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Abstract—Necessary and sufficient conditions for derivative-free two- and three-point iterative meth-
ods to have the optimal convergence order are obtained. These conditions can be effectively used not
only for determining the order of convergence of iterative methods but also for designing new methods.
Furthermore, the use of the method of generating functions makes it possible to construct a wide class
of optimal derivative-free two- and three-point methods that includes many well-known methods as
particular cases. An analytical formula for the optimal choice of the parameter of iterations improving
the order of convergence is derived.
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1. INTRODUCTION
Presently, there are a lot of iterative methods for solving nonlinear equations and systems of equations

(see [1–6]). Among them, there are derivative-free methods, which are helpful if the derivative of the
function is difficult or impossible to calculate. The simplest of them are the well-known secant method
and Steffensen’s method, which have a low order of convergence. Nowadays, we need new optimal meth-
ods with the eighth order of convergence because their index of efficiency is . Such methods
have applications in experimental mathematics, number theory, high energy physics, nonlinear simula-
tion, finite element methods used in CAD, 3D graphics, statistics, security, and cryptography (see [7–9]).
In the last decade, various derivative-free two- and three-point methods having good convergence prop-
erties have been developed (e.g., see [1–33]). The construction of iterative methods with a high order of
convergence became possible due to the rapid progress in computing, computer arithmetic, and symbolic
computations. In this paper, we propose some families of derivative-free methods based on the method of
generating functions proposed in [5] and on the optimal choice of parameters of iterations [6]. A novel
direct approach to proving the order of convergence of such methods that does not use symbolic compu-
tations is proposed.

The paper is organized as follows. In Section 2, we consider derivative-free two-point iterative methods
and obtain necessary and sufficient conditions for these methods to have the fourth order of convergence.
The choice of generating functions for the iteration parameter  is discussed. In particular, optimal finite
difference versions of the well-known Kung–Traub, King, and Maheshwari methods are obtained. In
Section 3, we consider derivative-free three-point iterative methods and obtain necessary and sufficient
conditions for these methods to have the eighth order of convergence. A wide class of optimal three-point
iterative methods that includes many known methods as its special cases is proposed. The local conver-
gence of these methods is proved without using symbolic computations. Section 4 presents the results of
numerical computations confirming the theoretical results concerning the order of convergence, and
these results are compared with the results obtained using other methods.
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2. DERIVATIVE-FREE TWO-POINT ITERATIVE METHODS
Consider the derivative-free two-point iterative method

(2.1a)

(2.1b)

where

(2.2)

 is a free nonzero parameter, and  is a parameter to be determined. Here the function 
depends not only on  but also on the parameter ; by the definition of derivative, we have

(2.3)
To determine the order of convergence of the iterative method (2.1a), (2.1b), define
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Taylor expansions of the functions  and  give
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By substituting (2.13) into (2.12), we obtain

(2.14)

Now (2.14) implies that

(2.15)

By substituting (2.15) into (2.13), we obtain

(2.16)

On the other hand, the Taylor expansion of  gives

(2.17)

Due to (2.1a), we have

(2.18)

The elimination of the term  from (12) and (19) yields

(2.19)

By substituting  given by (2.16) into (2.19) and using the expansion

(2.20)

we obtain

(2.21)

Using (2.21) in (2.17), we have

(2.22)

Now we can prove the following result.

Theorem 1. Let , and let the initial approximation  be sufficiently close to the simple root
 of the function . Then, the iterative method (2.1) has the fourth order of convergence if and only if

the parameter  in (2.1) satisfies the condition

(2.23)

Proof. Suppose that  in (2.1) satisfies condition (2.23). Then

and  due to (2.8). Therefore, due to (2.22) we have

(2.24)
i.e., the order of convergence of (2.1) is four under condition (2.23). Conversely, let method (2.1) have the
fourth order of convergence, i.e., let (2.24) hold. Then, (2.24) and (2.22) imply that 
and ; i.e.,  satisfies condition (2.23).
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The iterative method (2.4) uses , and  at each iteration step; therefore, it is optimal in
the sense of the Kung–Traub conjecture. The second step in (2.1) can be rewritten as

(2.25)

where

(2.26)

If , then , and formulas (2.23) and (2.26) take the form

respectively. Thus, the iterative method (2.1) has the form

(2.27)

therefore, it is an optimal fourth-order two-point iterative method [6]. As in [5], the generation function
method can be applied for constructing new iterative methods (2.1). Certainly, there are various versions
of the generation functions  satisfying the conditions
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In this paper, we consider the simple form
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King method.
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3. Let , , and  in (2.29). Then, we obtain

The iterative method (2.1) with  has the form

(2.32)

As , (2.32) gives the Maheshwari method. For this reason, we call (2.32) the finite difference ver-
sion of the Maheshwari method.

Note that an attempt to construct derivative-free versions of the Kung and Traub methods was made
in [30]. However, the method obtained in [30] differs from our extensions (2.30) and (2.31).

Thus, using the generating function method, we obtain a wide class of optimal derivative-free two-
point methods (2.1) with  specified by (2.29). This class has five parameters . The
coefficients in (2.29) can depend on the iteration index . Note that many derivative-free two-point meth-
ods were constructed in [1, 2, 7, 14–18]. The class of iterative methods (2.1) proposed in this paper, which
is specified by formula (2.29) with the parameter , includes some well-known iterative methods as spe-
cial cases. Some of them are listed in Table 1. Only  in Ren’s method [16, 34] does not belong to the
class  given by (2.29). Thus, the proposed family (2.1) with the parameter specified by (2.29) is a
considerable generalization of the methods described in [2, 7, 9, 11–18, 20–23, 26, 27].
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convergence can be accelerated by a proper variation of the free parameter  at each iteration step.
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Table 1. Iterative methods

Methods Special cases of H
determined in (30)

1. Methods described in [18, 20] and 
 [2],  in [21]

 

2. Methods described in [10, 15, 12] and 

 [2], CTM in [26]
  

3.  [2, 34]   

4. Methods described in [7]   
 

5. Chebyshev–Halley family [9]
  

 

6. Kung–Traub’smethod and method 
in [11]

   

7. Potra–Ptak’s method [13, 22]   

8. King-type method [23]
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If we replace , then we obtain a two-point iterative method with memory (

and  are given). Then  and

(2.43)

Here,  is the Newton cubic interpolation polynomial specified by the node
points , , , and  [9], [23]. It is clear that the order  of methods (2.43) is at least six.

Note that sometimes asymmetric derivative-free iterations that require additional computations were
used. For example, in [33] the optimal iterative families of the King type were proposed:
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Remove the asymmetry in (2.47) and consider the iterative method

(2.49)

where  as before is determined by formula (2.48). The following result is easy to prove.

Theorem 2. Let  have a simple root  If the initial approximation  is sufficiently close
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aim is to find  such that the order of convergence of iterations (3.1) is eight. To this end, we use the Tay-
lor expansion of :

(3.2)

This implies that

(3.3)

under the condition

(3.4)

Now we approximate  in (3.4) using , , , and  such that
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Using the Taylor expansion of  about the point , we obtain the system of equations

(3.6)

where

(3.7)

System (3.6) has the unique solution

(3.8)

Substitute (3.8) into (3.5) to obtain

(3.9)

where

According to (3.2) and (3.7), we have
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Using (3.10)–(3.12) in (3.8), we conclude that

(3.13)

Substitute (3.9) into (3.4) and neglect the small term  to find that
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where  and  are determined by formula (3.13). The expressions in parentheses in (3.14) can be
rewritten in terms of the second divided differences as
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By substituting (3.13), (3.15), and (3.16) into (3.14), we obtain another representation of :

(3.17)

here .
Now, we are going to find an asymptotic formula for  defined by (3.14). To this end, we use the for-

mulas

(3.18)

(3.19)
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Similarly, (3.13) can be rewritten in terms  as (3.18) and (3.19). Taking this into account and using
(3.18) and (3.19), we can rewrite (3.14) as
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Then

Substitute this expression into (3.21) and use the known expansion (2.20) to obtain

or

(3.30)

As , formula (3.30) reduces to the form

(3.31)

which describes the asymptotic behavior of  in three-point iterative methods (see [6]).
Theorem 3. Let all assumptions of Theorem 1 be fulfilled. Then, the three-point iterative methods (3.1) have

the eighth order of convergence if and only if the iteration parameters  and  are specified by formulas (3.23)
and (3.30), respectively.

Proof. Let  and  be defined by formulas (3.23) and (3.30), respectively. Then, by Theorem 1 the
first two steps in (3.1) determine an optimal fourth-order method, i.e., . The value 
specified by formula (3.30) satisfies condition (3.4). Therefore, we have (3.3). Conversely, assume that the
order of convergence of (3.1) is eight. Then (3.1) and (3.3) imply that  and formula (3.4)
is valid. Therefore, by Theorem 1 formula (3.23) is valid for certain constants  and . Using approxima-
tion (3.9) in (3.4), we obtain (3.14) accurate to . Due to (3.23), we obtain from (3.14) the asymp-
totic formula (3.30).

Assume that in (3.1)

(3.32)

(3.33)

Then, we obtain a family of optimal derivative-free three-point iterative methods because  and  deter-
mined by (2.23) and (3.33) satisfy conditions (3.23) and (3.30) with the constants

respectively. Therefore, the generation function method described in [5] makes it possible to construct the
family of optimal three-point iterations.

(

   + + = − θ + − β − θ   + γφ + γφ + τ θ + τ θ τ + γφ   

× − θ + − θ + − θ − + θ

= − θ + − + θ + − − −

 − − β − θ − + + γφ 

v

v

�

�

2 21 2 3

2 3
1 1 2 2 3 1 2

2
1 1 2 1 2 3 1 2

2 3
1 1

1ˆ ˆ1 2 2
(1 )(1 )(1 ) 1

( ( ) ( ) ( ) )

ˆ ˆ( 2 ) 2 ( )

1ˆ2 ( (
1

k
k k k k

k k k k k k k k

k k k k k

k k k k

k k
k

A A A d d

a b a b a c c

a b a a d b a d b a

a d c c − θ + .v
4

2 1
ˆ2 ) ) ( ( ))k k k kc d O f x

 α = + θ − − + θ + − + − β − − − θ + γφ 

+ + − θ + θ − − + θ + θ + θ +v v

�

2 2 3
1 1 2 1 1 2 1 2 3

2 2 3 3 3 4
1 2 1 1 1 1 2 1 1 1 1

1ˆ ˆ ˆ1 ( 2 ) (2 ( ) 2 ( ))
1

ˆ ˆ( ( 2 ) ) 2 ( 2 ) 2 ( ( ))

k k k k k k k
k

k k k k k k k k k k

a b a a d d b a a d b a

c c c d a a b a a d a c a O f x

( )   = + θ + − − − θ + + − + − β −  + γφ  

− − − − + θ + + − θ +

�

2 2 3 2
1 1 1 2 1 1 1 2 1

3 4
2 3 1 1 2 1 1 2 1

1ˆ ˆ ˆ1 ( ) 2 ( 2 ( ) 2
1

ˆ ˆ( ) 2 ( 2 )) ( ( 2 ) ) ( ( ))

k k k k k
k

k k k k k k

a a b a a d a d b b a d

b a a b a a d c c c d O f xv

  α = + θ + β + θ + γ + β − − θ + + θ + .  + γφ + γφ   
v

� �

�

2 3 4
2

ˆ1ˆ ˆ ˆ ˆ1 (1 2 ) ( ( ))
1 (1 )

k
k k k k k k k k k k k

k k

dd d d d O f x

γ → 0

α = + θ + β + θ + γ + β − θ + + θ + ,v
� �

�

2 3 41 2 ( 1) ( 2 4) (1 4 ) ( ( ))k k k k k k kO f x

αk

τk αk

τk αk

= 4( ) ( ( ))k kf z O f x αk

= 4( ) ( ( ))k kf z O f x
γ� β�

4( ( ))kO f x

+ + θ + ωθτ = θ = , + + ≠ , , , , ω ∈ ,
+ θ + θ

2

2

ˆ( )( ) 0k k k
k k

k k

c d c dH c d b c d b R
c d b

 α = θ + θ + β − θ + + θ . + γφ + γφ 
v

�

2 31 2ˆ ˆ( ) (1 2 )
1 1k k k k k k k k

k k

H d d

τk αk

( ) + ωω − −β = − + , γ = − + ,�

�

2

2 2
( )ˆ ˆ

k k
b db d d d bcd d

c c c c c
COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS  Vol. 59  No. 6  2019



FAMILIES OF OPTIMAL DERIVATIVE-FREE 875

Table 2. Nonlinear functions

Functions Root

1. , [9]

2. ,

3.  [7, 32]

4. , [9]

+ −= + +
2( cos 1)

1( ) sin log( sin 1)x x xf x e x x x x =* 0x

− += − + + −
22 ( 5 4)

2( ) log( 2 2) sin( 1)x xf x x x e x =* 1x

+ < ,= − − ≥ ,
3

( 1) if 0
( )

2 ( 1) if 0
x x x

f x
x x x

=* 0x
=* 1x
= −* 1x

= −2
4( ) 4f x x = ±* 2x
Now consider the three-point iterative method

(3.34)

Here the function  is taken from any optimal derivative-free fourth-order method and 
is the third divided difference. Theorem 2 implies the following result.

Theorem 4. Let all assumptions of Theorem 1 be fulfilled. Then, the order of convergence of the iterative
method (3.34) is eight.

Proof. Since  is a fourth-order iteration,  can be rewritten as

By Theorem 1, we have . This implies the Taylor expansion (3.23) for .
By comparing (3.1) with (3.34), we obtain

(3.35)

It is easy to verify that the parameter  defined by formula (3.35) satisfies condition (3.30). Then, The-
orem 3 implies that the order of convergence of (3.34) is eight 8. 

Remark 1. The order of convergence of the three-point iterative methods proposed in [12, 22–24]
immediately follows from Theorem 4, which is an extension of the theorems in [12, 22–24].

Note that all existing optimal derivative-free methods can be unambiguously written in form (3.1).

It is easy to verify that the parameters  and  in these methods have the same asymptotics (3.23) and
(3.30) with specific constants  and . Thus, the convergence of all existing optimal derivative-free meth-
ods can be proved using the sufficient convergence conditions (3.23) and (3.30) without symbolic com-
putations. Furthermore, the application of these sufficient convergence conditions makes it possible to
construct new optimal iterative methods [29]. It is seen from Table 1 that the parameter  in all optimal
three-point methods listed in it is obtained using the generating functions  determined by (3.32);
the only exception is the method proposed in [16]. It is seen from (3.32) and (3.34) that the function 
can contain free parameters. This implies that the iterative methods (3.34) form a wide class of optimal
derivative-free three-point methods. This class includes many well-known methods as special cases (see
[4–6, 9, 12]). As in the preceding section, we can vary  at each iteration step using the information

+

η = + γ , = − , = ψ , , η ,
,η

= − .
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f zx z
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ψ4 , , , η[ ]k k k kf z y x
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Table 3. Two-point iterative methods

Methods k COC

Numerical results for the smooth function  with 

(2.1) 4 0.4180e–33 3.99

King-type [23] 5 0.5272e–96 4.00

Potra–Ptak’s [13, 22] 5 0.9744e–80 3.99

P1 [21] 5 0.1887e–65 4.00

P2 [21] 5 0.1022e–95 4.00

Zheng’s [12] 4 0.1655e–35 4.00

(2.31) 5 0.1416e–95 4.00

(2.32) 5 0.3838e–82 3.99

Steffensen’s 9 0.8745e–58 2.00

Numerical results for the smooth function  with 

(2.1) 4 0.1673e–104 4.00

King-type [23] 5 0.8607e–112 4.00

Potra–Ptak’s [13, 22] 5 0.4066e–70 4.00

P1 [21] 5 0.1325e–62 4.00

P2 [21] 5 0.5680e–88 4.00

Zheng’s [12] 4 0.4934e–58 3.99

(2.31) 5 0.6144e–109 4.00

(2.32) 5 0.6129e–73 4.00

Steffensen’s 8 0.4282e–30 2.00

τk −* kx x

1( )f x =0 1x

= , = − , = − , ω =
+ γϕ

1ˆ1 0
1k

k
c d d b

= , = − , = , ω =
+ γϕ

1ˆ1 0
1k

k
c d d b

= , = = , ω =
ˆ

1 0
2
kdc d b

= , = = ω =1 0c b d

= , = − , = ω =
+ γϕ

11 0
1 k

c d b

= , = − , = ω =ˆ1 0kc d d b

= = , = − , ω =1 2 0c b d

= , = ω = − , =1 1 0c d b

+ = −
φ1

( )
( )

k
k k

k

f xx x
x

2( )f x = .0 0 5x

= , = − , = − , ω =
+ γϕ

1ˆ1 0
1k

k
c d d b

= , = − , = , ω =
+ γϕ

1ˆ1 0
1k

k
c d d b

= , = = , ω =
ˆ

1 0
2
kdc d b

= , = = ω =1 0c b d

= , = − , = ω =
+ γϕ

11 0
1 k

c d b

= , = − , = ω =ˆ1 0kc d d b

= = , = − , ω =1 2 0c b d

= , = ω = − , =1 1 0c d b

+ = −
φ1

( )
( )

k
k k

k

f xx x
x

obtained at the preceding and the current steps. This enables us to increase the order of convergence with-
out using additional computations. More precisely, we can obtain three-point iterative methods with
memory (  and  are given). Then,  and

(3.36)

0x γ0 η = + γ0 0 0 0( )x f x

+

γ = − , η = + γ , = , ,

= − , = ψ , , η ,
φ , γ

= − .
, + − , , + − − , , ,η

4

4

1

1 ( ) 1 2
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( ) ( )
( )

( )
[ ] ( ) [ ] ( )( ) [ ]

k k k k k
k

k
k k k k k k

k k

k
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x f x k …
N x

f xy x z x y
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f zx z
f z y z y f z y x z y z x f z y x
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Table 4. Three-point iterative methods

Methods k COC
choice of parameters

Numerical results for the smooth function  with 

(3.34) 3 0.1710e–38 8.38

(3.34) 3 0.3900e–57 7.94

(3.34) 3 0.4900e–44 7.99

Lotfi’s [22] 3 0.4362e–43 7.99

King-type [23] 3 0.1024e–54 7.98

Zheng’s [12] 3 0.5610e–62 7.97

Sharma’s [14] 3 0.9068e–48 8.00

Numerical results for the smooth function  with 

(3.34) 3 0.3321e–33 7.96

(3.34) 3 0.1543e–44 8.07

(3.34) 3 0.4989e–36 7.98

Lotfi’s [22] 3 0.2769e–35 7.99

King-type [23] 3 0.5302e–44 8.00

Zheng’s [12] 3 0.6281e–64 7.97

Sharma’s [14] 3 0.7441e–40 8.02

τ = θ( )k kH
−* kx x

1( )f x =0 1x

= , = β − , = ω = , β =1 2 0 ( 2)c d b

= = , = − , ω =1 2 0c b d

= , = ω = − , =1 1 0c d b

= , = = , ω =
�

1 0
2
kdc d b

− β= ω = , = β − − , = , β =
+ γϕ

�

21 1 ( 2)
1k

k
c d d b

= , = − , = ω =ˆ1 0kc d d b

= , = − , = ω =
+ γϕ

11 0
1 k

c d b

2( )f x = .0 0 5x

= , = β − , = ω = , β =1 2 0 ( 2)c d b

= = , = − , ω =1 2 0c b d

= , = ω = − , =1 1 0c d b

= , = = , ω =
�

1 0
2
kdc d b

− β= ω = , = β − − , = , β =
+ γϕ

�

21 1 ( 2)
1k

k
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= , = − , = ω =ˆ1 0kc d d b
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+ γϕ

11 0
1 k

c d b
Here  the fourth degree interpolation Newton polynomial specified
by the node points , , , , . As in [9], it is easy to prove that the order  of convergence of
method (3.36) is at least 12.

4. NUMERICAL RESULTS

In this section, we describe the results of numerical computations for comparing the effectiveness of
different methods. The computations were performed in Maple. To ensure high accuracy and avoid losing
significant digits, the computations were performed with 300 significant digits. The computations were
performed for smooth and nonsmooth functions (see Table 2) with . To check the convergence
of Newtons, the computational order of convergence (COC) was calculated by the formula

− − − −= , , , , η ,4 4 1 1 1 1( ) ( )k k k k kN t N t x z y x

kx −1kz −1ky −η 1k −1kx R

γ = − .0 01

−

− −

− −
≈ ,

− / −
1

1 2

ln(| *|/| *|)
ln(| *| | *|)

k k

k k

x x x x
p

x x x x
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Table 5. Numerical results for the nonsmooth function . Three-point iterative methods

Methods k COC

(3.34) 4 0.7235e–30 2.00

(3.34) 4 0.7186e–30 2.00

(3.34) 4 0.7222e–30 2.00

Lotfi’s [22] 4 0.7221e–30 2.00

King-type [23] 4 0.7185e–30 2.00

Zheng’s [12] 4 0.7167e–30 2.00

Sharma’s [14] 4 0.7205e–30 2.00

(3.34) 4 0.2191e–236 7.99

(3.34) 3 0.8113e–39 7.77

(3.34) 3 0.8754e–32 7.60

Lotfi’s [22] 3 0.2144e–31 7.60

King-type [23] 3 0.2249e–37 7.76

Zheng’s [12] 3 0.5377e–47 7.86

Sharma’s [14] 3 0.4975e–34 7.67

(3.34) 4 0.4791e–102 7.99

(3.34) 4 0.2067e–141 7.99

(3.34) 4 0.9351e–112 7.99

Lotfi’s [22] 4 0.5302e–110 7.99

King-type [23] 4 0.2101e–135 7.99

Zheng’s [12] 4 0.8976e–178 7.99

Sharma’s [14] 4 0.2099e–121 7.99

3( )f x

τ = θ( )k kH −* kx x

= . , =0 0 1 * 0x x

= , = β − , = ω = , β =1 2 0 ( 2)c d b

= = , = − , ω =1 2 0c b d

= , = ω = − , =1 1 0c d b
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�
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2
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+ γϕ

�

21 1 ( 2)
1k

k
c d d b

= , = − , = ω =ˆ1 0kc d d b

= , = − , = ω =
+ γϕ

11 0
1 k

c d b

= , =0 5 * 1x x

= , = β − , = ω = , β =1 2 0 ( 2)c d b

= = , = − , ω =1 2 0c b d
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= , = = , ω =
�

1 0
2
kdc d b

− β= ω = , = β − − , = , β =
+ γϕ

�

21 1 ( 2)
1k

k
c d d b

= , = − , = ω =ˆ1 0kc d d b

= , = − , = ω =
+ γϕ

11 0
1 k

c d b
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= = , = − , ω =1 2 0c b d

= , = ω = − , =1 1 0c d b

= , = = , ω =
�

1 0
2
kdc d b

− β= ω = , = β − − , = , β =
+ γϕ

�

21 1 ( 2)
1k

k
c d d b

= , = − , = ω =ˆ1 0kc d d b

= , = − , = ω =
+ γϕ

11 0
1 k

c d b
where , , and  are three successive approximations. The iterative process is stopped when
.

Table 2 presents the example taken from [9]. The third example with the nonsmooth function (see [7,
14, 32]) is often used for checking the validity of derivative-free iterative methods. Tables 3–6 show the
number of iteration steps , the absolute errors , and COC for the methods with . The
numerical results confirm the theoretical conclusion about the order of convergence. It is seen from Table
6 that the high order methods work well not only for sufficiently smooth functions but also for nonsmooth
ones. Note that the derivative of the nonlinear function  has a discontinuity at the point ; for

kx −1kx −2kx
−− < 30| *| 10kx x

( )k −| *|kx x γ = − .0 01

3( )f x =* 0x
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Table 6. Three-point iterative methods

Methods k COC
choice of parameters

Numerical results for the nonsmooth function  with 
(3.34) 2 0.1365e–35 7.70

(3.34) 2 0.3071e–40 7.79

(3.34) 2 0.8144e–37 7.72

Lotfi’s [22] 2 0.1228e–36 7.72

King-type [23] 2 0.3717e–40 7.80

Zheng’s [12] 2 0.1675e–44 7.84

Sharma’s [14] 2 0.2114e–38 7.75

Steffensen’s 6 0.5556e–45 2.00

τ = θ( )k kH
−* kx x

4( )f x =0 3x

= , = β − , = ω = , β =1 2 0 ( 2)c d b

= = , = − , ω =1 2 0c b d

= , = ω = − , =1 1 0c d b

= , = = , ω =
�

1 0
2
kdc d b

− β= ω = , = β − − , = , β =
+ γϕ

�

21 1 ( 2)
1k

k
c d d b

= , = − , = ω =ˆ1 0kc d d b

= , = − , = ω =
+ γϕ

11 0
1 k

c d b

+ = −
φ1

( )
( )

k
k k

k

f xx x
x

this reason, the COC = 2 in this case for all the methods discussed in this paper (see the first part of Table 5
and [7]). The proposed methods (3.34) can be successfully used in the computations that require high
accuracy.

5. CONCLUSIONS
The necessary and sufficient convergence conditions for two- and three-point iterative methods

obtained in [6] are extended for the case of derivative-free methods. The latter methods can be effectively
used not only for determining the order of convergence but also for constructing new methods. Based on
the generating function method, wide classes of optimal methods that include many known methods as
special cases are proposed.
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