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ABSTRACT  

Higher-order accurate finite-difference schemes for 

numerical solution of Burgers’ equation which often 

arises in mathematical modelling used to solve problems 

in fluid dynamics is presented. The accuracy of the 

proposed schemes is demonstrated by some test problems. 

The numerical results are found in good agreement with 

exact solutions.  
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1. INTRODUCTION 

We consider the one-dimensional quasi-linear parabolic 

partial differential equation 

 
  

  
  

  

  
  

   

   
                                                      

 

with an initial condition 

 
                                                                                         
 

and boundary conditions    

 
                                                                              

 

where     is a coefficient of the kinematic viscosity 

and                    are known functions. 

 

The Burgers’ equation can be considered as an approach 

to the Navier-Stokes equations [1, 2]. Since both contain 

nonlinear terms of the type: unknown functions multiplied 

by a first derivative and both contain higher-order terms 

multiplied by a small parameter. On the other hand, the 

Burgers’ equation is one of a few nonlinear equations 

which can be solved exactly for an arbitrary initial and 

bounder conditions [3]. However these exact solutions are 

impractical for the small values of viscosity constant due 

to a slow convergence of series solutions. Thus many 

numerical schemes are constructed for a numerical 

solution of the Burgers’ equation for small values of 

viscosity constant which corresponds to a steep front in 

the propagation of dynamic wave forms [3-8]. The study 

of the general properties of the Burgers’ equation has 

motivated considerable attention due to its applications in 

field as diverse as number theory, gas dynamics, heat 

conduction, elasticity, etc. [3]. The aim of this paper is to 

construct higher-order finite-difference schemes for 

solution of Burgers’ equation. 

2. STATEMENT OF THE PROBLEM 

We consider the Burgers’ equation (1) with the initial 

condition 
                                                                                                  
and the Dirichlet boundary conditions 
                                                                                          
In is well known that, by the Hopf-Cole transformation  

          
  

      

      
                                                                                        

the Burgers’ equation transforms to the linear heat 

equation 

 
       

  
  

        

   
                                                

  

with initial condition 

 

          { 
          

   
}                                                

and Neumann boundary conditions 

 
  

         
                                                                               

 

Symbol “  ” denotes the derivative with respect to variable 

   Thus, if        is any solution of the heat equation (7) 

subject to the conditions (8) and (9), then the function (6) 

is a solution of the Burgers’ equation (1) with the 

conditions (4) and (5). 

 

The  Fourier solution to the above heat problem defined 

by Eqs. (7)-(9) can obtained easily as [3] 

          ∑     

 

   

                                                          

with the Fourier coefficients 

   ∫         

 

 

 

    ∫                            
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Therefore, the (exact) Fourier solution to the problem 

given by Eqs. (1), (4) and (5) is obtained as [3] 

          
∑                        

   

   ∑      
 
                    

                             

 

We assume that the numerical solution of the heat 

problem defined by Eqs. (7)-(9) is found by any of known 

methods with higher accuracy. For example, this problem 

can be solved by well-known Crank-Nicolson scheme [9] 

and a more accurate explicit scheme, proposed by Zhanlav 

in [10] 

 

  
    

   

   
  

    
 

   
     

     
      

   
  

   
  

                               

  
   

  
                                              

 

Here and throughout the work,   
  is the approximate 

solution at the mesh point                  where   is 

a spatial step,   is the time step. Easy to show that the 

scheme (13) is stable and its truncation error is of the 

order          provided that 

 

      ,   
  

  
 

 

√  
                                                                               (14) 

 

When      the scheme (13) leads to the well-known 

DuFort-Frankel’s one [9].  

 

It should be mentioned that the scheme (13) is a three-

level one in time. Hence, in order to find   
  at level two it 

requires two values   
  at level 0 and 1. i.e.,   

  and   
    

Using the Taylor expansion of        at point       and 

Eq. (7) we obtain 

               
        

   
  

  

 

        

   
    

 
  

 

        

   
                     (15) 

we will find   
 . 

3.  CONSTRUCTION OF HIGHER-ORDER  

ACCURATE FINITE-DIFFERENCE 

SCHEMES  

The solution domain {        [   ]        } is 

discretized into cells described by the node set        in 

which                              
       We suppose that the solution of Eqs. (7)-(9) is a 

sufficiently smooth function with respect to        . So, 

from the Taylor expansions of                         at 

point        we have  

 

                   

  
  

   
        

  
         

 
   

  
         

   
                             

  
             

          
         

  
  

   
          

  
         

  
                          

Eliminating   
    from (16) and (17) we obtain 

 

                   

  
 

  
             

          
         

 
  

 
  

         

   
                            

Omitting the small term in the right-hand side of the 

obtained finite-difference scheme 

    
      

 

  
 

      
        

         
  

 
                              

The truncation error of this scheme is      . Finding   
  

from (6) and substituting it into (19), we obtain the 

compact finite-difference scheme for approximate 

solution   
           of          : 

    
     

     
   

      
     

   
  

 
     

      
                                     

                    

with boundary conditions 

  
    

                                                                                                            

If we denote   
   

  by   
 , then the scheme (18),  (19) 

leads to  

    
     

      
   

  

 
     

      
                                                          

   
     

                                                                                                             

The last system has a unique solution set    
    

       
   

since its matrix is diagonally dominant.  

It means that the three-diagonal system (20), (21) has a 

unique solution set    
    

       
   for each           

and it can be solved by efficient elimination method [12]. 

Moreover, it is also possible to obtain a higher accurate 

finite-difference scheme than (20), (21).  

Using the Taylor expansions of 

                       at the point        we have 

                   

  
  

   
        

  
         

 
    

  
         

   
                                     

We can eliminate the term with   
          from (24) and 

(16). As a result we have  

  
                   

  
 

                   

  
  

     
           

          
                      

We also use the well-known five-point approximate 

formula for   
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which holds for sufficiently smooth function        with 

respect to   variable. Substituting (26) into (25) and using 

the Hope-Cole transformation given by Eq. (6) we obtain  

    
        

      
        

      
    

                                              

  
   

  

 
       

      
        

      
                       

Of course,  besides of   
    

    we need additionally 

two end conditions   
  and     

  in order to solve the 

system (27). We differentiate Eq. (7)        -times 

with respect to   and find that  

  
            

 

 

 

  
  

                                                                   

From the Neumann boundary conditions (9) it is obvious 

that  

  
               

                                                                

Then from (16) it follows that  

                                                                                        

Also we differentiate Eq. (6)      -times with respect to   

and find that 

  
      

  
 

  
  

                                                                           

If we use (29) in (31) then we obtain 

  
             

                                                                                    

From the Taylor expansions 

                   
         

  
        

 
   

  
         

 
           

                  
         

  
        

 
    

 
  

         

 
                     

                    
         

  
        

 
   

  
         

 
      

                    
         

  
        

 
   

  
         

 
      

and from (32) we conclude that  

                                                                               

Hence, taking into account (30) and (34), the finite-

difference scheme (27) has the forms for         

     
      

    
   

  

 
     

    
      

    
                          

    
        

        
   

  

 
      

        
      

      
    

Thus, we have finite-difference scheme (27), (35) with 

truncation error      .  

The solution procedure of system (27), (35) is essentially 

simplified by using Z-folding algorithm [11]. Namely, if 

we use notation  

  
      

     
      

                                                                                     

then it is easy to show that the Eq. (24) can be re written 

as  

    
     

      
    

                                                                  

under conditions  

      √               √                                                               

It means, that the solution of pentad-diagonal system (27) 

leads to three-diagonal systems (37) and (36) 

consequently, both of which has a diagonally dominance. 

Now, we consider      and    
   given by (36) 

  
                                                                                    

  
                                                                               

By (34) and (23) we have 

  
                            

  
                                                                                          

Thus, we obtain the system  

    
     

      
    

                

  
    

    
                                                   

After solving the last system one can solve (36), i.e. 

    
     

      
    

                

  
    

    
                                                   

and thereby we obtain  

  
  

  
 

  
                                                                                                   

Thus, we obtain the numerical solution of Burgers’ 

equation (1), (4), (5) with higher accuracy provided that 

the solution   
  of heat equation (7)-(9) is founded with 

higher accuracy.  

Using (10) and (12) we find the truncation errors 

                  of schemes (20) and (27), 

respectively, as follows 

         

                              
  

 
(                   )  

    ∑     

 

   

                                                                   

                                                      

           
  

 
[  (                   )                     ]

    ∑     

 

   

                                                                    

where  

                  
    

 
  

                                     
    

 
                      

         

By using the Taylor expansions of functions      and 

     it is easy to show that 
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(  

  

  
      )                                                       

           
 

   
   

 

   
                                                    

 

4.   NUMERICAL RESULTS AND 

CONCLUSIONS  

In this section we demonstrate the accuracy of the 

proposed finite-difference schemes (13), (14), (42), (43) 

by solving exact solvable problems and compare the 

numerical results  with the existing results. The 

computations are performed using MatLab. 

 

Example 1. First we consider the Burgers’ equation (1), 

(4), (5). Tables 1, 3 and 5 display convergence of the 

proposed schemes for the numerical solution         to 

the exact solution         versus the number of nodes   

for                        with   
 

  √  
   

 

√  
 and     √    Table 7 presents the numerical 

results obtained by using the fourth-order weighted 

scheme [11, 15] and the exact solution for     at 

  
 

  √  
   It is clearly observed that both numerical 

results are reasonably in good agreement with the exact 

solution. It is seen that  for small values of v, one must 

consider a large of N to obtain proper solution. The 

maximum absolute error                          
         versus the number of nodes N is displayed in 

Tables 2, 4, 6 and 8. It gives an approximate rate of 

convergence of the proposed schemes and  the weighted 

scheme. The errors are consistent with the theoretical 

expectations of O(h
6
) and      . 

Example 2. Consider the Burgers’ equation (1) with the 

Dirichlet boundary conditions (5) and  the initial condition  

                                                                                          

The problem (1), (5) and (49) has an exact solution and it 

is expressed by the formula (12). All needed coefficients  

    are calculated by (11) with 

          (
       

  
)                                                               

The higher order numerical and exact solutions of 

Example 2 for                         with at 

  
 

√  
   and      √    are presented in Tables 9-11. 

 

Table 1: Convergence of the proposed schemes for the 

numerical solution          to the exact solution           

of Example 1 versus the number of nodes  . Here      

and       √        

  Numerical  solution  Exact 

x N=10 N=20 N=40 N=80 solution 

0.1 

0.2 

0.3 

0.4 

0.5 

0.228649 

0.437766 

0.608777 

0.725196 

0.774045 

0.22865030 

0.43776771 

0.60877832 

0.72519674 

0.77404614 

0.2286503154 

0.4377677345 

0.6087783451 

0.7251967567 

0.7740461512 

0.2286503156451 

0.4377677347901 

0.6087783454149 

0.7251967569572 

0.7740461512588 

0.2286503156477 

0.4377677347942 

0.6087783454190 

0.7251967569600 

0.7740461512595 

0.6 

0.7 

0.8 

0.9 

0.747568 

0.645016 

0.474055 

0.251102 

0.74756837 

0.64501619 

0.47405491 

0.25110176 

0.7475683734 

0.6450161825 

0.4740549069 

0.2511017581 

0.7475683733302 

0.6450161823893 

0.4740549067930 

0.2511017580559 

0.7475683733289 

0.6450161823870 

0.4740549067907 

0.2511017580546 

 

Table 2:   The     maximum    absolute      error  

                                    between 

numerical and exact solutions versus the number of nodes 

 , and  corresponding Runge coefficients.  
 N                    

10 

20 

40 

80 

1.058410630083717e-006 

1.679794564557469e-008 

2.635179296994750e-010 

4.136968545509490e-012 

 

63.008 

63.744 

63.698 

 

Table 3: The same as in Table 1, but    √      for 

          
                       Numerical  solution  Exact 

x N=10 N=20 N=40 N=80 solution 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

0.157856 

0.311602 

0.456498 

0.586299 

0.691734 

0.757624 

0.757834 

0.650499 

0.391645 

0.15786370 

0.31161146 

0.45650189 

0.58629360 

0.69172222 

0.75761273 

0.75783125 

0.65050606 

0.39165314 

0.1578638152 

0.3116115963 

0.4565019578 

0.5862935224 

0.6917220370 

0.7576125552 

0.7578312008 

0.6505061712 

0.3916532762 

0.1578638169663 

0.3116115984406 

0.4565019588173 

0.5862935211388 

0.6917220340560 

0.7576125523766 

0.7578312000723 

0.6505061729091 

0.3916532782669 

0.1578638169929 

0.3116115984745 

0.4565019588320 

0.5862935211184 

0.691720340080 

0.7576125523305 

0.7578312000594 

0.6505061729349 

0.3916532782993 

 

 

Table 4: The same as in Table 2, but for Table 3.  
N                    

10 

20 

40 

80 

1.239220296311849e-005 

1.957252674378296e-007 

3.066594644884901e-009 

4.795597252638117e-011 

 

63.314 

63.824 

63.946 

Table 5: The same as in Table 1, but     √   for   

        

  Numerical  solution Exact 

x N=10 N=20 N=40 solution 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

0.00079050 

0.00151237 

0.00210061 

0.00249817 

0.00266108 

0.00256436 

0.00220777 

0.00161958 

0.00085680 

0.000790454438 

0.001512270422 

0.002100472192 

0.002498001870 

0.002660896532 

0.002564189896 

0.002207614673 

0.001619472300 

0.000856738570 

0.000790454446504 

0.001512270437967 

0.002100472214085 

0.002498001895787 

0.002660896559381 

0.002564189922944 

0.002207614696226 

0.001619472316504 

0.000856738579092 

0.000790454446633 

0.001512270438214 

0.002100472214428 

0.002498001896192 

0.002660896559811 

0.002564189923357 

0.002207614696580 

0.001619472316762 

0.000856738579229 

 

Table 6: The same as in Table 2, but for Table 5. 
N                    

10 

20 

40 

 

1.840226970003904e-007 

2.751935918726689e-011 

4.300379496946505e-013 

 

66.87 

63.99 

 

Table 7: The same as Table 1, but for the fourth-order 

weighted scheme  [11, 15] with   
 

 
  

  

    
  

  Numerical  solution  Exact 

x N=10 N=20 N=40 N=80 solution 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

0.228658 

0.437781 

0.608792 

0.725207 

0.774050 

0.747565 

0.645009 

0.474047 

0.251097 

0.22865086 

0.43776863 

0.60877929 

0.72519746 

0.77404642 

0.74756821 

0.64501574 

0.47405441 

0.25110144 

0.228650350 

0.437767792 

0.608778405 

0.725196801 

0.774046168 

0.747568363 

0.645016154 

0.474054875 

0.251101738 

0.2286503178 

0.4377677383 

0.6087783492 

0.7251967597 

0.7740461523 

0.7475683726 

0.6450161806 

0.4740549048 

0.2511017568 

0.2286503156 

0.4377677347 

06087783454 

0.7251967569 

0.7740461512 

0.7475683733 

0.6450161823 

0.4740549067 

0.2511017580 

 
Table 8: The same as in Table 2, but for Table 7.  

N                    

10 

20 

40 

80 

1.404989751185859e-005 

9.509678503549779e-007 

6.056235823947986e-008 

3.802648973483258e-009 

 

14.774 

15.702 

15.926 

 
Table 9: The same as in Table 1, but for Example 2 with 

   √      and       
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  Numerical  solution  Exact 

x N=10 N=20 N=40 N=80 solution 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

0.02455883 

0.04679722 

0.06459077 

0.07619922 

0.08043556 

0.07680068 

0.06556400 

0.04777049 

0.02516037 

0.02456346 

0.04680605 

0.06460299 

0.07621368 

0.08045088 

0.07681537 

0.06557658 

0.04777969 

0.02516522 

0.02456374 

0.04680659 

0.06460374 

0.07621457 

0.08045183 

0.07681627 

0.06557735 

0.04778025 

0.02516552 

0.02456376 

0.04680662 

0.06460379 

0.07621462 

0.08045188 

0.07681633 

0.06557740 

0.04778029 

0.02516554 

0.02456376 

0.04680663 

0.06460379 

0.07621463 

0.08045189 

0.07681633 

0.06557740 

0.04778029 

0.02516554 

 

Table 10: The same as in Table 9, but for    √      

for        
  Numerical  solution  Exact 

x N=10 N=20 N=40 N=80 solution 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

0.16403609 

0.32309362 

0.47179502 

0.60372599 

0.71012965 

0.77704033 

0.77948836 

0.67413875 

0.40982075 

0.16413204 

0.32324755 

0.47195307 

0.60384776 

0.71020720 

0.77709963 

0.77957486 

0.67427966 

0.40995677 

0.16413714 

0.32325614 

0.47196269 

0.60385627 

0.71021370 

0.77710480 

0.77958062 

0.67428743 

0.40996384 

0.16413745 

0.32325666 

0.47196329 

0.60385682 

0.71021413 

0.77710514 

0.77958098 

0.67428790 

0.40996427 

0.16413747 

0.32325669 

0.47196333 

0.60385685 

0.71021416 

0.77710517 

0.77958101 

0.67428793 

0.40996429 

 

Table 11: The same as in Table 9, but for     √   for 

         
  Numerical solution  Exact 

x N=10 N=20 N=40 N=80 solution 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

0.00269461 

0.00538868 

0.00808135 

0.01077132 

0.01345682 

0.01613521 

0.01879154 

0.02122422 

0.02070041 

0.00257478 

0.00514955 

0.00772426 

0.01029890 

0.01287331 

0.01544610 

0.01799928 

0.02029882 

0.01952431 

0.00256479 

0.00512959 

0.00769438 

0.01025917 

0.01282383 

0.01538696 

0.01793019 

0.02021648 

0.01941856 

0.00256480 

0.00512961 

0.00769441 

0.01025920 

0.01282388 

0.01538702 

0.01793026 

0.02021656 

0.01941867 

0.00256480 

0.00512961 

0.00769441 

0.01025921 

0.01282388 

0.01538702 

0.01793027 

0.02021657 

0.01941868 
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