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ABSTRACT

The model for quantum tunneling of a diatomic homonuclear molecule is formulated as a 2D boundary-value
problem (2D BVP) for the Schrödinger equation with homogeneous boundary conditions of the third type. The
molecule is considered as a pair of identical particles coupled via the effective potential. For short-range barrier
potentials the Galerkin reduction to BVP for a set of closed-channel second-order ordinary differential equations
(ODEs) is obtained by expanding the solution in a basis of transverse variable functions. Benchmark calculations
of quantum tunneling through Gaussian barriers are presented for a pair of identical nuclei coupled by Morse
potential. The results are compared with the direct numerical solution of the original 2D BVP obtained using the
Numerov scheme. The effect of quantum transparency, i.e., the resonance behavior of the transmission coefficient
versus the energy of the molecule, is shown to be a manifestation of the barrier metastable states, embedded in
the continuum below the dissociation threshold, as well as quantum diffusion. The possibility of controlling the
dynamics of atom-ion collisions by laser pulses is analyzed using a 1D BVP two-center model with Pöschl-Teller
potentials.

Keywords: tunneling, interatomic potentials, diatomic molecules, quantum diffusion, laser pulses, time-
dependent Scrödinger equation

1. INTRODUCTION

The study of tunneling coupled particles through repulsive barriers1 has revealed the effect of resonance quantum
transparency: when the cluster size is comparable with the spatial width of the barrier, there are mechanisms
that lead to greater transparency of the barrier. These mechanisms are related to the formation of the barrier
resonances, provided that the potential energy of the composite system has local minima giving rise to metastable
states of the moving cluster.2 Currently this effect and its possible applications are a subject of extensive study in
relation with different quantum-physical problems, e.g., sub-barrier tunneling of light nuclei,3 quantum diffusion
of molecules,4 exciton resonance passage through a quantum heterostructure barrier,5 resonant formation of
molecules from individual atoms,6 controlling the direction of diffusion in solids,7 and tunnelling of ions and
clusters through repulsive barriers.8,9 One more important problem is the possibility to control the tunneling of
molecules by means of laser pulses, which can allow the enhancement of desired chemical reactions.10 For the
analysis of these effects it is useful to develop model approaches based on approximations, providing a realistic
description of interactions between the atoms in the molecule, as well as with the barriers and/or external fields.

In this paper we formulate and study the model of a diatomic molecule with the nuclei coupled via the
effective Morse potential, tunneling through a Gaussian repulsive barrier. We present the comparison of the
close-coupling approximate results with those of the direct numerical solution of the original 2D BVP using
the Numerov scheme below the dissociation threshold. The effect of quantum transparency, i.e., the resonance
behavior of the transmission coefficient versus the energy of the molecule, as well as quantum diffusion are
analyzed. Atom-ion collisions, as well as the dynamics of an ion in the field of a laser pulse, are studied on the
base of a two-center model with Pöschl-Teller potentials.
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2. MODEL I. TRANSMISSION OF A DIATOMIC MOLECULE THROUGH A
BARRIER

We consider a 2D model of two identical particles with mass m, coupled by pair interaction Ṽ (x2 − x1) and
interacting with barrier potentials Ṽb(x1) and Ṽb(x2). The relevant stationary Schrödinger equation for the wave
function Ψ(x1, x2) in the s-wave approximation has the form:(

h̄2

2m
∂2

∂x2
1

− h̄2

2m
∂2

∂x2
2

+ Ṽ (x2 − x1) + Ṽb(x1) + Ṽb(x2)− Ẽ
)

Ψ(x1, x2) = 0, (1)

where Ẽ is total energy of the system and h̄ is Plank constant. Using the change of variables x = x2 − x1,
y = x2 + x1, we can rewrite Eq. (1) in the form(

− h̄
2

m

∂2

∂y2
− h̄2

m

∂2

∂x2
+ Ṽ (x) + Ṽb(

x+ y

2
) + Ṽb(

x− y
2

)− Ẽ
)

Ψ(y, x) = 0. (2)

The equation describing the molecular subsystem has the form(
− h̄

2

m

d2

dx2
+ Ṽ (x)− ε̃

)
φ(x) = 0. (3)

The molecular subsystem considered is assumed to possess the continuous energy spectrum with the eigenvalues
ε̃ ≥ 0 and eigenfunctions φε̃(x) and the discrete energy spectrum with the finite number n of bound states with
the eigenfunctions φj(x) and the eigenvalues ε̃j = −|ε̃j |, j = 1, n.

The asymptotic boundary conditions imposed on the solution for the 2D model in the s-wave approximation
Ψ(y, x) = {Ψj(y, x)}No

j=1 with the direction v =→ can be written in the obvious form

Ψj(y → −∞, x)→ φj(x)
exp(ıkjy)√

kj
+

No∑
l=1

φl(x)
exp(−ıkly)√

kl
Rlj ,

Ψj(y → +∞, x)→
No∑
l=1

φl(x)
exp(ıkly)√

kl
Tlj , (4)

Ψj(y, x→ ±∞)→ 0,

where Rlj and Tlj are the reflection and transmission amplitudes, No is the number of open channels, ki is

the wave number, ki =
√

(m/h̄2)(Ẽ − ε̃i) > 0, below dissociation threshold Ẽ < 0 , φi(x) and εi are the
eigenfunctions and eigenvalues of the BVP for Eq. (3).

The solution of Eq. (2) is sought for in the form of Galerkin expansion

Ψ(y, r) =
jmax∑
j=1

φj(r)χjio(y), (5)

Here χjio(y) are unknown functions and the orthonormalized basis functions φj(r) in the interval 0 ≤ r ≤ rmax

are defined as eigenfunctions of the BVP for the equation(
− d2

dr2
+ V (r)− εj

)
φj(r) = 0, φj(0) = φj(rmax) = 0,

∫ rmax

0

drφi(r)φj(r) = δij , (6)

where V (r) = (m/h̄2)Ṽ (x), εj = (m/h̄2)ε̃j . The desirable set of numerical solutions of this BVP is calculated
with the given accuracy by means of the program ODPEVP.11 Hence, we calculate the set of n bound states
having the eigenfunctions φj(x) and the eigenvalues εj , j = 1, n and the desirable set of pseudostates with the
eigenfunctions φj(x) and the eigenvalues εj ≥ 0, j = n + 1, jmax. The latter approximate the set of continuum
eigensolutions ε ≥ 0 of the BVP for Eq. (3).
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Figure 1. Gaussian-type barrier Vb(xi) = D̂ exp
(
−x

2
i

2σ

)
, at D̂ = 236.510003758401Å−2 = (m/h̄2)Ṽ0 = (m/h̄2)D, Ṽ0 =

D = 1280K, σ = 5.23 · 10−2Å2, the two-particle interaction potential, V (r) = D̂{exp[−2(r− r̂eq)ρ̂]− 2 exp[−(r− r̂eq)ρ̂]},
r̂eq = 2.47Å, ρ̂ = 2.96812423381643Å−1 and the corresponding 2D potential.

Figure 2. The wave functions φj(r) of the bound states j = 1, 5 (solid lines) and pseudostates j = 6, ..., 15 (dashed lines)
The matrix elements Vjj(y) (solid lines) and Vj1(y) (dashed lines).

The set of closed-channel Galerkin equations has the form[
− d2

dy2
+ εi − E

]
χiio(y) +

jmax∑
j=1

Vij(y)χjio(y) = 0. (7)

Thus, the scattering problem (2)–(3) with the asymptotic boundary conditions (4) is reduced to the boundary-
value problem for the set of close-coupling equations in the Galerkin form (7) with the boundary conditions at
y = ymin and y = ymax (from ref.9):

dF (y)
dy

∣∣∣∣
y=ymin

= R(ymin)F (ymin),
dF (y)
dy

∣∣∣∣
y=ymax

= R(ymax)F (ymax), (8)

where R(y) is an unknown jmax × jmax matrix function, F (y) = {χio(y)}No
io=1 = {{χjio(y)}jmax

j=1 }
No
io=1 is the

required jmax × No matrix solution, and No is the number of open channels, No = max
E≥εj

j ≤ jmax, calculated

using the third version of the program KANTBP.12
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In Eq. (7) the effective potentials Vij(y) are expressed by the integrals

Vij(y) =
∫ rmax

0

drφi(r)(Vb(
r + y

2
) + Vb(

r − y
2

))φj(r). (9)

For example let us take the parameters of the molecule Be2, namely, the reduced mass µ = m/2 = 4.506Da,
the average distance between the atoms 2.47Å, the frequency of molecular vibrations expressed in temperature
units h̄ω = 398.72K, the ground state of molecule 1Σ+

u , the wave number of the order of 277.124cm−1 for the
observable excited-to-ground state transitions (we use relationship 1K= 0.69503476cm−1 from13). These values
were used to determine the parameters of the Morse potential

Ṽ = D{exp[−2(r − r̂eq)ρ̂]− 2 exp[−(r − r̂eq)ρ̂]}, (10)

where D is the depth of the interaction potential well and ρ̂ describes the width of the potential well. The values
of D and ρ̂ are determined from the known spectrum

−ε̃n = D

[
1− ς(n+ 1/2)

]2

. (11)

Having the average size of the molecule and the separation between the energy levels taken into account, one
can parametrize the molecular potential to fit the observable quantities, namely, D = 1280K, r̂eq = 2.47Å,
ρ̂ = 2.968Å−1 is determined from the condition (ε̃2 − ε̃1)/(2πh̄c) = 277.124cm−1, at ς = ρ̂h̄√

mD
= 0.193 is the

dimensionless constant of the problem and D̂ = (
√
mD
h̄ )2 = (ρ̂/0.193)2 = (2.968Å−1/0.193)2 = 236.5Å−2. In

accordance with (11), the ground state energy of the molecule Be2 is equal to −ε̃n = −1044.88K. Since the
bond in the molecule Be2 is of the Van der Waals type, one can consider each constituent atom independently
interacting with the external barrier potential. The latter should be chosen to have the height and the width
typical for barriers in a real crystal lattice. Moreover, this potential should be a smooth function having the
second derivative to apply high-accuracy numerical methods, like the Numerov method or the finite element
method, for solving the BVP for the systems of second-order ordinary differential equations. Therefore, we
choose the Gaussian repulsive barrier potential

Ṽb(xi) = Ṽ0 exp
(
−x

2
i

2σ

)
, Vb(xi) =

m

h̄2 Ṽb(xi) = D̂ exp
(
−x

2
i

2σ

)
. (12)

Here the parameters Ṽ0 = 1280K, D̂ = 236.510003758401Å−2 = (m/h̄2)Ṽ0, σ = 5.23 · 10−2Å2 are determined
by the model requirement that the width of repulsive potential at the kinetic energy equal to that of the ground
state is 1Å, so that the average distance 2.47Å between the atoms of Be is less that the distance 2.56Åbetween
Cu atoms in the plane (111) of the crystal lattice cell. The potential barrier height Ṽ0 of the order of 200
meV was estimated following the experimental observation of quantum diffusion of hydrogen atoms.14 Fig.
1 illustrates the Gaussian and Morse potentials, and the corresponding 2D potential. Fig. 2 presents the
calculated eigenfunctions of the BVP (6) and the effective potentials Vij(y) of Eq. (9), calculated using these
functions. Note, that the wave functions φj(r) and the eigenvalues εj(r) of the bound states j = 1, 5 (solid lines)
approximate the known analytical ones of the BVP for Eq. (3) with the Morse potential (10) with four and
seven significant digits, respectively, the states being localized in the well, while the pseudostates j = 6, ..., 15 are
approximated with the same accuracy and localized outside the well. The matrix elements between the bound
states are localized in the vicinity of the barriers and the matrix elements between the pseudostates are localized
beyond the barriers. The matrix elements between the bound states and pseudostates are small. The expansion
of the desirable solution (5) over such orthogonal basis at (jmax = 15) with only ten closed channels taken into
account allows the calculation of approximate solutions of the original 2D problem (2) at E < 0 with the required
accuracy of hp+1 for the eigenfunctions and h2p for the eigenvalues with respect to the maximum step h of the
finite-element grid, p being the order of approximation. The solutions of the BVPs (6)-(12) were performed on
the finite-element grids Ωr = {0(Nelem = 800)12}, and Ωy = {−12(Nelem = 120)12}, respectively, with Nelem
fourth-order Lagrange elements p = 4 between the nodes, using the program KANTBP 3.0.15
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Figure 3. Left panel: Comparison of the total probability of penetration from the first channel to all five open channels sim-
ulated by the Galerkin expansion and Numerov calculations ; dotted and dashed curves are probabilities of penetration of
one particle through one barrier and one particle through a sequence of two barriers, i.e., upper and lower average, respec-
tively. Right panel: The total probability of penetration from the first channels with the energies E1 = −1044.879649,
E2 = −646.1570935, E3 = −342.7919791, E4 = −134.7843058, E5 = −22.13407384 (in K) to all five open channels,
simulated by the Galerkin expansion.

The left panel of Fig. 3 illustrates the comparison of the total probability of penetration from the first
channel to all five open channels simulated by Galerkin expansion and Numerov calculations. One can see that
the position of resonances calculated with accuracy of order of 10−6 by the Galerkin expansion and Numerov
procedure (at steps hx = 0.05, hy = 0.05 with accuracy < 10−3) are in good agreement, the difference in height
is explained by the crudeness of the energy grid used in the latter case. Probabilities of penetration of one
particle through one barrier, one particle through a sequence of two barriers, and one particles with double
mass through one barrier give approximations of upper, lower and average estimations. In the right panel of
Fig. 3 we show the resonance behavior of the total probability of penetration with the transition from the first
channels with the energies E1 = −1044.879649, E2 = −646.1570935, E3 = −342.7919791, E4 = −134.7843058,
E5 = −22.13407384 (in K) to all five open channels, simulated by the Galerkin expansion. The total transmission
probability is seen to demonstrate the resonance behavior. Some peaks are high and narrow, and the position of
peaks corresponding to transitions from different bound states are similar. As the energy of the initial excited
state increases, the transmission peaks demonstrate a shift towards higher energies, the set of peak positions
keeping approximately the same as for the transitions from the ground state and the peaks just replacing each
other, like it was observed in the model calculations.16 For example, the left epure shows that the positions of
the 13th and 14th peaks for transitions from the first state coincide with the positions of the 1st and 2nd peaks
for the transitions from the second state, while the right epure shows that the positions of the 25th and 26th
peaks for transitions from the first state coincide with the positions of the 13th and 14th peaks for transitions
from the second state and with the positions of the 1st and 2nd peaks for the transitions from the third state.

One can suppose that a better fit of the Morse potential to the observable upper part of the discrete spectrum
of Be molecule, containing six more Val der Waals bound states, will increase the density of peaks near the
dissociation threshold.17–20 As one can see from right panels of Fig. 2, the diagonal potentials Vjj(y) have shapes
of double barriers and nondiagonal matrix elements Vij have size less then four time. It means that positions
of peaks are real part of energy of the quasistationary states imbedded in continuum that are predominately
localized between double barriers. It is confirmed by behavior of probability density of coefficient functions
χjio(y). The examples from Fig. 4 shows that in the case of resonance transmission the wave functions, depending
on the center-of-mass variable y, are localized in the vicinity of the potential barrier center (y = 0), and in the
case of total reflection the wave functions are localized at the barrier side, on which the wave is incident, and
decrease to zero within the effective range of the barrier action. For the energy values, corresponding to some
of the transmission coefficient peaks in Fig. 3 at within the effective range of barrier potential action the wave
functions demonstrate considerable increase (till 106 times, see Fig. 4) of the probability density in comparison
with the incident unit flux. This is a fingerprint of quasistationary states, which is not a quantitative definition,
but a clear evidence in favour of their presence in the system.21,22
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Figure 5. Left panel: Thermal rate constants vs. temperature: partial ki(T ) (solid curve) and total k̂(T ) (dashed lines) and
their upper (dotted curves) and lower (short dashed) estimations. Right panel: The temperature-dependent activation
energy: partial Eai (T ) (solid curve) and total Ea(T ) (dashed lines) activation energy, and its approximation of lower
(dotted curves) and upper (short dashed) estimations that produced by corresponding upper and lower estimations of
k(T ) of the left panel.

For a quantum particle, the possibility of tunneling makes the concept of activation barrier ill defined and
therefore deviations from Arrhenius behavior may be expected. Normalized total thermal rate constant k̂qn/kqn(0)

have of the form:4,23

k̂qn/kqn(0) =
No∑
i=1

k̂i(T ), k̂i(T ) =
e−ε̃i/T

Qvib
ki(T ), Qvib =

No∑
i=1

e−ε̃i/T , (13)

ki(T ) =
1√
T

∫ Ẽmax
y

0

Wii(Ẽy)e−Ẽy/T dẼy +
1√
T

∫ ∞
Ẽmax

y

Wii(Ẽy)e−Ẽy/T dẼy. (14)

where k̂i(T ) are weighed thermal rate constants, Qvib is vibrational energy counted of the bottom of the Morse
potential and ki(T ) is partial thermal rate constant in initial vibrational state i, Wii(Ẽ) = |T |2ii(Ẽ) is the
total transmission probability for initial state i. Fig. 5a displays the comparison of partial ki(T ) and total
k̂(T ) thermal rate constant vs temperature T and with their upper and lower estimations. Diffusion can still be
approximately described by using a temperature-dependent activation energy, often much lower than the classical
energy barrier. The temperature-dependent activation energy: total Êa(T ) and partial Eai (T ) are defined by

Êa(T ) = − 1
√
βk̂(T )

d
√
βk̂(T )
dβ

, Eai (T ) = − 1√
βki(T )

d
√
βki(T )
dβ

, β = 1/T.

Fig. 5a displays the comparison of partial Eai (T ) and total Êa(T ) activation energy vs temperature T and
with their upper and lower estimations in restricted interval till Tmax = 100K. So, activation energy Ea for
a composite system less then two noninteracted particles. With increasing temperature T contribution of high
energies Ey, will be taking into account.
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Figure 6. a) Eigenenergies En(t) of the instant Hamiltonian depending on time as a parameter t. b) The bound state
probabilities p1(t), p2(t) and the ionization probability pc(t) versus the time t. Here A0 = −15/8, A1 = 15/8, v = 1/2,
x0(t0) = vt0 = −15, and t0 = −30.

3. MODEL II. IONIZATION OF A PÖSCHL-TELLER ATOM

Let us consider simplified model of collision of antiproton (p̄+H) or proton (p+H) on hydrogen atom where
incident nucleus moves by straight line classical trajectory with the velocity v, which describe by the TDSE
on the finite time interval t ∈ [t0, T ] for the two-center problem24 with Pöschl-Teller potentials, similar to the
ionization problem.25 We consider a particular case of a resting well, A0 < 0, and a barrier, A1 > 0, (or a well
at A1 < 0) moving with the velocity v with respect to the resting well in units h̄ = me = 1:

ı
∂ψ(x, t)
∂t

= H(x, t)ψ(x, t),

H(x, t) = −1
2
∂2

∂x2
+

A0

cosh2(x)
+

A1

cosh2(x− x0(t))
, (15)

where H(x, t) is the instant Hamiltonian and x0(t) = vt is the position of the moving barrier center. For numerical
calculation with required accuracy the initial infinite-axis boundary problem is reduced to a sufficiently large
finite interval x ∈ (xmin, xmax) with the boundary and normalization conditions

ψ(xmin, t) = 0, ψ(xmax, t) = 0, ‖ψ(x, t)‖2 =
∫ xmax

xmin

|ψ(x, t)|2dx = 1. (16)

We consider an example of the wave packet evolution in the time interval t ∈ [t0, T ], induced by the barrier
(A1 = 15/8) moving with the velocity v with respect to the motionless well (A0 = −15/8) that supports two
bound states n0 = 2 with the energies E1(t = t0) ∼= EW1 = −9/8 = −1.125 and E2(t = t0) ∼= EW2 = −1/8 =
−0.125.

For v > 0 we choose the initial time t0 and the final time T to correspond to the initial x0(t0) = vt0 = −15
and the final x0(T ) = vT = 15 positions of the moving barrier center with the aim to preserve with required
accuracy the discrete spectrum states supported by the resting well at both t0 and T . We start from the initial
state that corresponds with required accuracy to the ground state supported by the resting well

ψ(x, t0) ∼= ψW1 (x) = N1(coshx)−(
√

1−8A0−1)/2. (17)

Note that in the case A1 +A0 = 0 at t = 0 the potential of the problem (15) is equal to zero on the entire axis and
the instant Hamiltonian H(x, t) at t = 0 has purely continuous spectrum that provides the complete ionization
of the considered quantum system and the capture to the discrete spectrum states during further evolution.

The calculations were performed using the program TIME6T26 within the spatial interval x ∈ (−512, 512),
which was sufficient to avoid reflection from the boundaries within the considered time interval t ∈ [t0, T ]. The

wave functions ψn(x; t) of the discrete spectrum En < 0 and the wave functions ψνE(x; t) ≡ ψ
←→
E (x; t) of the

continuous spectrum E ≥ 0 of the instant Hamiltonian H(x, t) depend on t as a parameter, as follows from Eq.
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(15). They were calculated in the spatial interval x ∈ (xmin, xmax) with the homogeneous third-type boundary
conditions by mean of the modified15 KANTBP program12 using the appropriate asymptotic expressions. The
subscript ν equals→ or← for the positive or negative direction of the final momentum q = ±

√
2E, respectively.

After joining the asymptotic expressions on the entire axis x ∈ (−∞,+∞), these functions satisfy the conventional
relations ∫ +∞

−∞
dx(ψν

′

E (x; t))∗ψνE′(x; t) = (2π)δ(E − E′)δνν′ , (18)∫ +∞

−∞
dx(ψνE(x; t))∗ψn(x; t) = 0, (19)

n0∑
n=1

ψn(x; t)ψn(x′; t) +
∑
ν=→←

∫ +∞

0

dE(ψνE(x; t))∗ψνE(x′; t) = δ(x− x′). (20)

An example of the dependence of eigenenergies En < 0 of the instant Hamiltonian upon the time parameter
t is shown in Fig. 6a. In the vicinity of t = 0 the Hamiltonian is seen to have only one eigenvalue E1 < 0 and at
t = 0 it has only a continuous spectrum.

The probabilities pn(t) and pc(t) of transitions to the bound and continuum states and the energy distribution
of probability pE(t) in the continuous spectrum E ≥ 0 in the above capture and ionization processes are calculated
using the expressions

pn(t) = |tn0(t)|2, tn(t) =
∫ xmax

xmin

dx(ψn(x, t))∗ψ(x, t) (21)
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Figure 7. a) The real part (solid line) and the imaginary part (dashed line) of the wave function; b) the energy distribution
of ionization probability pE(t) at different moments of time t for the fixed values of parameters v = 1/2, A0 = −15/8,
A1 = 15/8 and the initial position of the moving barrier x0(t0) = vt0 = −15, t0 = −30.
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pE(t) =
|t→E (t)|2 + |t←E (t)|2

2π
, t

→←
E (t) =

∫ xmax

xmin

dx(ψ
→←
E (x, t))∗ψ(x, t). (22)

As follows from Eq. (20), they satisfy with the required accuracy the condition at Emax � 1:

n0∑
n=1

pn(t) + pc(t) = 1, pc(t) =
∫ Emax

0

pE(t)dE. (23)

As mentioned above, at t = 0 the effective potential is zero, and the eigenfunctions of the instant Hamiltonian
correspond to the continuous spectrum. Then the effective potential becomes nonzero again and the capture to
the exited and ground states become possible, which is seen from the evolution of probabilities pE(t) and pc(t)
in Figs. 6b and 7. Fig. 7 shows that at t ≥ 1 the maxima of the energy distribution pE∼1 ∼ 0.5 correspond
to the forward and backward ionization waves with similar frequencies. The maxima of pc(t) at t ∼ 4 in Fig.
6b correspond to the maxima of pE∼0.01 ∼ 1 at t = 4 in Fig. 7b and correlate with ionization and capture
processes. With increasing velocity the probability densities of the excited states tend to zero (see Fig. 8). The
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and x0(t0) = −15, respectively.

wave function and the distribution of ionization probability pE(t) for some particular values of the velocity are
shown in Fig. 9. As seen from Fig. 9, with increasing v the forward ionization waves become dominant and
their energy increases.

Consider another example of the evolution of the wave packet in the time interval t ∈ [t0, T ], induced by the
barrier (A1 = 3/8) moving with the velocity v with respect to the fixed well (A0 = −3/8), supporting a single
bound state n0 = 1 with energy E1(t = t0) ∼= EW1 = −1/8 = −0.125. Fig. 8 shows that, generally, the velocity
distribution of the probability has the similar structure. Note, that the probability of detecting the system in
the excited states is substantially smaller than that in the ground state.

For two cases discussed above let us consider an example of the wave packet evolution, induced by the well

a) b)
Figure 11. a) The real part (solid line) and the imaginary part (dashed line) of the wave function for three fixed values of
velocity v = 1/2, 2/3, 3/2 at different moments of time t and A0 = A1 = −15/8 .
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of the electron at different values of the internuclear distance R. The inset in Fig. (a) shows the dependence of the free
oscillation period upon R. The values of R corresponding to the maxima of ionization probability are shown by vertical
lines.

(A1 = A0), moving with the velocity v, in the time interval t ∈ [t0, T ]. An example of the dependence of
eigenenergies En < 0 and eigenfunctions of the instant Hamiltonian, having also a continuous spectrum, upon
the time parameter t is shown in Fig. 12b,c as a function of R = vt. At t = 0, i.e. at R = 0, the Hamiltonian
is seen to have only one eigenvalue E1(R = 0) < 0 because in this point E2(R = 0) = 0, i.e. second eigenvalue
touch boundary of continuous spectrum and after that go to unphysical sheet of energy. At t > 0 the bound
state corresponding second eigenvalue appears again and its settlement occurs by capture of ionized particles
to discrete spectrum E2(R 6= 0) < 0. Fig. 10 shows the dependence of probabilities p1(T ), p2(T ) of detecting
the system in the ground and first excited states in the resting well and the probabilities p∗1(T ), p∗2(T ) for the
ground and first excited states in the moving well versus the inverse velocity 1/v. The Figure 10 shows that the
probability to remain in the resting well or to go to the moving one is rapidly oscillating at small v, which is
due to multiple reflection of the wave packet from the walls of the wells. The probability of transition to the
continuum is also a rapidly oscillating functions at v → 0 , due to the reflection from the walls of the wells.
There is also a peak at v ∼ 0.5 in the case of A0 = −3/8 and at v ∼ 1.5 in the case of A0 = −15/8, which are
associated with the appearance of the barrier, separating the wells starting from the time t = ln(2 +

√
3)/v.

Figure 11 shows the time dependence of the wave function ψ(x, t) at the velocities of the well v = 1/2,
v = 2/3, and v = 3/2, when the wave packet passes to the moving well, remains localized in the resting well,
and is partially converted into the continuum, respectively. At low velocities the wave packet is seen to oscillate.
At high velocities the mutual influence of the wells becomes negligible, and in the limit v → ∞ the scattering
becomes purely elastic.

The considered models allow the description of composite systems in transient effective potentials that may
cause not only the excitation and ionization processes, but also the capture to bound states. The models are
advantageous for demonstrating the efficiency of computational unitary schemes, implemented in the applied
program TIME6.

4. MODEL III. IONIZATION DYNAMICS OF A MOLECULAR ION

Now consider a simplified one-dimensional model of molecular ion with two nuclei fixed at the points ±R/2,
attracting an electron at the point x via a superposition of two identical PöschlTeller (PT) potentials. The
system is affected by the electric field of a laser pulse. The Scrödinger equation describing the ionization
dynamics of this model (in atomic units) reads

ı
∂ψ(x, t)
∂t

= H(x, t)ψ(x, t), (24)

H(x, t) = H0(x) + V (x, t)

H0(x) = −1
2
∂2

∂x2
− V0

cosh2((x−R/2)/L)
− V0

cosh2((x+R/2)/L)
,
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Here V (x, t) is the potential induced by the laser pulse

V (x, t) = F0f(t) sin(ωLt), (25)

with the amplitude F0 and the frequency ωL. We choose the envelope function f(t) of the laser pulse in the form
f(t) = sin2(πt/Tpulse), where Tpulse is the pulse duration.

The BVP for Eq. (24) was solved with the boundary and normalization conditions (16) and the initial
state ψ(x, 0) = (ψg + ψu)/

√
2 localized in the right-hand well of the double-well potential. The finite spatial

interval x ∈ (−128, 128) was sufficient to avoid reflection from the boundaries within the considered time interval
t ∈ [t0, T ] using the program TIME6T.26

Figures 12–15 present the results of calculations performed using the following parameters. The magnitude
and the width of the PT potentials were V0 = 2.216Eh and L = 2/3aB , respectively, where Eh ≡ Ry =
h̄2/2/me/aB and aB = h̄2/me/e

2 is the Bohr radius. The laser frequency ωL = 0.16546 corresponded to the
wavelength λ = 300 nm and the period Toc = 2π/ωL = 37.973; the pulse duration was taken to be Tpulse = 32Toc.

For the fixed values of the parameter R > R0 ≈ 0.1 the Hamiltonian H0(x;R) has two eigenvalues, cor-
responding to the ground and excited state that vary with the distance between wells as shown in Fig. 12a.
The eigenstates possess the symmetry with respect to permutations of identical nuclei, namely, the ground state
is even (gerade, g) and the excited state is odd (ungerade, u). With respect to the center of symmetry the
wave function is symmetric for g state and antisymmetric for u state. The wider is the barrier, the smaller
is the separation between the energy levels. In the process of evolution, the wave function of the initial state
ψa(x) = (ψg +ψu)/

√
2 localized in the well (a) turns into the the wave function ψb(x) = (ψg−ψu)/

√
2, localized

in the well (b), and then returns to the initial state. In the absence of external fields the evolution of the initial
state ψ(x, 0) = ψa(x) (Fig. 13 at R = 2.9) can be described by the formula

ψ(x, t) =
1
2

(ψg(t) + ψu(t)) =
1
2

(ψg exp(iEgt) + ψu(t) exp(iEut))

=
exp(iEgt)

2
[ψa(x)(1 + exp(i(Eu − Eg)t) + ψb(x)(1− exp(i(Eu − Eg)t)].

The period of free oscillation T ≡ Tgu = 2π/(Eu − Eg) versus the distance R is shown in the inset of Fig. 12a.
At R = 2.9 the frequency of free oscillation is equal to the wave frequency.

In Fig. 14 the probability P+ of the particle localization in the right-hand well and the total discrete spectrum
probability P at Tfin = 36Toc are shown as functions of R (left) and the free oscillation frequency ωgu (right).

Figure 13. Temporal dynamics of the wave function without the laser pulse (left) and with the laser pulse (right). R = 2.9,
the line plots the laser pulse f(t) sin(ωLt), ωL = 0.16546, F0 = 0.05 a.u. Note that the laser frequency is close to the
resonance 1:1, i.e. ωL = ωgu.
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Figure 14. The probability P+ of the particle localization in the right-hand well and the total discrete spectrum probability
P at the time Tfin = 36Toc as functions of the internuclear distance R (left) and the free oscillation frequency ω (right).

From Fig. 14 the probability of electron localization in the initial state ψa(x, Tfin) at the moment of time Tfin at
R� 10 is seen to be a fast oscillating function of R. The total discrete spectrum probability P is a slow varying
function everywhere except the interval R ∈ (2.2, 4.2), in which P has four peaks. These peaks are clearly seen
in the right panel of Fig. 14. The values of R corresponding to the resonance periods Tgu and frequencies ωgu
are indicated by straight lines in the inset of Fig. 12a. The greatest peak is located in the vicinity of R ≈ 2.86 for
which the free oscillation frequency ωgu ≈ 0.173 (Tgu ≈ 36.2) is approximately equal to the laser pulse frequency
ωL = 0.16546, ωgu ≈ ωL, and the second peak is located at R ≈ 2.33, for which the free oscillation frequency
ωgu ≈ 0.282 (Tgu ≈ 22.2) is approximately by 3/2 times larger than ωL, ωgu/ωL ≈ 3/2. Thus, the resonances
1 : 1 (the evolution of which is shown in Fig. 13) and 3 : 2 are observed, the small deviations being due to the
small pulse duration and the variation of its envelope.

The time dependence of the probability P+ of the particle localization in the right-hand well and of the total

Figure 15. The probability P+ of the particle localization in the right-hand well and the total discrete spectrum probability
P as functions of time t at different values of R.
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discrete spectrum probability P at different values of R is shown in Fig. 15. It is seen that at large distance
between the wells the period of free oscillation is large, and the ionization occurs from a definite well. Decreasing
the separation between the wells gives rise to the additional resonance ionization when the resonance frequency
conditions are satisfied and the capture form the continuum otherwise.

5. CONCLUSIONS

The effect of quantum transparency in resonance tunneling of diatomic molecules through repulsive potential
barriers is demonstrated and shown to lead to quantum diffusion by the example of diatomic low-dimensional
model systems, coupled via realistic molecular potentials. The proposed models and approach, the quantum
transparency effect itself and the developed software can find further applications in barrier heavy-ion reactions
and molecular quantum diffusion. They can be also applied in the studies of laser control of molecular tunneling,
aimed at enhancing the rate of chemical reactions and quantum diffusion.
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