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ABSTRACT 

We propose a continuous analogy of Newton’s method with inner iteration for solving a system of linear algebraic 
equations. Implementation of inner iterations is carried out in two ways. The former is to fix the number of inner itera- 
tions in advance. The latter is to use the inexact Newton method for solution of the linear system of equations that arises 
at each stage of outer iterations. We give some new choices of iteration parameter and of forcing term, that ensure the 
convergence of iterations. The performance and efficiency of the proposed iteration is illustrated by numerical examples 
that represent a wide range of typical systems. 
 
Keywords: Continuous Analogy of Newton’s Method; Solving the System of Linear Algebraic Equations;  

Convergence; Choice of Iteration Parameter 

1. Introduction 

We consider a system of linear algebraic equations 

.Ax f                     (1) 

For a numerical solving of Equation (1) we consider 
an iterative process: 

   1 0 1n n
n n n nBv r x x v n            (2) 

Of course, the quality of iterative process Equation (2) 
essentially depends on the choices of matrix B and of 
iteration parameter 0n    

Let H be a linear space of m-dimensional vectors. We 
will denote the Euclidean vector norm in H by  , as 
well as the corresponding norm of matrices. 

Theorem 1.1. Let  Then a necessary 
and sufficient condition for the 
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Proof. From Equation (2) we obtain 

1n n nr r Av     

Hence we have 
2 2 2

1 [ 2(n n n n n nr r Av Av r  )]n              (3) 

The assertion follows from (3). 
The interval nI  we call τ-region of convergence of 

the iteration method (2). Thus we have to choose n  
from this region. Moreover, it is desirable that the n  to 
be optimal in some sense. Further we will use well- 
known assertions to study the convergence of (2). 

Theorem 1.2. [1]. Let S be an m × m matrix. Then the 
successive approximations 

   1 ,  0,1,2,n nx Sx z n             (4) 

converge for each mz R  and each  0 mx R  if and 
only if 

  1S                    (5) 

where  S  is a spectral radius of the matrix S. 
It is easy to show that the iteration process (2) can be 

rewritten as (4) with iteration matrix 
1  andnS E B A z B f  1

n
           (6) 

Here E is an m × m unit matrix.  
Theorem 1.3. [2]. The iteration process (2) with pa-

rameter n  given by 

 
2

n n
n

n

Av r

Av
  

                (7) 

converges to x  for any  0x H . The following a *Corresponding author. 
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posteriori estimate holds true: 

1 2 0 0 ,n n nr q q q r             (8) 

where 

 2

2 2

,
1 1,  0,1,i i

i

i i

Av r
q i

Av r
    , 1.n  

We call the nonzero value of n
  defined by (10) the 

optimal one in the sense that it yields the minimum value 
of functional 1nr  . 

2. The Continuous Analogy of Newton’s 
Method 

The continuous analogy of Newton’s method is also ap-
plicable to (1) and leads to [2] 

n nAv r                  (9a) 

   1 , 0,1,n n
n nx x v n           (9b) 

It should be mentioned that not only the convergence, 
but also the convergence rate of iteration (9) depends on 
the choice of the parameter n . We have the following: 

Lemma 2.1. The sufficient condition for nr  to be 
decreasing is 0 2, 0,1,n n   

1
  

Lemma 2.2. Suppose that n 2   for all . 
Then the iteration process (2) gives two-sided approxi-
mations to 

0n 

x , i.e., 

         1 2 1 2 0 ifm m 0x x x x x x         x  

or 

         0 2 2 1 1 0if .m mx x x x x x x        

.x

 

The proofs are immediately followed from the equalities 

        1
1 1 ,  1n n

n n n nr r x x x   
        

At each step of iterations one can solve the system (9a) 
by means of some iterative methods. We call this inner 
iteration. We consider the following decomposition of 
A : 

1 2 ,A A A   

in which the matrix 1A  is simple and invertible. For 
finding the correction  we use inner iteration nv

   1 1
1 2 ,  0,  0,1,e e

n n n nA v r A v v e          (10) 

Theorem 2.3. Suppose that 

1
2 11,  C C A A               (11) 

Then the inner iteration (10) converges and holds the 
following estimate 

 
1

1
1 , 0,1,

1

k

k
n n n

C
v v A r k

C


  


     (12) 

Proof. The linear system (10) can be rewritten as 

  1 .nE C A v rn                 (13) 

By assumption (11) there exists   1
E C

  and the 
following series representation is valid 

   1

0

1
j

.j

j

E C C






               (14) 

Then from (13) it follows that 

 1
1

0

1
j j

n n
j

v A C r
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          (15) 

In a similar way, from (10) we have 

   1
1

0

1
k

jk j
n n

j

v A C
 


  

              (16) 

From (15) and (16) immediately follows (14). 
The estimate (12) means that the inner iteration (10) 

converges under condition (11). In real computations we 
have to terminate the inner iteration before convergence. 
We will restrict the number of inner iteration by k. Then 
the whole iteration process looks like: 

   1 1
1 2 ,  0, 0,1, , ,l l

n n n nA v r A v v l       k    (17a) 

     1 ,  0,1n n k
n nx x v n            (17b) 

We now formulate the convergence theorems for these 
methods. 

Theorem 2.4. Suppose that the condition (11) is satis-
fied and the iteration parameter n  is given by 

  
  2

,k
n n

n
k

n

Av r

Av
                   (18) 

Then the iteration process (17) converges for any 
0,1,k    and for arbitrary chosen starting  0x . 

Proof. We rewrite the iteration process (17) as (2) 
with 

 
1

1
0

1
k

j j

j

B C
 

 
 
   

A    

By Theorem 1.3, such a process converges if we 
choose n  by (7), in which the  is replaced by . n

Obviously the number k may be different for each n. 
From (12) it is evident, that it suffices to restrict the 
number of inner iteration only by k = 0 or 1, when the 
residual norm 

v  k
nv

nr  is small enough.  
Theorem 2.5. Suppose that the condition (11) is satis- 

fied. Then the iteration process (17) with  0,1n   
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converges for any  and for arbitrary chosen 
starting 

0,1,k  
 0x . The following inequality holds: 

1n nr r  ,  0 1n n  

 nr 

1

        (19) 

Proof. From (17) we get 

 
1 .k

n n n nr r Av    

Using (11) and (16) we rewrite the last expression as 

    1 11 1
k k

n n nr E C      1

0 n

     (20) 

If   , then from (20) we obtain 

 1

1 ,  1 1
k

n n n n nr r C   
     

1

 

According to (11), we have 0 n  . The conver-
gence of (17) follows from (19). 

Corollary 2.6. Let the condition (11) fulfill, and n  is 
given by [3] 

1
1 0min ;1 ,  1,2, ,  0.1.n

n n
n

r
n

r
  



    
  

   

Then the iteration (17) converges. 
Remark 2.7. In proofs of Theorems 2.3-2.5 the condi- 

tion (11) is essentially used. In particular, it may be ful- 
filled if the matrix A of the system (1) is a strongly di- 
agonally dominant and A1 is chosen as 

 1 11diag , , .mmA a a   

Theorem 2.8. Suppose that the condition (11) is satis-
fied and that the eigenvalues of matrix  are 
real. Then the spectral radius of iteration matrices of the 
iterations (17) is decreasing with respect to k when 

1
1 2D A A

1n  . 
Proof. The iterations (17) can be rewritten as (4) with 

iteration matrices 

    1 11 1
k k

k n nS E       D      (21) 

We denote by  the eigenvalues of D. If  D 1n  , 
then 

  1 11
k k

kS D
     

Therefore, we have 

    1k

kS D 


   

By virtue of (11) we obtain   1C C   . Since 
the spectrums of matrices C and D coincide, we also 
have 

  1D    

By definition we get 

      
    

   

1

1

max max

max max

max ,

k

k k

k

k

k

S S D

D D

D S

  

 

 





 



 

 

which is valid for all 1, 2,k    Thus we have 

       1 1 0 1.k kS S S S          (22) 

Obviously, from (21) it is clear that k  is a continu-
ous function of n

S
 . Therefore, (22) is valid for 1n 



. 
The iteration (17) with a few small k represents a spe-

cial interest from a computational view point. Moreover, 
it is worth to stay at (17) with k = 0 in detail. The itera-
tion (17) with k = 0 and 1 11 mm  leads to 
the well-known Jacobi iteration with relaxation parame-
ter n

 ,diag ,A a a

  . It is also known that [1] the Jacobi method 
with optimal relaxation parameter 

min max

2

2opt
 


 

          (23) 

converges under the assumption that the Jacobi matrix 
 has real eigenvalues and spectral radius less 

than one. Here by min

1
1 2B A A 

  and max  denoted are the 
smallest and largest eigenvalues of B. Fortunately, we 
can prove the convergence of Jacobi method with rela- 
tion parameter under a mild condition than the above 
mentioned assumption. Namely, we have. 

Corollary 2.9. Suppose that the condition (11) is sat-
isfied. Then the Jacobi method with relaxation parame-
ter: 

  
 

  
 

0

20

, ,n n n n
n

n n

Av r E C r r

Av E C r



  


      (24) 

converges for any starting. 
From (24) it is clear that the relaxation parameter 

changes depending on n. Therefore the iteration (17) with 
k = 0, and  1 11diag , , mmA a a   and with n  given 
by (24) we call nonstationary Jacobi method with opti-
mal relaxation parameters. The iteration (17) with k = 0 
and with a lower triangular matrix 1A  leads to Gauss- 
Seidel with one parameter. 

The formula (18) can be rewritten as: 

 1

21

,
,

n n

n

n

AB r r

AB r





            (25) 

where   11 1
k kAB E C
 1      From this it is clear that 

1n   k  as . This means that whole iteration (17) 
with the parameter given by (18) converges quadratically 
in the limit.  

Since 1,n   as , then τ-region of conver-
gence for iterations (17) leads to 

k 
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The number of outer iteration n depends on the num-
ber of inner iteration k, i.e., . In general, n is a 
decreasing function of k, i.e.,  

kn n
n n1k k

On the other hand, the iteration (17) can be considered 
as a defect correction iteration [1] 

 

     1 1 1 1
approx approx, ,n n

n nx x A r B A          (26) 

where  defined by 1
approxA

  1 1 2
approx 1 1

k kA A E C C C          (27) 

1
approxA  is a reasonable approximation to 1A  since 

11
11 1

approx 0
1

k
A C

A A
C


   


       (28) 

for large k. The choice of parameter n  given by (25) 
allows us to decrease the residual norm from iteration to 
iteration. By this reason we call (26) as a minimal defect 
(or residual) correction iteration.  

From (26) it follows that 

 1
1 approxn nr E AA r 
    n        (29) 

From (29) and   1
1 2 1 2 1,A A A E C A C A A     , it 

follows that 

    11
approx 1 1

k k
n n nE AA E C        1 

.

 

Therefore we have 

      111
approx 1 1

kk

n n nE AA C    
         

This means that the spectral radius of matrix  
 depends on the number of inner iteration 

k, i.e., . Therefore we have  as 
, because 

1
approxnE AA 
 

k 
 k   0k 

1n   as k  and from (11) 

  1C C     

Above we considered the cases, where the inner itera- 
tion number k is fixed at each outer iteration. It is desir- 
able that the termination criterion for the inner iteration 
must be chosen carefully to preserve the superlinear 
convergence rate of the outer iteration. We stay at this 
problem in more detail. When 1  , the iteration (17) is, 
indeed, inexact Newton (IN) method for (1). Therefore, 
iteration (17) with parameter n  given by formula (18) 
we call inexact damped Newton method (IDN). Accord- 
ing to IN method [4,5], we must choose  0,1n   and 
continue the inner iteration until satisfy the condition 

   
1 ,  ,  1, 2,e ee

n n n n n nr r r Av r n        (30) 

Thus (30) is a stopping criterion for inner iteration 
(17a). There are several choices of forcing term n  in 
inexact Newton method [4-6]. For examples, in [6] two 
choices of n  were proposed: 

1 1

1
1

1 , when

1
, when 1,

n n n n

n n n
n n
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     (31) 

with 

1 ,n
n

n

r

r
   

and 

1 ,  0,1,n n n              (32) 

Since we have formula (18) for n , one can use the 
second choice (14) with no additional calculations. We  

can also use formula for 2
1 1

n

nr
 

 
 [7]. There- 

fore, according to (32), we get 

1 1

1 1

n
n

n

r

r


 
 

 
             (33) 

3. Numerical Results 

The quality of the proposed iteration was checked up for 
numerous examples. We express the matrix A as 

,L UA D A A    

where  11diag , , mmD a a  , and AL, AU are lower and 
upper triangular matrices, respectively. All examples are 
calculated with an accuracy 710nAx f   . 

The numerical calculations are performed on Acer, 
CPU 1.8 GHz, 1 GB RAM, and using a software MAT-
LAB R2007a for the Windows XP system. 

Example 1. We consider a system of Equation (1) 
with matrix A and f given by 

2 1 0 5

1 4 1 1 0

,  6 ,

1 4 1 1 0

1 2 0 5
m m m

A f



 
   
  
 

 
   

   

 
 
 
 
 
 
 
 

 

which was solved by the proposed iteration method (17), 
(18). For comparison, it was solved by Jacobi and suc-
cessive over relaxation (SOR) iterations with a parameter 

opt . 
Example 2. 
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1 1161 0 1254 0 1397 0 1490 1 5471

0 1582 1 1675 0 1768 0 1871 1 6471
 

0 1968 0 2071 1 2168 0 2271 1 7471

0 2368 0 2471 0 2568 1 2671 1 8471

A
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Example 3. 

0 60 0 16 0 12 0 07 0 03 1 0

0 16 0 74 0 31 0 19 0 07 0 1

0 12 0 31 0 66 0 31 0 12 0 1

0 07 0 19 0 31 0 74 0 16 0 1

0 03 0 07 0 12 0 16 0 96 1 0

A
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where 1h N 1  and 

2 1 1

1 2 1 1

, .
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1 2 1
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Such a system arises in discretization of two dimen- 
sional Poisson equation [8]: 

    , 1,  , 0 , 1 ,  0 on .u x y D x y x y u D         

The exact value of 1 2 1 2u    is [9] 

 
       4 2 2

, 0

1 1
,

2 2

116

π 1 2 1 2 1 2 1 2

0.0736713

u

 

     





 
 
 




    







 (34) 

The properties of matrix for examples 1-4 are shown 
in Table 1. From this we see that the considered exam- 
ples represent a wide range of typical systems. 

The numbers of Jacobi and SOR iterations versus the 
dimension m of example 1 are presented in Table 2. 

Here k is the number of inner iteration in (17) (18). From 
this example we see that the proposed iteration (17), (18) 
can compete with SOR iteration with optimal relaxation 
parameter and seem to be superior to the Jacobi iteration. 
The behavior of the iteration parameter n  given by (18) 
at m = 10 is explained in Table 3. From this we see that 
the iteration parameter n  tends to 1 as k increases. 

The number n of outer iteration (17), (18) with fixed 
number k of inner iterations, and CPU time for examples 
2 and 3 are shown in Table 4. From this we see that they 
are in example 2 considerable less than example 3. This 
explained by reason that matrix of this system has a 
strictly diagonally dominant. The number n of outer it- 
eration, the total number k of inner iteration when forcing 
terms n  was chosen by formulas (32) and (33), and 
CPU time are displayed in Table 5. Here it is observed 
similar situations as in the previous case. 

Monotonic convergence of the calculated values  
 1 2,1 2hu  to exact value (34) versus the dimension N 

of the example 4 is shown in Table 6. The number n of 
outer iteration with fixed and unfixed number k of inner 
iteration and CPU time versus the dimension N of the 
example 4 are presented in Tables 7 and 8, respec- 
tively. 

 
Table 1. The properties of matrix for examples 1-4. 

Matrix 
Example 

Symmetric Diagonally dominant Sparse 

1 + + + 

2 – + – 

3 + – – 

4 + – + 

 
Table 2. The numbers of Jacobi and SOR iterations versus 
the dimension  of example 1. Here  is the number of 
inner iteration in (17), (18). 

m k

Iter. A1 = D Jacobi method A1 = AL + D SOR

m/k 0   1  2  3  0  1  2  3 ωopt

10 16  10  9  6 30 12  7  5  4 12 

100 18   9  8  5 32 14  7  5  4 17 

1000 17   9  8  5 34 14  7  5  4 18 

 
Table 3. The behavior of the iteration parameter τn given 
by (18) for example 1. Here n and k are the numbers of 
outer and inner iterations in (17), respectively. 

n/k 1 2 3 

1 1.031939 0.994921 1.000760 

2 0.998348 1.001490 0.998875 

3 0.988243 0.999830 1.000464 

4 0.989728 1.011261 0.999378 

5 1.014757 1.004592  

6 1.024398   

7 1.053859   
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Table 4. The number n of outer iteration with fixed number 
k of inner iteration, and CPU time CT for examples 2 and 
3. 

Example 2 Example 3 
A1  

k = 0 k = 1 k = 2 k = 0 k = 1 k = 2

D 
n 

CT 
39 

1.5e–3 
17 

9.2e–4 
13 

8.6e–4 
196 

8.6e–4 
89 

6.9e–3
56 

3.1e–3

AL + D 
n 

CT 
14 

6.7e–3 
5 

4.9e–4 
13 

4.5e–4 
92 

3.3e–4 
58 

2.7e–3
41 

2.3e–3

SOR 
n 

CT 
8 

1.3e–3 
35 

5.1e–3 

 
Table 5. The number n of outer iteration, the total number 
k of inner iteration when forcing terms ηn was chosen by 
formulas (32) and (33), and CPU time CT. 

A1  Example 2 Example 3 
CT 1.61e–3 1.07e–2 

(33) 
n (k) 4 (12) 5 (188) 
CT 1.72e–3 1.08e–2 

D 
(32) 

n (k) 5(11) 5 (135) 
CT 1.10e–3 7.53e–3 

(33) 
n (k) 4 (5) 5 (94) 
CT 1.11e–3 7.42e–3 

AL + D 
(32) 

n (k) 4 (4) 4 (92) 

4. Conclusions 

Our method with inner iteration is quadratically conver- 
gent and therefore it can compete with other iterations 
such as SOR with an optimal relaxation parameter for a 
strictly diagonally dominant system. Moreover, our method 
is also applicable not only for the system with a strictly 
diagonal dominant matrix, but also for system, the matrix 
of which is not Hermitian and positive definite. 

This work was partially sponsored by foundation for 
science and technology of Ministry of Education, Culture, 
and Science (Mongolia). 

 
Table 6. A comparison of the calculated values u(1/2, 1/2) 
and an exact value (34) versus the dimension N of the ex-
ample 4. 

N + 1 u(1/2, 1/2) 

4 0.070312 

8 0.072783 

16 0.073446 

32 0.073615 

Exact 0.073671 

 
Table 7. The number n of outer iteration with fixed number k of inner iteration, and CPU time CT versus the dimension N of 
the example 4. 

A1 = D A1 = AL + D Tridiagonal 
N + 1  

k = 0 k = 1 k = 2 k = 0 k = 1 k = 2 k = 0 k = 1 k = 2 
SOR 

4 
n 

CT 
64 

2.5e–3 
20 

1.3e–3 
21 

1.4e–3
32 

1.3e–3
15 

8.8e–4
11 

8.1e–4
39 

1.2e–3
16 

8.3e–4
12 

7.6e–4 
11 

1.3e–3 

8 
n 

CT 
267 

1.4e–2 
60 

9.6e–3 
87 

1.2e–3
124 

6.7e–3
60 

3.9e–3
40 

4.2e–3
149 

7.9e–3
40 

2.8e–3
47 

3.6e–3 
23 

6.1e–3 

16 
n 

CT 
1010 

5.9e–1 
159 

1.4e–1 
328 

3.0e–1
476 

2.8e–1
214 

1.7e–1
137 

1.3e–1
546 

2.9e–1
99 

1.0e–1
183 

1.8e–1 
46 

1.0e–1 

 
Table 8. The number n of outer iteration with unfixed number k of inner iteration, the itration parameter τn, and CPU time 
CT versus the dimension N of the example 4. 

A1 = D A1 = AL + D Tridiagonal 
N + 1 n 

k τn CT k τn CT k τn CT 

4 
1 
2 
3 

9 
4 
18 

1.0304 
1.0087 
1.0013 

3.58e–3
5 
3 

10 

1.0205
0.9845
1.0006

2.42e–3
5 
2 
8 

1.0267 
1.0207 
1.0037 

2.22e–3 

8 
1 
2 
3 

44 
35 
70 

1.0235 
1.0108 
1.0030 

3.37e–3
23 
14 
34 

1.0202
1.0118
1.0032

1.67e–3
23 
18 
35 

1.0213 
1.0102 
1.0034 

1.77e–2 

16 
1 
2 
3 

211 
185 
195 

1.0122 
1.0072 
1.0167 

6.07e–0
106 
89 
99 

1.0120
1.0075
1.0158

3.07e–0
106 
93 
98 

1.0122 
1.0072 
1.0165 

3.10e–0 
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