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Abstract. Computational schemes of the Galerkin type method (GTM)
and finite elements method (FEM) for solving elliptic multidimensional
boundary value problems (BVPs) with variable coefficients of deriva-
tives in a polyhedral d-dimensional domain, aimed at describing collec-
tive models of atomic nuclei are presented.

The solution is sought in the form of an expansion in the GTM basis
and/or in the FEM basis of piecewise polynomial functions constructed
in analytical form by joining Hermite interpolation polynomials and their
derivatives at the boundaries of neighboring finite elements, which have
the form of d-dimensional parallelepipeds.

The BVPs are formulated and analyzed for collective models includ-
ing the mixed derivative of the two-dimensional vibrational part of the
five-dimensional Hamiltonian in the representation of the nuclear spin
angular momentum in the intrinsic reference frame defined by three Euler
angles. Benchmark calculations demonstrate performance and robustness
of the approach when applied to calculate the lower part of the energy
spectrum and the reduced electric transition probabilities in quadrupole
collective models of atomic nuclei.

The calculations of the band spectrum of 154Gd isotope using tab-
ulated variable coefficients of the BVP evaluated in the self-consistent
relativistic mean-field model revealed a possibility of quasicrossing of
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energy levels belonging to different rotational bands of a nucleus at high
spin values.

Keywords: Multidimensional boundary value problems · Finite
elements method · Computational schemes · Hermite interpolation
polynomials · Collective models of atomic nucleus

1 Introduction

The finite elements method (FEM) is widely applied to solve elliptic boundary
value problems (BVPs). In this method, the domain of independent variables is
divided into finite elements. The solution is sought in the form of an expansion
in the basis of piecewise polynomial functions constructed in analytical form by
joining interpolation polynomials at the boundaries of adjacent finite elements.
This leads to a generalized algebraic problem with sparse matrices and saves
computer resources [1]. However, to solve the BVPs of collective atomic nuclear
models, Galerkin type methods (GTMs) (or Generalized Trefftz Method) are
conventionally applied, which use an appropriate basis defined throughout the
domain of independent variables. The method reduces the BVP to an algebraic
problem with non-sparse matrices, acceptable, e.g., in the quadrupole case [2–
11], but rather cumbersome in the quadrupole-octupole case [12] or the multipole
case [13].

Alternative FEM calculation schemes for solving the BVPs of collective
nuclear models were proposed and applied back in [14–16], but had no wide
implementation. FEM schemes have been developed in [17–19] that provide
an independent ground to solve the arising multidimensional problems [20].
In recent paper [19], new calculation schemes and symbolic-numeric high-order
FEM algorithms for solving multidimensional BVPs [20] were tested in bench-
mark calculations of the quadrupole spectrum EIn, quadrupole moments Q(I, n),
and the reduced probabilities of electric interband and intraband B(E2) transi-
tions in 190Os atomic nucleus and other isotopes of several nuclei. It was done in
the framework of the geometric quadrupole collective model (GCM) [10] without
mixed derivatives in the two-dimensional vibrational part of the five-dimensional
Hamiltonian in the representation of SO(3) group of angular momentum I in
the intrinsic frame. For this purpose, the 2DFEM program [18] was used imple-
mented for analytical form of BVP variable coefficients in computer algebra
systems (CASs) [19]. The results were in good agreement with the calculations
of Ref. [8], which used the algebraic version of GTM with five-dimensional har-
monic oscillator (5DHO) basis [4].

In the present paper, we report the extended GTM and FEM formulation of a
multidimensional BVP for collective models of atomic nuclei with mixed deriva-
tives in the vibrational part of the five-dimensional Hamiltonian in the angular
momentum representation in the intrinsic frame [15,16]. We perform and analyse
benchmark calculations of the lower part of the energy spectrum for the BVPs
for the model, exactly solvable in affine coordinates and the quadrupole collective
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model with tabulated variable coefficients given by the self-consistent relativistic
mean-field (RMF) model [7]. The calculations of the quadrupole spectrum EIn

of the 154Gd isotope and of the corresponding reduced electric interband and
intraband B(E2) transitions for the RMF-based model revealed a possibility of
quasi-crossing of energy levels belonging to rotational bands of a nucleus at high
spin values. For this purpose, an adapted version of the algorithm and 2DFEM
program from [19] implemented in CAS Mathematica [21] was used.

The paper is organised as follows. Section 2 formulates the d-dimensional
BVP and the scheme to solve it using GTM and FEM with Hermite interpolation
polynomials (HIPs) on rectangles. Section 3 presents the BVP formulation of the
atomic nucleus collective model with mixed derivatives in the vibrational part
of the five-dimensional Hamiltonian in the angular momentum representation
in the intrinsic reference frame. Sections 4 and 5 are devoted to the analysis of
benchmark calculations of the lower part of quadrupole spectrum of a BVP with
variable coefficients known in the analytical or tabular form. In Conclusion, the
results are discussed and the prospects are outlined.

All calculations were performed using Mathematica 12 on a PC with Intel
Core CPU 3.60GHz, memory 32 Gb, Windows 10 Pro.

2 Formulation of BVP and GTM and FEM Schemes

Consider a self-adjoint BVP for the elliptic differential equation

(T + V (x) − E)Φ(x) = 0, T = − 1
g0(x)

d∑

i,j=1

∂

∂xi
gij(x)

∂

∂xj
. (1)

For the principal part of Eq. (1), the condition of uniform ellipticity holds in
the bounded domain x = (x1, . . . , xd) ∈ Ω of the Euclidean space Rd, i.e., the
constants μ > 0, ν > 0 exist such that

μξ2 ≤
d∑

ij=1

gij(x)ξiξj ≤ νξ2, ξ2 =
d∑

i=1

ξ2i , ∀ξi ∈ R. (2)

The left-hand side of this inequality expresses the requirement of ellipticity,
while the right-hand side expresses the boundedness of the coefficients gij(x).
It is assumed that g0(x) > 0, gji(x) = gij(x) and V (x) are real-valued functions,
continuous with their generalized derivatives up to a given order in a bounded
polyhedral domain x = (x1, . . . , xd) ∈ Ω̄ = Ω ∪ ∂Ω ∈ Rd, with the boundary
S = ∂Ω, which ensures the existence of nontrivial solutions Φ(x), corresponding
to real-valued eigenvalues E and satisfying the Dirichlet of Neumann boundary
conditions [20].

The expansion of the sought solution Φh
m(x) from the Sobolev space Hκc+1≥1

2

(Ω̄) in the appropriate basis of functions Nl(x) on the domain Ω̄ in the Galerkin
type method, see, e.g., [3,4,9,10], has the form

Φh
m(x) =

LΩ∑

l=1

Nl(x)Φh
lm. (3)
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In FEM, the polyhedral domain Ω̄: Ω̄ = Ω̄h(x) =
⋃Q

q=1 Δq, Ω̄ ⊂ Rd

is divided into subdomains Δq, called finite elements. In each of them, local
basis functions ϕ̂κp′

rq (x), x ∈ Rd, Lagrange interpolation polynomials (LIPs)
or Hermite interpolation polynomials (HIPs) of the order p′, are introduced.
Here we use the multi-index notation: κ determines the derivative order and
direction, r is the local number of a node.

In this case, in expansion (3) we use the piecewise polynomial functions
(PPFs) Nl(x) ≡ Np′

l (x) ∈ Cκc

of the order p′ with continuous derivatives to a
given order constructed by joining the polynomials ϕ̂κp′

rq (x) on the finite elements
Δq ∈ Ω̄h(x)

Np′
l (x) ≡ Nκp′

s (x) =
Q⋃

q=1

{ϕ̂κp′
rq (x)|x ∈ Δq}. (4)

Here l is determined in terms of multi-indices κ = κ1, . . . , κd and r = r1, . . . , rd;
the node number s = (s1, . . . , sd) is related to the local number r of the same
node and the finite element number q. Usually, in FEM with HIPs, the piecewise
polynomial functions (PPFs) Nκp′

s (xs′) satisfy the conditions [20]

Nκp′
s (xs′) = δss′δκ0,

∂|κ′|

∂xκ′ N
κp′
s (x)

∣∣∣∣∣
x=xs′

= δss′δκκ′ ,
∂|κ′|

∂xκ′ =
∂κ′

1

∂x
κ′
1

1

· · · ∂κ′
d

∂x
κ′

d

d

.

A detailed description of the algorithm for generating multivariate HIPs
ϕ̂κp′

rq (x) on parallepipeds is given in [18,19]. The HIPs ϕ̂κp′
rq (x) of d variables are

calculated in the analytical form as a product of HIPs in each variable ϕκsp′
rsq (x̄s)

of the order p′,

ϕ̂κp′
rq (x) =

d∏

s=1

ϕκsp′
rsq (x̄s). (5)

ϕκsp′
rsq (x̄s) are calculated in advance analytically by means of recurrence relations

implemented in CAS [20,22].
Using expansion (3) with the basis functions Nl(x) of the GPT, or the PPFs

Np′
l (4) of FEM, we reduce the BVP (1) to the algebraic generalized eigenvalue

problem

(A − BEh
m)Φh

m = 0, (Φh
m)T BΦh

m = 1, (6)

with respect to unknowns Eh
m and Φh

m. The elements of symmetric matrices
of stiffness A = (All′) and mass B = (Bll′) with the dimension LΩ × LΩ are
given in [19], and they are calculated on the domain Ω̄ in the Galerkin type
method, or on a set Q of the finite elements Δq ∈ Ω̄h(x) in the FEM, by using
the appropriate Gaussian quadratures.

Problem (6) is solved by standard numerical methods, implemented as either
built-in procedures, e.g., Eigensystem[] procedure in Mathematica [21].
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The estimates of the approximate solution Eh
m, Φh

m(x) ∈ Hκc+1≥1
2 (Ωh) with

respect to the exact solution Em, Φm(x) ∈ H2
2(Ω), are as follows [1]:

∣∣Em − Eh
m

∣∣ ≤ c1h
2p′

,
∥∥Φm(x) − Φh

m(x)
∥∥
0

≤ c2h
p′+1, (7)

where h is the maximum size of a finite element Δq, p′ is the FEM scheme order,
c1 > 0 and c2 > 0 are the coefficients independent of h, and h ∼ L−p

Ω can be
used for GTM [23],

‖Φm(x)‖20 =
∫

Ω

g0(x)Φm(x)Φm(x) dx. (8)

3 BVP for Five-Dimensional Quadrupole Hamiltonian

The quadrupole collective model of atomic nuclei is formulated as a BVP for
a 5-dimensional anharmonic oscillator with purely discrete spectrum of energy
eigenvalues EIn = EI1 < EI2 < · · · of rotational-vibrational bands of atomic
nuclei with spin I in the form of an integer angular momentum. The formalism
becomes simpler when the collective variables αm at m = −2,−1, 0, 1, 2 for the
5-dimensional anharmonic oscillator in the laboratory frame are expressed in
terms of the collective variables am′ = am′(β, γ) in the intrinsic frame of the
body-fixed principal axis system by the relations [24]

αm =
∑

m′
D2∗

mm′(θi)am′ , (9)

a−2 = a2 =
β sin(γ)√

2
, a−1 = a1 = 0, a0 = β cos(γ),

where D2∗
mm′(θi) is the Wigner function of irreducible representation of the O(3)

group in the intrinsic frame (∗ denotes complex conjugate).
The five-dimensional quadrupole Hamiltonian in the intrinsic frame parame-

terized by two internal variables x1 = β, x2 = γ and three Euler angles xi = θi−2,
i = 3, 4, 5, i.e., x = (x1, . . . , x5) ∈ Ω̄5 = Ω5 ∪ ∂Ω5 ∈ R5, has the form [15,16]

Ĥ =
�
2

2
(T̂vib(x1, x2) + T̂rot(x)) + V (x1, x2). (10)

Here � is the Planck’s constant, V = V (x1, x2) is the potential energy, T̂vib =
T̂vib(x1, x2) is the vibrational kinetic energy, and T̂rot = T̂rot(x) is the rotational
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kinetic energy defined by the relations:

T̂vib(x1, x2) = − 1
g0(x1, x2)

2∑

i,j=1

∂

∂xi
gij(x1, x2)

∂

∂xj
,

T̂rot(x) =
Î21
J1

+
Î22
J2

+
Î23
J3

,

g0(x1, x2) = BBJβ4 sin(3γ) =
1
2
βB|J1J2J3|1/2,

g11(x1, x2) =
BJ

B
β4 sin(3γ)Bγγ =

βBγγ |J1J2J3|1/2

2B
, (11)

g22(x1, x2) =
BJ

B
β2 sin(3γ)Bββ =

Bββ |J1J2J3|1/2

2βB
,

g12(x1, x2) = g21(x1, x2) = −BJ

B
β3 sin(3γ)Bβγ = −Bβγ |J1J2J3|1/2

2B
.

Here B =
√

BββBγγ − B2
βγ is the square root of the determinant of the two-

dimensional matrix of vibrational function coefficients (i.e., the vibrational part
of the inertia tensor), Bββ ≡ Bββ(β, γ), Bγγ ≡ Bγγ(β, γ), and Bβγ ≡ Bβγ(β, γ);
BJ =

√
B1B2B3 is a square root of the determinant of the three-dimensional

diagonal matrix of rotational function coefficients B1 ≡ B1(β, γ), B2 ≡ B2(β, γ),
and B3 ≡ B3(β, γ). Î1, Î2, and Î3 are components of the angular momentum Î
in terms of the Euler angles of the intrinsic frame. The moments of inertia
Jk ≡ Jk(β, γ) of the intrinsic frame are denoted as

Jk(x1, x2) = Jk(β, γ) = 4Bk(β, γ)β2 sin2(γ − 2πk/3), k = 1, 2, 3. (12)

The Schrödinger equation with respect to eigenfunction

ΨnIM ≡ ΨnIM (β, γ, ϑi)

and the corresponding eigenvalues of energy EIn has the form

(Ĥ − EIn)ΨnIM = 0. (13)

The eigenfunction ΨnIM in the representation of the angular momentum I and
its projections K and M on the third axes of the intrinsic and laboratory frames
can be written as [24]

ΨnIM (β, γ, ϑi) =
I∑

K≥0, even

DI∗
MK(ϑi)ΦnIK(β, γ), (14)

where DI∗
MK(ϑi) are the normalized D-functions with the space parity π̂ = ±1

DI∗
MK(ϑi) =

√
2I + 1
8π2

(DI∗
MK(ϑi) + π̂(−1)IDI∗

M−K(ϑi))√
2(1 + δK0)

. (15)
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The operator of rotational energy T̂rot reads as [24]

T̂rot =
3∑

i=1

Î2i
Ji

= (Î2 − Î23 )
(

1
2J1

+
1

2J2

)
+

Î23
J3

+ (Î2+ + Î2−)
(

1
4J1

− 1
4J2

)
,

where the action of the operators Î2 = Î21 + Î22 + Î23 = (Î+Î− + Î−Î+)/2+ Î23 and
Î± = Î1 ± ıI2 is determined by the relations

Î2DI∗
MK(ϑi) = I(I + 1)DI∗

MK(ϑi),

Î3D
I∗
MK(ϑi) = KDI∗

MK(ϑi),

Î±DI∗
MK(ϑi) =

√
I(I + 1) − K(K ∓ 1)DI∗

MK−1(ϑi).

Functions ΨnIM obey Neumann or Dirichlet boundary conditions at the bound-
ary ∂Ω5 of domain Ω5, as well as orthogonality and normalization conditions

∫

Ω5

Ψ∗
nIMΨn′I′M ′g0(β, γ)dβdγ sin(ϑ2)dϑ1dϑ2dϑ3 = δnn′δII′δMM ′ . (16)

The unknown set of Imax internal components ΦnIK ≡ ΦnIK(β, γ), where K =
0, 2, . . . , I for even I, or K = 2, 4, . . . , (I − 1) for odd I, compose the vector
eigenfunction ΦnI corresponding to the eigenvalue EIn (in MeV) of the BVP for
a system of I/2 + 1 or (I − 1)/2 equations for even or odd I, respectively:

[
T̂vib + T I

KK +
2
�2

(V − EIn)
]

ΦnIK + T I
KK+2ΦnIK+2 + T I

KK−2ΦnIK−2 = 0,

T I
KK = (I(I + 1) − K2)

(
1

2J1
+

1
2J2

)
+

K2

J3
, (17)

T I
KK±2 =

(
1

4J1
− 1

4J2

)
CI

KK±2,

CI
KK−2 = (1 + δK2)1/2[(I + K)(I − K + 1)(I + K − 1)(I − K + 2)]1/2, (18)

CI
KK+2 = (1 + δK0)1/2[(I − K)(I + K + 1)(I − K − 1)(I + K + 2)]1/2,

where T̂vib and J1, J2, J3 are given in (11) and (12). The components ΦnIK are
subject to Neumann or Dirichlet boundary conditions at the boundary ∂Ω2 of
the domain Ω2 [15,16], and the orhtogonality and normalization conditions

∫ βmax

0

∫ π/3

0

g0(β, γ)dβdγ

Imax∑

K≥0,even

ΦnIK(β, γ)Φn′IK(β, γ) = δnn′ . (19)

4 5D Harmonic Oscillator Model in Affine Coordinates

To show the applicability of FEM schemes and the adapted 2DFEM program
implemented in Mathematica we present benchmark calculations of exact solv-
able model of the 5DHO with parameters Bββ = Bγγ = B0, Bβγ = Bγβ = 0,
B1 = B2 = B3 = B0, and J1, J2, J3 from (12), and potential V (β, γ) = (C2/2)β2,
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Table 1. The discrepancies δEI,n=1 = Enum
I,n=1 − EI,n=1 of the eigenvalues EIn=1 of

the 5DHO model in coordinates (β, γ) (left panel) and (b0, b2) (right panel) and Runge
coefficients (20) (Ru) by the FEM schemes with HIPs of the order p′ = 2, 3, 4, 5, and
the multiplicity κ′.

(p′, κ′) I h h/2 h/4 Ru

(2,0) 0 9.6(-5) 6.1(- 6) 3.8(- 7) 3.98

2 1.2(-4) 7.9(- 6) 5.3(- 7) 3.97

3 1.4(-4) 1.5(- 5) 6.8(- 6) 3.97

(3,0) 0 5.4(-6) 9.2(- 8) 1.5(- 9) 5.88

2 9.6(-6) 1.6(- 7) 2.6(- 9) 5.92

3 1.4(-5) 4.2(- 7) 1.9(- 7) 5.93

(3,1) 0 1.4(-5) 2.8(- 7) 4.7(- 9) 5.62

2 2.2(-5) 4.7(- 7) 8.3(- 9) 5.57

3 2.9(-5) 1.2(- 6) 5.9(- 7) 5.47

(4,0) 0 8.5(-7) 3.3(- 9) 1.3(-11) 8.01

2 1.2(-6) 7.1(- 9) 2.9(-11) 7.43

3 3.7(-6) 1.6(- 8) 2.1(- 9) 8.11

(4,1) 0 1.4(-6) 3.8(- 9) 1.4(-11) 8.47

2 2.1(-6) 8.6(- 9) 3.0(-11) 7.95

3 7.5(-6) 1.9(- 8) 2.5(- 9) 8.78

(5,0) 0 4.1(-9) 8.7(-12) 1.2(-14) 8.89

2 1.9(-8) 2.2(-11) -3.0(-13) 9.75

3 4.4(-8) 6.0(-11) 6.2(-12) 9.68

(5,1) 0 8.6(-9) 1.5(-11) -5.3(-15) 9.11

2 2.5(-8) 3.8(-11) 1.8(-13) 9.34

3 5.5(-8) 1.0(-10) 1.3(-11) 9.24

(5,2) 0 3.4(-8) 2.5(-11) -1.1(-13) 10.38

2 8.6(-8) 6.8(-11) 7.5(-14) 10.30

3 2.1(-7) 2.1(-10) 1.9(-11) 10.15

(p′, κ′) I h h/2 h/4 Ru

(2,0) 0 2.8(-3) 2.2(-4) 1.4(- 5) 3.68

2 5.6(-3) 4.0(-4) 2.6(- 5) 3.80

3 1.2(-2) 8.4(-4) 5.5(- 5) 3.87

(3,0) 0 3.1(-4) 8.0(-6) 1.3(- 7) 5.28

2 9.2(-4) 1.5(-5) 2.6(- 7) 5.92

3 2.8(-3) 4.4(-5) 7.6(- 7) 6.03

(3,1) 0 4.8(-4) 1.8(-5) 3.9(- 7) 4.68

2 1.2(-3) 3.3(-5) 7.4(- 7) 5.20

3 3.3(-3) 8.6(-5) 2.1(- 6) 5.27

(4,0) 0 2.7(-5) 1.4(-7) 6.0(-10) 7.64

2 8.2(-5) 3.7(-7) 1.6(- 9) 7.80

3 2.2(-4) 1.3(-6) 5.5(- 9) 7.44

(4,1) 0 4.7(-5) 1.9(-7) 6.8(-10) 7.92

2 1.5(-4) 5.5(-7) 1.8(- 9) 8.07

3 3.9(-4) 2.0(-6) 6.4(- 9) 7.58

(5,0) 0 4.3(-6) 5.2(-9) 7.0(-12) 9.66

2 9.9(-6) 1.6(-8) 1.7(-11) 9.28

3 3.2(-5) 6.2(-8) 7.1(-11) 9.01

(5,1) 0 4.6(-6) 6.9(-9) 1.1(-11) 9.37

2 1.1(-5) 2.0(-8) 3.0(-11) 9.09

3 3.7(-5) 7.5(-8) 1.2(-10) 8.95

(5,2) 0 2.0(-5) 2.6(-8) 1.8(-11) 9.62

2 4.0(-5) 8.1(-8) 5.1(-11) 8.96

3 9.7(-5) 3.1(-7) 2.2(-10) 8.29

g0(β, γ) = B
5/2
0 β4 sin(3γ), g11(β, γ) =

g0(β, γ)
B0

,

g22(β, γ) =
g0(β, γ)
B0β2

, g12(β, γ) = g21(β, γ) = 0.

In this case, the operator Tvib has no mixed partial derivatives and the spectrum
and eigenfunctions is known in an analytical form [10] as well as in internal
coordinates (a0, a2):

a0 = β cos(γ), a2 =
1√
2
β sin(γ),

g0(a0, a2) = 2B5/2
0 (3a2

0 − 2a2
2)a2, g11(a0, a2) =

g0(a0, a2)
B0

,

g22(a0, a2) =
g0(a0, a2)

2B0
, g12(a0, a2) = g21(a0, a2) = 0,

V (a0, a2) =
C2

2
(2a2

2 + a2
0),

J1 = B0
(
√
6a2 + 3a0)2

3
, J2 = B0

(
√
6a2 − 3a0)2

3
, J3 = 8B0a

2
2.
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Fig. 1. Nonrectangular region with grid of finite elements for the harmonic oscillator.
The Gaussian nodes are marked by circles

The operator Tvib has mixed partial derivatives in affine coordinates (b0, b2):

a0 = b0 +

√
2
3
b2, a2 = b2,

g0(b0, b2) = 2B5/2
0 b0b2(3b0 + 2

√
6b2), g11(b0, b2) =

4g0(b0, b2)
3B0

,

g22(b0, b2) =
g0(b0, b2)

2B0
, g12(b0, b2) = g21(b0, b2) = −g0(b0, b2)√

6B0

,

V (b0, b2) =
C2

6
(8b22 + 3b20 + 2

√
6b0b2),

J1 = B0
(2

√
6b2 + 3b0)2

3
, J2 = 3B0b

2
0, J3 = 8B0b

2
2.

The discrepancies δEI,n=1 = Enum
I,n=1 − EI,n=1 of the eigenvalues EIn=1 of

the 5DHO model in coordinates (β, γ) (left panel) and (b0, b2) (right panel) are
presented in Table 1. The calculations are performed at B0 = 1, C2 = 1, and
� = 1 on the grids Ωβ,γ = [0(hβ)7] ⊗ [0(hγ)π/3] with hβ = h, h/2, h/4 at h =
7/Ng and hγ = π/(3Ng) and Ωb0,b2 = ([0(h0)8]⊗ [0(h2)5]) with h0 = h, h/2, h/4,
h2 = 5h0/8 at h = 8/N0. Here Ng =20, 12, 8, and 8 and N0 =10, 7, 6, and 5
for the p′ =2, 3, 4, and 5, respectively. In grid Ωb0,b2 , the cells Δq for which
min(b0,b2)∈Δq

V (b0, b2) > 30 are dropped (see, for example, Fig. 1).
The Runge coefficients were calculated in the grids Ωβ,γ and Ωb0,b2

rh = log2

∣∣∣∣
(EIn)h − (EIn)h/2

(EIn)h/2 − (EIn)h/4

∣∣∣∣ , (20)
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Fig. 2. Isolines of g0(β, γ) and gij(β, γ) of 154Gd

where (EIn)h, (EIn)h/2, and (EIn)h/4 are the energies calculated by the program
2DFEM on the doubly condensed grids, gave estimates presented in Table 1
confirming the theoretical estimate (7) of the order of 2p′ ≈ 4, 6, 8, 10.

5 Benchmark Calculations of 154Gd in the RMF Model

In this case, the metric tensor coefficients g11, g12 = g21, g22 and g0, and the
potential energy V , (see, e.g., Figs. 2 and 3), were calculated using an appropriate
approximation of the input data, namely, the coefficients of the vibrational part
of the inertia tensor Bγγ , Bβγ , Bββ , the moments of inertia J1, J2, J3, and
the potential energy V on the grid Ωβ,γ . The data were calculated within the
framework of the RMF model [7,26,27] using the PC-F1 parameterization, where
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Fig. 3. Isolines of V (β, γ) for 154Gd counted from the minimum of V (β = 0.3875, γ = 0)
= −1270.6 MeV (left); the lower part of the calculated spectrum bands [7], labeled with
nuclear spin I and spatial parity π̂ = +, and the experimental data [25] (right)

at � = 1 the quantities B, BJ and Bk are related to w, r, and Bk from [7] as

w = B2 = BββBγγ − B2
βγ , r = B2

J = B1B2B3 =
J1J2J3

4β6 sin2(3γ)
,

Bk =
Jk(β, γ)

4β2 sin2(γ − 2πk/3)
, k = 1, 2, 3.

Note that when using the PC-F1 parameterization in the calculations of
154Gd, the values J1 J2 J3 were multiplied by the linear scale factor 1.45, i.e.,
Jk(q) = (1 + α)J IB

k (q) with α = 0.45, as was accepted in [7] and explained in
[5,28,29].

Table 2 presents the lower part of the 154Gd quadrupole spectrum EIn in
MeV, (see, e.g., Fig. 3), calculated on the grid Ωβ,γ using:

– the Galerkin type method with the set of LΩ ≈ 50 basis functions of 5DHO
[9] and the interpolation of the input data with steps hβ = 0.025, hγ = 10
degrees by linear S1B and cubic S3B splines in the Gaussian nodes;

– the FEM and S1F, S3F, the same but using a twice condensed FEM grid in
the Gaussian nodes of 2DFEM with the HIPs of the third order.

The FEM calculations were carried out on the grid chosen above with an
absolute accuracy of the eigenenergy EIn not worse than 0.02 MeV. An agree-
ment of FEM and GTM calculations up to three or two significant digits is seen
due to using a twice condensed FEM grid, and selective agreement with experi-
mental data due to using the linear scaling factor α instead of unknown nonlinear
one [11] and other restrictions inherent in the RMF model parametrization [7].

Figure 4 shows the lower part of the 154Gd spectrum in the diagonal and
nondiagonal approximation in comparison with experimental results for each of
A, B, E, C, G, and I bands used in the experimental data tables [25]:
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Table 2. The spectrum EIn (in MeV) of 154Gd counted from minimum of the
potential energy V and from the ground state energy E0,n=1 calculated on the grids
Ωβ,γ using the linear (S1) and cubic (S3) spline interpolations of the BVP coef-
ficients: (S1B) and (S3B)—GTM with the basis functions (3) on the grid Ω =
{0(0.025)0.6}⊗{0(π/18)π/3}; (S1F) and (S3F)—FEM with (4) and HIPs of the 3rd
order on a finite-element grid Ω = {0(0.06)0.6}⊗{0(π/30)π/3}; Exp – the experimental
data from [25]

I n EIn EIn − E0,n=1

S1B S3B S1F S3F S1B S3B S1F S3F Exp [25]

0 1 1.98 2.02 1.90 1.92 0.00 0.00 0.00 0.00 0.00
0 2 2.62 2.63 2.54 2.53 0.64 0.62 0.64 0.62 0.6806673 (18)
0 3 3.51 3.51 3.42 3.41 1.53 1.49 1.53 1.49 1.182091 (4)
2 1 2.07 2.11 1.99 2.01 0.09 0.09 0.09 0.09 0.1230709 (9)
2 2 2.73 2.74 2.65 2.64 0.75 0.72 0.75 0.73 0.8154917 (15)
2 3 3.37 3.40 3.03 3.13 1.39 1.38 1.13 1.21 0.9962568 (16)
3 1 3.50 3.55 3.13 3.23 1.53 1.53 1.23 1.31 1.1278018 (2)
4 1 2.27 2.31 2.19 2.21 0.29 0.29 0.29 0.29 0.3709998 (11)
4 2 2.95 2.96 2.87 2.87 0.97 0.95 0.98 0.95 1.047592 (3)
4 3 3.65 3.69 3.25 3.35 1.67 1.67 1.35 1.43 1.263778 (4)
5 1 3.83 3.87 3.38 3.49 1.85 1.85 1.49 1.57 1.432588 (6)
6 1 2.57 2.61 2.48 2.50 0.59 0.59 0.59 0.59 0.717662 (4)
6 2 3.29 3.30 3.21 3.20 1.31 1.28 1.31 1.29 1.365878 (8)
6 3 4.03 4.06 3.54 3.64 2.05 2.04 1.65 1.73 1.60655 (8)

Fig. 4. (a) Energy spectrum of 154Gd. For each state of the bands A, B, E, C, G,
and I, three short bars correspond to the diagonal approximation (left), nondiagonal
one (middle), and experiment [25] (right). (b) Calculated spectrum of 154Gd plotted
vs spin I in the diagonal approximation. The crossing points are marked by vertical
lines
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Table 3. Correspondence between the notation A, B, E, C, G, I of bands in diagonal
approximation of the rotational coupling, the values of nuclear spin I and its leading
projection K on the third axis in the intrinsic frame, and the number n of calculated
states

band K I 0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

A 0 n 1 1 1 1 1 1 1 1 1 1 1 1

B 0 n 2 2 2 2 2 2 2 2 2 2 3 3

C 2 n 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 2 1 2

E 0 n 3 4 4 4 4 4 4 4 4 5 5 5

G 2 n 5 2 5 2 5 2 5 2 5 2 5 3 6 3 6 3 6 3 6 3 6

I 4 n 6 3 6 3 6 3 6 3 6 2 5 2 5 2 4 2 4 2 4

Fig. 5. Integrals NK ≡ NI
Kn from Eq. (21) for each of A, B, E, C, G, and I bands at

the values of K = 0, 2, 4, 6, 8 labelling each of the curves

– Band(A) is the Kπ = 0+ ground state band;
– Band(B): the first excited Kπ = 0+ (β-vibrational) band;
– Band(E), Band(J), Band(K): the second, third and forth excited Kπ = 0+

bands;
– Band(C): the Kπ = 2+ (γ-vibrational) band;
– Band(G): the second excited Kπ = 2+ (βγ-vibrational) band;
– Band(I): the Kπ = 4+ band.

Table 3 shows the correspondence between the notation A, B, E, C, G, and I
of the bands and the values of spin I and its leading projection K on the third
axis in the intrinsic frame, and the number n of calculated states. The numbers
n of the energy levels belonging to B and C, and E, G, and I bands that have
crossing points shown in Fig. 4b are given in boldface.
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Table 4. The reduced B(E2) transition probabilities (in W.u.) in (nd) and (diag) –
nondiagonal and diagonal approximations, and (exp) – experimental data [25]

B(E2) nd diag exp bands

21 → 01 160 159 157 AA
41 → 21 244 243 245
61 → 41 294 293 285
81 → 61 341 339 312
101 → 81 387 385 360
22 → 02 194 193 97.0 BB
02 → 21 68.5 69.2 52.0 BA
22 → 41 45.0 45.5 19.6
23 → 41 0.460 0.248 1.72 CA
23 → 01 3.89 4.14 5.70

Fig. 6. Calculated intraband and interband B(E2; Ini → (I−2)nf ) transitions between
A, B and C bands in Weisskopf units (W.u.) in the nondiagonal approximation for
154Gd

In Fig. 5 we present the partial probability density integrals of components
ΦnIK(β, γ) of wave function ΨnI(β, γ, θi) for each of A, B, E, C, G, and I bands

N I
Kn =

∫ βmax

0

∫ π/3

0

g0(β, γ)ΦnIK(β, γ)ΦnIK(β, γ)dβdγ, (21)

I∑

K≥0,even

N I
Kn = 1.

The sum of partial integrals satisfies the normalization condition (16) or (19).
As can be seen from the Figure, the probability density integrals of the leading
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Fig. 7. Isolines of the leading components ΦnIK = ±0.01, ±0.02, . . . of the 154Gd wave
functions for n = 2, 3 and I = 16, 18, 20 in diagonal approximation

component for A, B, and E bands at K = 0, for C and G bands at K = 2,
and for I band at K = 4 exceed the other ones by more than 10 times, which
confirms the classification of bands accepted for experimental data [25].

From Fig. 4b, an exact crossing of energy levels is seen in the diagonal approx-
imation, for example, of G and I bands, E and I bands, and B and C bands in
the vicinity of I = 13, I = 17, and I = 18, respectively. However, when switching
on the rotational coupling, i.e., in the nondiagonal approximation, these exact
crossings transform into quasi-crossings.

Figure 6 illustrates the calculations of the reduced probabilities of intraband
and interband B(E2; Ini → (I−2)nf ) transitions [19] between A, B, and C bands
in the Weisskopf units (W.u.) in the nondiagonal approximation for 154Gd using
the formulas

BW.u.(Eλ) =
e2

4π

(
3

λ + 3

)2

R2λ
0 , (22)

where R0 = r0 A1/3, r0 = 1.2 fm; and BW.u.(Eλ) = 0.05940A4/3 in e2fm4 units
at λ = 2. In the vicinity of the quasi-crossing point at I = 18, the values of inter-
band transitions between B and C bands are approximately 200W.u., in compar-
ison with small values (< 1 W.u.) beyond the vicinity. However, the intraband
transitions in the B and C bands in the vicinity of the quasi-crossing point are
approximately by two times smaller than beyond the vicinity. Table 4 presents
the intraband and interband B(E2) values calculated in diagonal (diag) and non-
diagonal (nd) approximations, in comparison with the known experimental data
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Fig. 8. Isolines of the leading components ΦnIK = ±0.01, ±0.02, . . . of the 154Gd wave
functions for n = 2, 3 and I = 16, 18, 20 in diagonal and nondiagonal approximations

(exp) for 154Gd isotope [25]. The leading values of diagonal approximation do
also confirm the experimental classification, while a selected agreement with the
experimental data is due to the above restriction of the model parametrization.

Figures 7 and 8 show isolines of the leading components ΦnIK(β, γ) for I =
16, 18, and 20: at n = 2 and 3 in diagonal and in nondiagonal approximations,
respectively, that exceed 0.01 by absolute value at K = 0 and K = 2.
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From Fig. 7, the shape of the components is seen to be practically unchanged
at I = 16, 18, and 20 in the diagonal approximation. In the nondiagonal approx-
imation (see Fig. 8), at I = 16 and I = 20, the leading components practically
coincide with those in the diagonal approximation, and at I = 18, the compo-
nents are their linear combinations, belonging to both bands.

6 Conclusions

To solve elliptic multidimensional BVPs with variable coefficients of derivatives,
high-accuracy FEM schemes have been developed with piecewise polynomial
basis functions constructed by joining Hermite interpolation polynomials and
their derivatives at the boundaries of neighboring finite elements in the form
of parallelepipeds, which will be used in the development of software tools in
CAS Mathematica for solving multidimensional BVPs with variable coefficients
of partial derivatives specified in both analytical and tabular form [19].

The new version of the algorithm is implemented in the form of the program
2DFEM to solve the BVP arising in the collective models of atomic nuclei with
mixed derivatives in the vibrational part of the five-dimensional Hamiltonian.
The efficiency of the developed algorithms and programs is demonstrated by
benchmark calculations of the lower part of the quadrupole rotational-vibrational
spectrum of the 5DHO model in affine coordinates presented in Table 1, which
confirm the order p′ = 2, 3, 4, 5 of the implemented FEM schemes, and the self-
consistent RMF model [7] of 154Gd isotope presented in Table 2, which agree
with the GTM calculations and demonstrate high performance of the programs
even when using a conventional personal computer.

Note that using the nonrectangular region with a finite element mesh on
Gaussian nodes tested in Sect. 4 for the harmonic oscillator 1 offers potential sav-
ing of computer resources and preserves the accuracy for the case of coefficients
of BVP given in tabulated form, whereas the RMF calculations of tabulated
coefficients require huge MPI computer resources and the spline interpolation
does not ensure required accuracy.

The calculations of the quadrupole spectrum EIn of 154Gd isotope and cor-
responding the reduced probabilities of electric interband and intraband B(E2)
transitions for the model based on RMF revealed a possibility of quasi-crossing
of energy levels belonging to different bands at some values of the nucleus spin.
This allows identifying the existence of such quasi-crossing in the band spectra
of other nuclei at high spins [28] in the course of further studies.

The developed approach and programs provide a base for adapting multidi-
mensional FEM programs to solving the bound state problems of the rotational-
vibrational spectrum, which are applicable in various generalizations of the
geometric quadrupole collective model [8,9], the self-consistent RMF model
[13,26,27], and the quadrupole-octupole six-dimensional collective model of
atomic nuclei with several local minima of the potential energy hypersurface,
such that GTM calculations becomes rather cumbersome [12].

Note that the latter two-dimensional BVP has been solved using finite dif-
ference method (FDM) [30] and FEM [17] that was only part of the BVP in the
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6D domain, where the potential energy and components of the metric tensor are
given by 2 × 106 table values [12,31]. However, the FDM approach [30] did not
obtain further generalization on the above multidimensional domain, while the
elaborated FEM and PI-type Gaussian quadrature rules [32] have no restriction
for further solving such BVP in the 6D domain. This obstacle has been one line
of motivations in development and implementation of the above approach.

Acknowledgments. The authors thank Profs. R. Nazdmitdinov and T.M. Shneid-
man for collaboration. The work was partially supported by the Ministry of Science
and Higher Education of the Russian Federation, grant No. 075-10-2020-117. P.O.H.
gratefully acknowledges financial support from DGAPA-PAIIT (IN116824). P.W. is
grateful to the Continuous Basic Scientific Research Project (No. WDJC-2019-13), the
Young Talent Development Foundation (Grant No. YC212212000101), and the Leading
Innovation Project under Grant Nos. LC192209000701, LC202309000201.

References

1. Bathe, K.J.: Finite Element Procedures in Engineering Analysis. Prentice-Hall Inc.,
Englewood Cliffs (1982)

2. Hess, P.O., Seiwert, M., Maruhn, J., Greiner, W.: General collective model and its
application to 23892U. Z. Phys. A Atoms Nuclei 296, 147–163 (1980)

3. Libert, J., Quentin, P.: A general solution of the Bohr collective Hamiltonian. Z.
Phys. A Atoms Nuclei 306, 315–322 (1982)

4. Troltenier, D., Maruhn, J.A., Hess, P.O.: Numerical application of the geometric
collective model. In: Langanke, K., Maruhn, J.A., Konin, S.E. (eds.) Computational
Nuclear Physics 1, pp. 105–128. Springer, Heidelberg (1991). https://doi.org/10.
1007/978-3-642-76356-4_6

5. Libert, J., Girod, M., Delaroche, J.-P.L.: Microscopic descriptions of superdeformed
bands with the Gogny force: configuration mixing calculations in the A∼190 mass
region. Phys. Rev. C 60, 054301-1–054301-26 (1999)

6. Delaroche, J.-P., Girod, M., Gouttea, H., Libert, J.: Structure properties of even-
even actinides at normal and super deformed shapes analysed using the Gogny
force. Nucl. Phys. A 771, 103–168 (2006)

7. Niksic, T., Li, Z.P., Vretenar, B.D., Prochniak, L., Meng, J., Ring, P.: Beyond the
relativistic mean-field approximation. III. Collective Hamiltonian in five dimen-
sions. Phys. Rev. C 79, 034303-1–034303-19 (2009)

8. Ermamatov, M.J., Hess, P.O.: Microscopically derived potential energy surfaces
from mostly structural considerations. Ann. Phys. 37, 125–158 (2016)

9. Mardyban, E.V., Kolganova, E.A., Shneidman, T.M., Jolos, R.V.: Evolution of the
phenomenologically determined collective potential along the chain of Zr isotopes.
Phys. Rev. C 105, 024321-1–024321-10 (2022)

10. Deveikis, A., et al.: Symbolic-numeric algorithm for calculations in geometric
collective model of atomic nuclei. In: Boulier, F., England, M., Sadykov, T.M.,
Vorozhtsov, E.V. (eds.) CASC 2022. LNCS, vol. 13366, pp. 103–123. Springer,
Cham (2022). https://doi.org/10.1007/978-3-031-14788-3_7

11. Muir, D.: Microscopic modelling of collective quadrupole excitations of nuclei.
Ph.D. thesis, University of York, UK (2021). https://etheses.whiterose.ac.uk/
29823/

https://doi.org/10.1007/978-3-642-76356-4_6
https://doi.org/10.1007/978-3-642-76356-4_6
https://doi.org/10.1007/978-3-031-14788-3_7
https://etheses.whiterose.ac.uk/29823/
https://etheses.whiterose.ac.uk/29823/


Symbolic-Numeric Solving BVPs: Collective Models of Atomic Nuclei 81

12. Dobrowolski, A., Mazurek, K., Góźdź, A.: Rotational bands in the quadrupole-
octupole collective model. Phys. Rev. C 97, 024321-1–024321-11 (2018)

13. Deng, X.-Q., Zhou, S.-G.: Ground state and fission properties of even-a uranium
isotopes from multidimensional-constrained relativistic mean field model. Int. J.
Mod. Phys. 32(10), 234004-1–234004-20 (2023)

14. Kumar, K., Baranger, M.: Complete numerical solution of Bohr’s collective Hamil-
tonian. Nucl. Phys. A 92, 608–652 (1967)

15. Troltenier, D., Maruhn, J.A., Greiner, W., Hess, P.O.: A general numerical solu-
tion of collective quadrupole surface motion applied to microscopically calculated
potential energy surfaces. Z. Phys. A Hadrons Nuclei 343, 25–34 (1992)

16. Troltenier, D.: Ph.D. thesis, J.W. Goethe-Universität, Frankfnrt/Main (1992).
(Unpublished)

17. Gusev, A.A., et al.: Finite element method for solving the collective nuclear model
with tetrahedral symmetry. Acta Phys. Pol. B Proc. Suppl. 12, 589–594 (2019)

18. Gusev, A.A., et al.: Hermite interpolation polynomials on parallelepipeds and FEM
applications. Math. Comput. Sci. 17, 1–15 (2023). Article number: 18

19. Batgerel, B., et al.: Schemes of finite element method for solving multidimensional
boundary value problems. J. Math. Sci. 279, 738–755 (2024)

20. Vandandoo, U., Zhanlav, T., Chuluunbaatar, O., Gusev, A., Vinitsky, S., Chuluun-
baatar, G.: High-Order Finite Difference and Finite-Element Methods for Solving
Some Partial Differential Equations. Springer, Cham (2024)

21. https://www.wolfram.com/mathematica/
22. Gusev, A.A., et al.: Symbolic-numerical solution of boundary-value problems with

self-adjoint second-order differential equation using the finite element method
with interpolation hermite polynomials. In: Gerdt, V.P., Koepf, W., Seiler, W.M.,
Vorozhtsov, E.V. (eds.) CASC 2014. LNCS, vol. 8660, pp. 138–154. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-10515-4_11

23. Gusev, A.A., Hai, L.L., Chuluunbaatar, O., Vinitsky, S.I., Derbov, V.L.: Solution of
boundary-value problems using Kantorovich method. In: EPJ Web of Conferences,
vol. 108, pp. 02026-1–02026-6 (2016)

24. Greiner, W., Maruhn, J.A.: Nuclear Models. Springer, Berlin (1995)
25. http://www.nndc.bnl.gov/ensdf/
26. Zhao, P.W., Li, Z.P., Yao, J.M., Meng, J.: New parametrization for the nuclear

covariant energy density functional with a point-coupling interaction. Phys. Rev.
C 82, 054319-1–054319-14 (2010)

27. Nikšic, T., Paar, N., Vretenar, D., Ring, P.: DIRHB-a relativistic self-consistent
mean-field framework for atomic nuclei. Comput. Phys. Commun. 185, 1808–1821
(2014)

28. Tanaka, T., Nazmitdinov, R.G., Iwasawa, K.: Nonaxial octupole deformations in
light N = Z nuclei at high spins. Phys. Rev. C 63, 034309-1–034309-111 (2001)

29. Nazmitdinov, R.G., Almehed, D., Dönau, F.: Dynamical moment of inertia and
quadrupole vibrations in rotating nuclei. Phys. Rev. C 65, 041307(R)-1–041307(R)-
4 (2002)

30. Dobrowolski, A., Mazurek, K., Dudek, J.: Tetrahedral symmetry in nuclei: New
predictions based on the collective model. Int. J. Mod. Phys. E 20, 500–506 (2011)

31. Dobrowolski, A., Mazurek, K., Góźdź, A.: Consistent quadrupole-octupole collec-
tive model. Phys. Rev. C 94, 0543220-1–0543220-20 (2016)

32. Chuluunbaatar, G., Chuluunbaatar, O., Gusev, A.A., Vinitsky, S.I.: PI-type fully
symmetric quadrature rules on the 3-, ..., 6-simplexes. Comput. Math. Appl. 124,
89–97 (2022)

https://www.wolfram.com/mathematica/
https://doi.org/10.1007/978-3-319-10515-4_11
http://www.nndc.bnl.gov/ensdf/

	Symbolic-Numeric Solving Boundary Value Problems: Collective Models of Atomic Nuclei
	1 Introduction
	2 Formulation of BVP and GTM and FEM Schemes
	3 BVP for Five-Dimensional Quadrupole Hamiltonian
	4 5D Harmonic Oscillator Model in Affine Coordinates
	5 Benchmark Calculations of 154Gd in the RMF Model 
	6 Conclusions
	References


