational
energy levels to the experimental values, presented in12 shows that the deviations increase as one moves
from the low-lying vibrational levels to the top ones. Such behavior of the deviations is, once again,
reasonably explained by the fact that the basis set used in ab initio calculations was primarily developed
for the description of covalent bonding and does not give an equivalent description of the van der Waals
interaction at large internuclear separations. In this article, the semi-empirical “morphed” potentials has
also been presented, which reproduces the experimental vibrational energy levels with an RMS error of
less than 0.1 cm−1.

IV. THE POTENTIAL ENERGY CURVES AND ITS EXTENSION ON A LARGE INTERVAL

In quantum chemical calculations, the potential energy curves (PECs) of interatomic interaction are
presented in the form of numerical tables calculated with limited accuracy and defined on a nonuniform
mesh of nodes in a finite domain of interatomic distance variation. However, for a number of diatomic
molecules the asymptotic expressions for the PEC are calculated analytically for sufficiently large dis-
tances between the atoms45–47.

To formulate the boundary value problem (BVP) on a semiaxis, the PEC should be continued beyond
the finite interval using additional information about the interaction of atoms comprising the diatomic
molecule at large interatomic distances. The dominant term of the PEC at large distances is given by the
van der Waals interaction, inversely proportional to the sixth power of the independent variable with the
constant, determined from theory43,44.

Proceeding in this way we faced a problem how to match smoothly the PEC asymptotic expansion with
its tabulated numerical values (within the accuracy of their calculation) at a suitable sufficiently large
distance and calculate correctly the required sets of bound, metastable and scattering states. We studied
this problem and developed the procedure of approximating MEMO PEC9 by Lagrange interpolation
polynomials (LIPs) and its extension on large interval by means of the smooth matching procedure using
Hermite interpolation polynomials (HIPs) preserving continuous derivative of the PEC in a matching
point48–50. Constructing in such a way PEC was called MEMO*.

By this way we solved the above class of eigenvalue, metastable and scattering problems for the second-
order ordinary differential equations37 using the programs KANTBP 3.051 and KANTBP 5M 52,the up-
dated version of KANTBP 4M53, implementing the finite element method (FEM)48,54 in Fortran and
Maple, respectively.

The Schrödinger equation for a diatomic molecule in the adiabatic approximation (in which the diago-
nal nonadiabatic correction is not taken into account), commonly referred to as Born–Oppenheimer (BO)
approximation, has the form37 (

−s2
1
r2

d
dr

r2 d
dr

+VJ(r)−E
)

ΦJ(r) = 0, (3)

VJ(r) =V (r)+ s2
J(J+1)

r2 , s2 =
h̄2

2m
1

Å
2 .

Here J is the total angular momentum quantum number, m = M/2 = 4.506 Da is the reduced mass of
beryllium molecule expressed in 1 Da = 931.494061 MeV/c2 atomic mass unit (u)55, 1 eV = 8065.54429
cm−1, h̄c = 1973.269718 eV Å, and h̄2/(2m) = 3.741151852 ·10−8 Å. The factor 1/Å

2
in s2 means that

the distance r between atoms is expressed in Å, and s2 = 3.741151852 cm−1. Also E is the energy in
cm−1 and V (r) is PEC in cm−1.
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(a)

(b)

FIG. 3. (a) Potential U(r) (Å−2) of the beryllium dimer as a function of internuclear distance r (Å) obtained by
interpolating the MEMO tabulated values37 (points in the subintervals, the boundaries of which are shown by larger
dots) by the fifth-order LIPs. (b) MEMO* potential V (r) (points in (a) and line 1, Ref.37), the asymptotic expansion
Vas(r) of MEMO function (line 2, Ref.43), the analytical forms of the potential function Van(r) (line 3, Ref.44, line 4,
Ref.19, and line 5, Ref.20). r is given in Å, V (r) in cm−1.

For the numerical calculations the potential, energy, and wave number in angstroms are used

U(r) =
1
s2

V (r) ·Å−2
, Ē = E ·Å−2

, k̄ =
√

Ē =
√

E ·Å−1
, (4)

where E = E/s2, and k =
√

E are the dimensionless energy and wave number.
In Ref. 37 the potential V (r) (in cm−1) is given by the MEMO* potential function which is an approx-

imation of the MEMO tabular values {V (ri)}76
i=1 in interval r ∈ [r1 = 1.5,r76 = 48]. Here and below, the
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FIG. 4. MEMO* potential functions VJ(r) at J = 0,4,8, . . . ,56.

value r is given in units of Å unless otherwise is indicated. These tabular values were chosen to provide
better approximation of the potential V (r) by the fifth-order Lagrange interpolation polynomials (LIPs) of
the variable r in subintervals r ∈ [r5k−4,r5k+1], k = 1, . . . ,15. Indeed, one can see that Figure 3 displays a
smooth approximation till r49 = 12, where the approximate PEC is matched with the asymptotic potential
V BO

as (r) = s2UBO
as (r) given analytically by the expansions43

UBO
as (r) = s1Ṽ BO

as (r), Ṽ BO
as (r) =−

(
214Z−6 +10230Z−8 +504300Z−10

)
, (5)

where s1 = aue/s2 = 58664.99239 or s1s2 = aue = 219474.6314 cm−1, Z = r/s3 and s3 = 0.52917 is the
Bohr radius in Å. This fact allows considering the interval r ∈ [rmatch ≥ 12,∞) as possible for using the
asymptotic potential V BO

as (r) at large r and executing conventional calculations based on tabular values of
V (r) in the finite interval r ∈ [r1,r = 12] (see also19).

We note that the MEMO tabular values for r ∈ {r42 = 6.5, ...,r48 = 11} are smaller than the asymptotic
ones by 5.5÷6%, for r = r51 = 14 exceed the asymptotic ones by 8%, and beyond the interval r ∈ [r41 =
6.0, . . . ,r52 = 15] the difference is more than 10%.

Based on this fact, the potential V (r) in subintervals r ∈ [r5k−4,r5k+1], k = 1, . . . ,9 was approximated by
the fifth-order Lagrange interpolation polynomials (LIPs) of the variable r in the interval r ∈ [r1,r46 = 9].
In subinterval r ∈ [r46 = 9,rmatch = 14] we consider the approximation of the potential V (r) by the fourth-
order HIPs using the values of the potential V (r) at the points r = {r46 = 9,r47 = 10,r48 = 11} and the
values of the asymptotic potential Vas(r) and its derivative dVas(r)/dr at the point r = rmatch = 14. In
the interval r ∈ [rmatch = 14,∞), the potential V (r) is approximated by the asymptotic expansion (5).
Let us emphasize that this approximation using the HIP provides a smooth matching of the interpolated
values of the tabulated function with its asymptotic continuation, in particular case (5), in comparison
with the conventional approximation by LIPs, which has no continuous derivative at a boundary of joined
intervals48. Potentials VJ(r) are displayed in Figure 4 at J = 0, . . . ,56 with the step 4.

In Ref.19, the potential V (r) (in cm−1) (see Figure 3) is given by the BO potential function plus relativis-
tic potential function marked as STO with tabular values {V (Zi)}28

i=1 in the interval Z ∈ [Z1 = 3.75,Z28 =
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TABLE VI. Vibrational-rotational bound states −EνJ (in cm−1) of the beryllium dimer. For each J in upper line
MEMO* and in lower line STO* with relativistic corrections.

J v = 0 1 2 3 4 5 6 7 8 9 10 11
0 806.0 583.5 408.7 288.3 211.1 154.1 107.1 68.3 37.8 16.3 4.4 0.3
0 807.7 584.1 409.4 288.3 211.9 155.4 108.3 69.5 39.0 17.5 5.0 0.4
1 804.8 582.4 407.7 287.5 210.4 153.5 106.6 67.8 37.4 16.0 4.2 0.2
1 806.5 583.0 408.4 287.5 211.2 154.8 107.7 69.0 38.6 17.2 4.8 0.3
2 802.4 580.1 405.7 285.8 209.0 152.3 105.5 66.9 36.6 15.4 3.8 0.1
2 804.0 580.8 406.4 285.8 209.8 153.5 106.7 68.1 37.8 16.6 4.4 0.1
3 798.7 576.7 402.6 283.2 206.9 150.4 103.8 65.5 35.4 14.5 3.2
3 800.4 577.4 403.5 283.3 207.7 151.7 105.1 66.7 36.7 15.7 3.8
4 793.9 572.2 398.6 279.8 204.1 148.0 101.7 63.6 33.8 13.3 2.4
4 795.5 573.0 399.5 279.9 204.9 149.3 102.9 64.8 35.1 14.5 3.0
5 787.8 566.5 393.6 275.6 200.5 144.9 99.0 61.2 31.8 11.8 1.5
5 789.5 567.4 394.5 275.8 201.5 146.3 100.2 62.5 33.2 13.0 2.1
6 780.5 559.7 387.5 270.6 196.3 141.2 95.7 58.4 29.5 10.0 0.5
6 782.2 560.7 388.6 270.8 197.3 142.6 97.0 59.7 30.9 11.2 1.0
7 772.1 551.8 380.5 264.7 191.4 137.0 92.0 55.2 26.8 8.1
7 773.7 552.9 381.7 265.0 192.5 138.4 93.3 56.5 28.2 9.2
8 762.4 542.8 372.5 258.0 185.9 132.1 87.7 51.5 23.8 5.9
8 764.1 544.0 373.8 258.4 187.0 133.6 89.1 52.9 25.2 7.0
9 751.5 532.7 363.5 250.5 179.7 126.7 83.0 47.4 20.5 3.5
9 753.2 534.0 364.9 251.0 180.9 128.3 84.4 48.8 21.9 4.6
10 739.4 521.4 353.6 242.2 172.8 120.7 77.7 42.9 16.8 1.0
10 741.1 522.9 355.1 242.8 174.2 122.4 79.2 44.3 18.3 2.0

25] a.u. which corresponds to r ∈ [r1 = 1.9843,r28 = 13.229]. One can see that these tabular values were
chosen to provide the best approximation of the potential V (r) by the fourth-order LIPs of the variable r
in subintervals r ∈ [r4k−3,r4k+1], k = 1, . . . ,6. On interval Z ∈ [Z25,Zmatch = 27.5] a.u. we consider the
approximation of the potential V (r) by the fifth-order HIP using the values of the potential V (Z) at the
points Z = {Z25 = 17.5,Z26 = 20.0,Z27 = 22.5,Z28 = 25.0} a.u. and the values of the asymptotic poten-
tial Vas(r) and its derivative dVas(Z)/dZ = s3dVas(r)/dr at the point Z = Zmatch = 27.5 a.u. In the interval
r ∈ [rmatch = 14.552,∞) the potential Vas(r) = s2Uas(r) is approximated by the asymptotic expansion

Uas(r) = s1Ṽas(r), Ṽas(r) = Ṽ BO
as (r)+Ṽ rel

as (r), (6)

Ṽ rel
as (r) =−

(
1.839 ·10−4Z−4 +0.11944Z−6 +19.582Z−8 −1323.5Z−10

)
,

where Ṽ BO
as (r) and Ṽ rel

as (r) are given by Eq. (5) and Ref.19, respectively. The STO PEC constructed in
such a way was called STO*. Note that using a similar behavior of MEMO and STO potential functions
on the interval r ∈ [12,14] one can use also Eq. (6) for matching MEMO potential in interval r ∈ [14,∞),
because it has been calculated taken into account the relativistic effects30–32.

For comparison we show in Figure 3b the potential function V (r), its asymptotic expansion Vas(r) and
the analytical potential functions Van(r) in a.u. (converted into cm−1), proposed in Ref.44. The approxi-
mated MEMO* potential function V (r) has a minimum −De(MEMO∗) =V (re) =−929.804 cm−1 at the
equilibrium point re = 2.4534 Å, which is higher than the analytical potential function Van(r) in the vicin-
ity of this point, −De(Sheng) =Van(re) =−948.3 cm−1. On the contrary, in the interval r ∈ (3.2,6.1) the
analytical potential function Van(r) is greater than V (r). For r ∈ (2.3,12), the MEMO potential slightly
exceeds the STO one, which, in turn, is a bit higher than the MLR and CPE potentials. Thus, using
the accepted approximations we have the MEMO and STO potential functions V (r) approximated in the
analytical form in interval r ∈ (1.9,14) and its smooth continuation at r ≥ 14 by means of the asymptotic
expressions (5) and (6).
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TABLE VII. Vibrational-rotational bound states −EνJ (in cm−1) of the beryllium dimer. For each J in upper line
MEMO* and in lower line STO* with relativistic corrections. Continuation of Table VI.

J ν = 0 1 2 3 4 5 6 7 8
11 726.2 509.1 342.6 233.2 165.3 114.2 72.0 38.0 12.9
11 727.9 510.7 344.4 233.9 166.8 115.9 73.6 39.5 14.4
12 711.7 495.6 330.8 223.4 157.2 107.1 65.8 32.8 8.7
12 713.4 497.4 332.7 224.3 158.8 108.9 67.4 34.3 10.2
13 696.0 481.1 318.0 212.9 148.5 99.5 59.2 27.1 4.4
13 697.8 483.1 320.1 213.9 150.2 101.4 60.9 28.7 5.9
14 679.2 465.5 304.3 201.7 139.2 91.4 52.2 21.2 −
14 681.0 467.7 306.6 202.8 141.0 93.4 53.9 22.9 1.4
15 661.2 448.8 289.7 189.8 129.3 82.8 44.7 15.0
15 663.0 451.2 292.2 191.1 131.3 84.8 46.5 16.7
16 642.1 431.0 274.2 177.3 118.9 73.8 36.9 8.5
16 643.8 433.7 276.9 178.7 121.1 75.9 38.8 10.3
17 621.8 412.2 257.9 164.2 108.0 64.3 28.7 1.9
17 623.5 415.1 260.8 165.8 110.3 66.5 30.7 3.7
18 600.3 392.4 240.7 150.4 96.6 54.4 20.3
18 602.1 395.5 243.8 152.2 99.0 56.6 22.3
19 577.7 371.5 222.8 136.2 84.8 44.1 11.5
19 579.4 374.9 226.0 138.2 87.3 46.4 13.6
20 553.9 349.7 204.0 121.5 72.5 33.5 2.6
20 555.7 353.3 207.5 123.7 75.2 35.9 4.8

TABLE VIII. Vibrational-rotational bound states −EνJ (in cm−1) of the beryllium dimer. For each J in upper line
MEMO* and in lower line STO* with relativistic corrections. Continuation of Table VI.

J ν = 0 1 2 3 4 5 J ν = 0 1 2
21 529.1 326.8 184.6 106.3 59.8 22.5 29 290.8 111.0 10.7
21 530.8 330.7 188.2 108.7 62.6 25.0 29 292.7 117.0 14.9
22 503.1 303.0 164.4 90.8 46.8 11.4 30 256.3 80.4
22 504.9 307.2 168.2 93.4 49.7 13.9 30 258.2 86.6
23 476.0 278.2 143.6 74.9 33.4 0.01 31 220.8 49.1
23 477.8 282.7 147.6 77.8 36.4 2.5 31 222.7 55.6
24 447.8 252.5 122.3 58.8 19.8 32 184.4 17.2
24 449.6 257.2 126.4 61.9 22.9 32 186.3 23.9
25 418.5 225.9 100.4 42.5 5.9 33 146.9
25 420.3 230.9 104.7 45.8 9.1 33 148.9
26 388.2 198.4 78.2 26.0 34 108.6
26 390.0 203.7 82.5 29.6 34 110.6
27 356.7 170.1 55.7 9.5 35 69.3
27 358.6 175.6 60.1 13.3 35 71.4
28 324.3 140.9 33.1 36 29.2
28 326.1 146.7 37.5 36 31.3

The MAPLE and FORTRAN programs used to get the analytical form of approximation for the
MEMO9 and STO19 potential functions VJ(r), respectively, extended over large intervals of internuclear
distance r with the help of asymptotic expressions (5) and (6), are given in the supplementary material of
Refs.37,56. Below we will use for these potential functions the following notations: MEMO* and STO*.
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V. BOUND STATES OF THE BERYLLIUM DIMER

To calculate the vibrational-rotational spectrum of the real-valued eigenenergies EνJ and correspond-
ing eigenfunctions ΦνJ(r) of the bound states of the beryllium dimer we solved the BVP for Eq. (3)
using the FEM programs KANTBP 4M53 and KANTBP 3.051 on the finite element mesh Ω1(r) =
{1.9(0.1)2.4(0.05)2.8(0.1)4.0(0.2)5.0(0.5)8(2)20(5)40}, where the number in parentheses (x) is the size
of subinterval, with the second-type or Neumann boundary conditions (BCs) on the boundary points of
the mesh.In the BVP solution at all finite elements of the mesh the local functions were represented by
fifth-order HIPs.

Table IV (columns MEMO* and STO*) presents the results of using FEM programs KANTBP 4M
and KANTBP 3.0 to calculate 12 energy eigenvalues of the beryllium dimer. It shows the eigenvalues
calculated with the MEMO potential function9 and the corresponding approximation MEMO* from37

and the previous Section IV. In contrast to the original EMO function, which was used to describe the
experimental (Exp) vibrational levels6, it has not only the correct dissociation energy, but also describes
all twelve vibrational energy levels with the RMS error less than 0.4 cm−1. The Table IV also shows the
results of direct-potential-fit analysis using the MLR and CPE functions alongside with the EMO potential
function20, and CV+F+R potential function14 discussed early in Section II. Similar results FCI/CBS+corr
were obtained by Lesiuk et. al.19 and STO* Derbov et. al.37. Their PEC lie below the MEMO one
and also include the correct long-range behavior displayed in Figure 3. As a consequence, one can see
from the Tables VI–VIII, that the corresponding results provide the theoretical lower estimates whereas
MEMO* and MEMO results give the upper estimates for the discrete spectrum of the beryllium dimer at
both J = 0 and J > 0 in accordance with57. One can see also that the STO* eigenenergies calculated using
the STO* approximation of the tabulated PEC STO give smaller RMS error 0.7 cm−1 in comparison with
RMS error 1.0 cm−1 of the FCI/CBS+corr eigenenergies calculated using the analytical fit of STO PEC19.

The potential functions MEMO* and STO* VJ(r) from J = 0 to J = 36 support 252 and 253 vibrational-
rotational energy levels −EνJ , respectively, presented in Tables VI–VIII. Figure 5a) (black dots) shows
also the rotational-vibrational spectrum EνJ (in cm−1) of Be2 vs J for MEMO* PEC. One can see that
these potential functions VJ(r) at J = 0, J = 1 and J = 2 support 12 vibrational energy levels and there is
no energy level Eν=8,J=14 for MEMO* PEC.

Here and below the results presented in figures are calculated with MEMO* PEC.

VI. METASTABLE STATES OF THE BERYLLIUM DIMER

The BVP for Eq. (3) was solved using the FEM program KANTBP 5M52 on the finite element mesh
Ω1(r) = {1.9(0.1)2.4(0.05)2.8(0.1)20} with the Neumann boundary conditions at the boundary point
r = rmin = 1.90 and the Robin boundary condition at the boundary point r = rmax = 20 with logarithmic
derivative for ΦJ(kr)≡ ΦM

Jν
(kr)

dΦJ(kr)
dr

−RΦJ(kr) = 0, R =
1

Φ
+
as(kr)

dΦ+
as(kr)
dr

, (7)

that followed from asymptotic solution for only the outgoing wave54,58,59

Φ
+
as(kr) =

√
kh(1)J (kr) =−ı

exp(+ı(kr−πJ/2))√
kr

+O(k−3/2r−2). (8)

Here complex-valued k ≡ kM
Jν

=
√

E M
Jν

=
√

EM
Jν
/s2 in units of Å−1 is the wave number, EM

Jν
= s2E

M
Jν

cm−1, h(1)J (z) is spherical Hankel function of the first kind60.
The complex eigenenergies EM

Jν
= ℜEM

Jν
+ ıℑEM

Jν
, (in cm−1) of Be2 rotational-vibrational metastable

states, where ν is the state number at a fixed value of J, are shown in Tables IX–XI. Their real parts
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TABLE IX. The rotational-vibrational metastable states EM
Jν

= ℜEM
Jν

+ ıℑEM
Jν

(in cm−1) of Be2, where “eps” means
that −10−5 <ℑEM

Jν
< 0 (in cm−1). From left to right MEMO* and STO* with relativistic corrections. V min

J and V max
J

are minimal and maximum values of potentials VJ(r) (in cm−1) at different values J of the total angular momentum.
The metastable states with real part of energy ℜEM

Jν
greater then the top of potential barrier V max

J are marked by
asterisk.

J ν MEMO* STO* MEMO* STO*
V min

J V max
J V min

J V max
J ℜE −ℑE ℜE −ℑE

0 -929.80 0.00 -934.39 0.00
1 -928.55 0.01 -933.15 0.01
2 -926.07 0.04 -930.66 0.04
3 11 -922.34 0.12 -926.92 0.11 0.081 0.010

*4 11 -917.37 0.23 -921.93 0.24 0.281 0.101 0.256 0.063
5 -911.16 0.42 -915.70 0.43
6 -903.71 0.71 -908.22 0.71
7 10 -895.03 1.11 -899.59 1.09 0.503 6.1e-4 0.118 eps
8 10 -885.11 1.62 -889.52 1.57 1.509 0.090 1.254 0.026

*9 10 -873.95 2.24 -878.41 2.18 2.327 0.246
10 -861.57 3.00 -866.00 2.92
11 9 -847.96 3.92 -852.36 3.82 1.554 1.3e-5 0.641 eps
12 9 -833.12 5.02 -837.49 5.04 4.052 0.030 3.308 3.8e-3

*13 9 -817.06 6.27 -821.41 6.27 6.356 0.321 5.788 0.152
14 8 -799.78 7.73 -804.11 7.64 0.083 eps

*14 9 -799.78 7.73 -804.11 7.64 8.135 0.688
15 8 -781.28 9.39 -785.60 9.18 4.605 1.5e-5 3.126 eps
16 8 -761.57 11.26 -765.89 10.94 8.992 0.018 7.651 2.2e-3
17 8 -740.65 13.34 -744.97 12.94 13.016 0.314 11.896 0.124
18 7 -718.53 15.66 -722.85 15.19 4.788 eps 2.916 eps

*18 8 -718.53 15.66 -722.85 15.19 15.816 0.722
19 7 -695.21 18.22 -699.54 17.69 11.517 1.4e-4 9.635 eps
20 7 -670.68 21.05 -675.04 20.44 17.991 0.036 16.196 8.2e-3
21 6 -645.00 24.16 -649.36 23.45 6.403 eps 4.200 eps
21 7 -645.00 24.16 -649.36 23.45 23.915 0.481 22.276 0.230
22 6 -618.13 27.55 -622.51 26.73 15.497 eps 13.264 eps
23 6 -590.09 31.24 -594.48 30.30 24.444 3.7e-3 22.218 7.5e-4

ℜEM
Jν

in comparison with the eigenenergies EνJ of vibrational-rotational bound states are displayed in
Figure 5a) (empty circles). This set of metastable states is supported by the potential functions VJ(r) at
J = 3,4,7,8,9,11, . . . ,49. Note that the real parts of energies ℜEM

Jν
of the metastable states marked by

an asterisk in Tables IX–XI lie above the top V max
J of the potential barrier VJ(r). Note that the bound

state with energy Eν=8,J=14 = −1.44 cm−1 for STO* PEC corresponds to the sharp metastable state for
MEMO* PEC with complex energy EM

J=14,ν=8 = (0.083− ı3 ·10−29) cm−1.

For J > 0, the potential functions at large r decrease proportionally to r−2 and at J ≤ 38 they have the
form of a potential well with a minimum below the dissociation threshold D0, while at J > 38 the potential
well has a minimum above the dissociation threshold. The height of the centrifugal barrier increases with
increasing J, but its width at the dissociation threshold energy (E = 0) is infinite. With increasing energy,
the effective width of the barrier decreases. The number of metastable states δν at J ≤ 38 is determined
by the number of positive-energy states in the potential well with the barrier of height V max

J taken into
account, i.e., in the well with the potential V ∗

J = {V (r),r < rmax;Vmax,r ≥ rmax}. For small J < 16, the
barrier height V max

J counted from the zero energy is smaller than the energy difference between two upper
levels of metastable states. This means that even one metastable state can exist not for all values of J. With
the growth of J to J = 33, the barrier height increases, but the width of the well changes insignificantly.
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TABLE X. The rotational-vibrational metastable states EM
Jν

= ℜEM
Jν

+ ıℑEM
Jν

(in cm−1) of Be2, where “eps” means
that −10−5 < ℑEM

Jν
< 0 (in cm−1). The metastable states with real part of energy ℜEM

Jν
greater then the top of

potential barrier V max
J are marked by asterisk. Continuation of Table IX.

J ν MEMO* STO* MEMO* STO*
V min

J V max
J V min

J V max
J ℜE −ℑE ℜE −ℑE

24 5 -560.92 35.25 -565.29 34.17 11.484 eps 8.853 eps
24 6 -560.92 35.25 -565.29 34.17 32.872 0.168 30.741 0.073
25 5 -531.76 39.58 -534.93 38.36 22.998 eps 20.324 eps

*25 6 -531.76 39.58 -534.93 38.36 40.609 1.155 38.526 0.764
26 4 -500.63 44.26 -503.43 42.90 7.996 eps 4.773 eps
26 5 -500.63 44.26 -503.43 42.90 34.354 1.4e-3 31.669 3.2e-4
27 4 -468.31 49.30 -470.77 47.80 22.032 eps 18.779 eps
27 5 -468.31 49.30 -470.77 47.80 45.187 0.100 42.578 0.044
28 3 -434.84 54.73 -436.96 53.00 6.963 eps 3.009 eps
28 4 -434.84 54.73 -436.96 53.00 35.991 eps 32.731 eps

*28 5 -434.78 54.73 -436.96 53.00 55.158 0.963 52.604 0.633
29 3 -400.28 60.57 -402.02 58.57 23.517 eps 19.452 eps
29 4 -400.28 60.57 -402.02 58.57 49.669 3.0e-4 46.445 8.5e-4
30 2 -364.63 66.91 -365.94 64.70 11.354 eps 7.180 eps
30 3 -364.63 66.91 -365.94 64.70 40.058 eps 35.968 eps
30 4 -364.63 66.91 -365.94 64.70 62.639 0.155 59.549 0.076
31 2 -327.89 73.60 -328.74 71.30 32.621 eps 28.549 eps
31 3 -327.89 73.60 -328.74 71.30 56.534 1.6e-4 52.550 3.0e-5

*31 4 -327.89 73.60 -328.74 71.30 74.626 1.306 71.589 0.939
32 2 -290.09 80.68 -290.41 78.37 52.660 eps 48.671 eps
32 3 -290.09 80.68 -290.41 78.37 72.662 0.030 68.982 0.011
33 1 -251.24 88.21 -250.96 85.94 15.028 eps 8.238 eps
33 2 -251.24 88.21 -250.96 85.94 71.131 2.4e-4 67.206 7.1e-5
33 3 -251.24 88.21 -250.96 85.94 87.630 0.696 84.364 0.476
34 1 -211.35 96.30 -210.39 94.04 47.644 eps 40.779 eps
34 2 -211.35 96.30 -210.39 94.04 87.890 0.026 84.078 0.012
35 1 -170.43 105.04 -168.75 102.73 80.254 eps 73.432 eps
35 2 -170.43 105.04 -168.75 102.73 102.939 0.414 99.326 0.266
36 1 -128.50 124.02 -125.94 120.39 111.593 0.057 105.389 6.8e-3

As a result, the number of metastable states increases to three. With further increase in J, when in the
interval r ∈ (3.5,6) the slope of centrifugal potential exceeds the slope of MEMO* potential, the well
width rapidly decreases, so that only two states can exist in the well, a bound state and a metastable one at
J = 36 and two metastable states at J = 34,35,37,38. At J ≥ 39 the potential well minimum turns to be
above the dissociation threshold (E = 0) and the effective barrier width, the width and depth of the well
decrease. Only one state exists in the well, its width increasing with the growth of J. At J > 49 there are
no energy levels in the well, and at J > 54 the potential well disappears.

As can be seen from Tables IX–XI and Figures 6, 7, the eigenfunctions of metastable states with
complex energy values for a fixed value of the orbital momentum J have an increasing number of nodes
localized inside the potential well. Beginning from each lower state above the dissociation threshold,
they have one node more than the last bound state with real energy under the dissociation threshold
(E = 0) with the same value of the orbital momentum J in Tables VI–VIII. Thus, there is a continuation
of the theoretical upper and lower estimates of the real energy eigenvalues EJν to the complex plane
EM

Jν
= ℜEM

Jν
+ ıℑEM

Jν
, labeled by the number of nodes ν of eigenfunctions localized inside the potential

well, for each value of the orbital momentum J.
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TABLE XI. The rotational-vibrational metastable states EM
Jν

= ℜEM
Jν

+ ıℑEM
Jν

(in cm−1) of Be2, where “eps” means
that −10−5 < ℑEM

Jν
< 0 (in cm−1). The metastable states with real part of energy ℜEM

Jν
greater then the top of

potential barrier V max
J are marked by asterisk. Continuation of Table X.

J ν MEMO* STO* MEMO* STO*
V min

J V max
J V min

J V max
J ℜE −ℑE ℜE −ℑE

37 0 -85.58 147.94 -83.10 144.01 11.780 eps 9.538 eps
37 1 -85.58 147.94 -83.10 144.01 144.261 3.272 137.920 2.408
38 0 -41.68 173.18 -38.98 168.91 53.590 eps 51.233 eps

*38 1 -41.68 173.18 -38.98 168.91 177.154 6.591 170.793 5.797
39 0 3.17 199.73 6.08 195.12 96.169 eps 93.672 eps
40 0 48.96 227.57 52.02 222.65 139.466 eps 136.795 eps
41 0 95.66 256.70 98.82 251.52 183.406 8.3e-4 180.520 1.2e-3
42 0 143.26 287.15 146.44 281.76 227.880 0.023 224.726 0.030
43 0 191.72 318.91 194.85 313.39 272.755 0.148 269.266 0.175
44 0 241.01 352.03 244.03 346.07 317.922 0.544 314.022 0.625
45 0 291.11 386.52 293.90 379.47 363.371 1.432 358.983 1.622
46 0 341.98 422.41 344.47 413.61 409.201 3.008 404.261 3.371

*47 0 393.56 459.75 395.60 448.50 455.552 5.372 450.005 5.993
*48 0 445.83 498.57 447.31 487.87 502.577 8.560 496.339 9.508
*49 0 498.71 538.92 499.48 528.37 550.248 12.903

VII. SCATTERING STATES OF THE BERYLLIUM DIMER

The scattering problem for Eq. (3) at real-valued E > 0 in cm−1 was solved using the FEM programs
KANTBP 5M52 on the finite element mesh Ω1(r) = {1.9(0.1)2.4(0.05)2.8(0.1)20}. The eigenfunctions
ΦJ(kr) of the scattering states are subjected to the Neumann boundary conditions (BCs) at the boundary
point r = rmin = 1.90 and the Robin boundary condition at the boundary point r = rmax = 20 formulated
as follows:

dΦJ(kr)
dr

=
dΦJ

as(kr)
dr

, ΦJ(kr) = Φ
J
as(kr), (9)

at r = rmax using the asymptotic form ‘incident wave + outgoing wave’60

Φ
J
as(kr) =

ıJ√
2π

(Φ−
as(kr)+Φ

+
as(kr)SJ(E)). (10)

Here SJ(E) = exp(2ıδJ(E)) is the partial scattering matrix, and the outgoing wave Φ+
as(kr) and incident

wave Φ−
as(kr) = (Φ+

as(kr))∗ functions are given by (8) at real-valued k =
√

E =
√

E/s2 > 0 in units of
Å−1, where ∗ denotes the complex-conjugation.

Plots of the real (solid curves) and imaginary (dashed curves) parts of scattering functions in the vicinity
of the resonance energy for the narrow resonance at J = 12 and very narrow resonance at J = 18 are shown
in Figure 8. One can see that the resonant scattering functions are localized in the potential well, which is
no longer observed upon a minor change in the energy of the incident wave. As can be seen from Tables
IX–XI, the energies of resonant states E(res) are close to the real parts of the energies ℜEM

Jν
of metastable

states. In particular, for J = 12 E(res) ≈ 4.043 cm−1 and for J = 18 E(res) ≈ 4.789 cm−1 are close to
ℜEJ=12ν=9 = 4.052 cm−1 and ℜEJ=18ν=7 = 4.788 cm−1, respectively.

In Figure 9, the corresponding phase shifts δ vs the scattering energy E are shown; as expected, the
phase shifts take the value δ = π/2 for resonance energies and change rapidly in their vicinity. To estimate
the scattering length a0 of the scattering state at k → 0 we apply the formula60

a0 =− lim
k→0

tanδ0(k)
k

≈−dδ0(k)
dk

∣∣∣∣
k→0

.
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The recalculated value a0 at k → 0 provides an upper estimate for the scattering length a0 = 6.55 Å.
Since the MEMO* potential gives the upper bound, and the STO* potential gives the lower bound

energy of twelfth state (see Table IV), the calculation with the STO* potential leads to the lower bound
for the scattering length a0 = 3.31 Å, as well as for EMO (a0 = 4.87 Å), MLR (a0 = 0.91 Å) and CPE
(a0 = 0.77 Å) potentials20.

VIII. CONCLUSIONS

The present study shows that the beryllium atoms are covalently bound in Be2 at the low-lying vibra-
tional energy levels with ν = 0−4, while at the higher levels with ν = 5−11 the atoms are bonded by the
van der Waals forces near the right turning points. The EMO potential energy function used in the experi-
mental research6 for fitting the measured vibrational energy levels of Be2 does not correctly describe this
dual nature of the chemical bonding. It describes better the covalent bonding on the low-lying vibrational
energy levels than the van der Waals bonding on the upper ones. A comparison of the EMO potential
energy function with the potential function obtained in the high precision ab initio calculation carried out
in the present study shows that the EMO function is too narrow near the dissociation limit. Therefore,
the modified EMO potential function has been constructed by replacing the parts of the original EMO
function near dissociation limit and above it by the ab initio potential function. The obtained MEMO
potential function not only has the correct dissociation energy, but, in distinction with EMO potential
function, also describes all twelve vibrational energy levels with a smaller RMS error of less than 0.4
cm−1.

Special attention in this study was payed on improved calculations of spectrum of the bound vibrational-
rotational state together with spectrum of the metastable vibrational-rotational state having complex-
valued eigenenergies. The existence of these metastable states is confirmed by calculation of the cor-
responding scattering states with real values of the resonance energies. Theoretical upper and lower
estimates are of significant importance for further experiments in laser spectroscopy of the beryllium
dimer. It is also important for modeling of a near-surface diffusion of the beryllium dimers61–66 in
connection with the well-known multifunctional use of beryllium alloys in modern technologies of the
electronic, space and nuclear industries67, and, in particular, the ITER project68.
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49A. Gusev, O. Chuluunbaatar, S. Vinitsky, V. Derbov, A. Góźdź, P. Krassovitskiy, I. Filikhin, A. Mitin, L. Hai, and T. Lua, “On
rotational-vibrational spectrum of diatomic beryllium molecule,” Proc. SPIE 11066, 1106619 (2019).

50V. Derbov, G. Chuluunbaatar, A. Gusev, O. Chuluunbaatar, S. Vinitsky, A. Góźdź, P. Krassovitskiy, and A. Mitin, “On calculations
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