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Abstract

A FORTRAN 77 program is presented which calculates energy values, reaction matrix and corresponding radial wave functions in a coupled-
channel approximation of the hyperspherical adiabatic approach. In this approach, a multi-dimensional Schrödinger equation is reduced to a
system of the coupled second-order ordinary differential equations on the finite interval with homogeneous boundary conditions of the third type.
The resulting system of radial equations which contains the potential matrix elements and first-derivative coupling terms is solved using high-order
accuracy approximations of the finite-element method. As a test desk, the program is applied to the calculation of the energy values and reaction
matrix for an exactly solvable 2D-model of three identical particles on a line with pair zero-range potentials.

Program summary

Program title: KANTBP
Catalogue identifier: ADZH_v1_0
Program summary URL: http://cpc.cs.qub.ac.uk/summaries/ADZH_v1_0.html
Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland
Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html
No. of lines in distributed program, including test data, etc.: 4224
No. of bytes in distributed program, including test data, etc.: 31 232
Distribution format: tar.gz
Programming language: FORTRAN 77
Computer: Intel Xeon EM64T, Alpha 21264A, AMD Athlon MP, Pentium IV Xeon, Opteron 248, Intel Pentium IV
Operating system: OC Linux, Unix AIX 5.3, SunOS 5.8, Solaris, Windows XP
RAM: depends on (a) the number of differential equations; (b) the number and order of finite-elements; (c) the number of hyperradial points; and
(d) the number of eigensolutions required. Test run requires 30 MB
Classification: 2.1, 2.4
External routines: GAULEG and GAUSSJ [W.H. Press, B.F. Flanery, S.A. Teukolsky, W.T. Vetterley, Numerical Recipes: The Art of Scientific
Computing, Cambridge University Press, Cambridge, 1986]

✩ This paper and its associated computer program are available via the Computer Physics Communications homepage on ScienceDirect (http://www.sciencedirect.
com/science/journal/00104655).
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Nature of problem: In the hyperspherical adiabatic approach [J. Macek, J. Phys. B 1 (1968) 831–843; U. Fano, Rep. Progr. Phys. 46 (1983) 97–165;
C.D. Lin, Adv. Atom. Mol. Phys. 22 (1986) 77–142], a multi-dimensional Schrödinger equation for a two-electron system [A.G. Abrashkevich,
D.G. Abrashkevich, M. Shapiro, Comput. Phys. Comm. 90 (1995) 311–339] or a hydrogen atom in magnetic field [M.G. Dimova, M.S. Kaschiev,
S.I. Vinitsky, J. Phys. B 38 (2005) 2337–2352] is reduced by separating the radial coordinate ρ from the angular variables to a system of second-
order ordinary differential equations which contain potential matrix elements and first-derivative coupling terms. The purpose of this paper is to
present the finite-element method procedure based on the use of high-order accuracy approximations for calculating approximate eigensolutions
for such systems of coupled differential equations.
Solution method: The boundary problems for coupled differential equations are solved by the finite-element method using high-order accuracy
approximations [A.G. Abrashkevich, D.G. Abrashkevich, M.S. Kaschiev, I.V. Puzynin, Comput. Phys. Comm. 85 (1995) 40–64]. The generalized
algebraic eigenvalue problem AF = EBF with respect to pair unknowns (E,F) arising after the replacement of the differential problem by the
finite-element approximation is solved by the subspace iteration method using the SSPACE program [K.J. Bathe, Finite Element Procedures in
Engineering Analysis, Englewood Cliffs, Prentice–Hall, New York, 1982]. The generalized algebraic eigenvalue problem (A−EB)F = λDF with
respect to pair unknowns (λ,F) arising after the corresponding replacement of the scattering boundary problem in open channels at fixed energy
value, E, is solved by the LDLT factorization of symmetric matrix and back-substitution methods using the DECOMP and REDBAK programs,
respectively [K.J. Bathe, Finite Element Procedures in Engineering Analysis, Englewood Cliffs, Prentice–Hall, New York, 1982]. As a test desk,
the program is applied to the calculation of the energy values and reaction matrix for an exactly solvable 2D-model of three identical particles on a
line with pair zero-range potentials described in [Yu. A. Kuperin, P.B. Kurasov, Yu.B. Melnikov, S.P. Merkuriev, Ann. Phys. 205 (1991) 330–361;
O. Chuluunbaatar, A.A. Gusev, S.Y. Larsen, S.I. Vinitsky, J. Phys. A 35 (2002) L513–L525; N.P. Mehta, J.R. Shepard, Phys. Rev. A 72 (2005)
032728-1-11; O. Chuluunbaatar, A.A. Gusev, M.S. Kaschiev, V.A. Kaschieva, A. Amaya-Tapia, S.Y. Larsen, S.I. Vinitsky, J. Phys. B 39 (2006)
243–269]. For this benchmark model the needed analytical expressions for the potential matrix elements and first-derivative coupling terms, their
asymptotics and asymptotics of radial solutions of the boundary problems for coupled differential equations have been produced with help of a
MAPLE computer algebra system.
Restrictions: The computer memory requirements depend on:

• (a) the number of differential equations;
• (b) the number and order of finite-elements;
• (c) the total number of hyperradial points; and
• (d) the number of eigensolutions required.

Restrictions due to dimension sizes may be easily alleviated by altering PARAMETER statements (see Long Write-Up and listing for details).
The user must also supply subroutine POTCAL for evaluating potential matrix elements. The user should supply subroutines ASYMEV (when
solving the eigenvalue problem) or ASYMSC (when solving the scattering problem) that evaluate the asymptotics of the radial wave functions at
the right boundary point in case of a boundary condition of the third type, respectively.
Running time: The running time depends critically upon:

• (a) the number of differential equations;
• (b) the number and order of finite-elements;
• (c) the total number of hyperradial points on interval [0, ρmax]; and
• (d) the number of eigensolutions required.

The test run which accompanies this paper took 28.48 s without calculation of matrix potentials on the Intel Pentium IV 2.4 GHz.
© 2007 Elsevier B.V. All rights reserved.

PACS: 02.30.Hq; 02.60.Jh; 02.60.Lj; 03.65.Nk; 31.15.Ja; 31.15.Pf; 34.50.-s; 34.80.Bm

Keywords: Eigenvalue and multi-channel scattering problems; Kantorovich method; Finite element method; R-matrix calculations; Hyperspherical coordinates;
Multi-channel adiabatic approximation; Ordinary differential equations; High-order accuracy approximations

1. Introduction

Development of stable numerical methods for solution of elliptic partial differential equation is one of the main problems of
modern computational physics. Therefore elaboration of efficient, stable and high-accurate numerical schemes for solving the
Schrödinger equation in a multi-dimensional space is an important task. Numerical solution of such equation has wide applications
in various quantum-mechanical problems such as the modern calculations of the weakly bound states and elastic scattering in a
system of three helium atoms considered as point particles with some short range pair potentials, i.e. a trimer of helium atoms
[1], or in processes of ionization and recombination of antihydrogen in magnetic trap of modern laser physics experiments [2–4].
The above mentioned experiments require computer modeling of dynamics of exotic few-body Coulomb systems in external laser
pulsed fields [5–7].

There are two conditions for elaborating numerical methods: to be stable and to have a high accuracy of calculations. The
resulting system of ordinary second-order differential equations obtained after reduction of a multi-dimensional boundary problem
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to a one-dimensional one is solved using high-order approximations of the Finite Element Method (FEM). In order to guarantee
high-order accuracy of numerical solutions, the relevant potential matrix elements should be evaluated with the same level of
accuracy as approximate solutions.

One of the most popular and widely used approaches for solving the quantum-mechanical three-body problem with pair Coulomb
and point interactions is the adiabatic representation method [8–10]. In the framework of the hyperspherical coordinates formulation
of this method [9–14], the hyperradius ρ is treated as a slowly varying adiabatic variable, analogous to the internuclear distance in
the Born–Oppenheimer approximation for molecules [8]. From the mathematical point of view this approach is well known as the
Kantorovich method (KM) for the reduction of a multi-dimension boundary problem to the one-dimensional one by using a set of
solutions of an auxiliary parametric eigenvalue problem [15]. These solutions are obtained for a given set of values of the adiabatic
variable, which plays here a role of an external parameter. The convergence of the adiabatic expansion in the hyperspherical
coordinates is higher than the ones used in most conventional approaches based on the independent electron model. This is due to

the fact that collective variables such as hyperradius ρ =
√

r2
1 + r2

2 and hyperangle α = arctan(r2/r1) allow for more natural and
accurate accounting of electron correlations in an atomic system (see, e.g., [9,12,16–18]) than the independent electron coordinates,
r1 and r2.

An essential part in the implementation of the KM is the computation of variable coefficients (potential matrix elements) for
the resulting system of the ordinary second-order differential equations. These coefficients are the integrals over eigenfunctions
and their derivatives with respect to the adiabatic variable. In real applications, an efficient and stable computation of derivatives
of the adiabatic eigenfunctions and the corresponding integrals with the accuracy comparable with the one achieved for adiabatic
eigenfunctions presents a serious challenge for most of numerical approaches involved in various types of calculations within the
adiabatic representation method [19].

This problem has been successfully solved in the paper [20]. A new method for computing variable coefficients (potential matrix
elements of radial coupling) of a resulting system of ordinary second-order differential equations has been elaborated. It allows
the calculation of the coefficients with the same precision as the adiabatic functions obtained as solutions of an auxiliary para-
metric eigenvalue problem. In the method proposed, a new boundary parametric problem with respect to unknown derivatives of
eigenfunctions in the adiabatic variable (hyperradius) was formulated. An efficient, fast and stable algorithm for solving the bound-
ary problem with the same accuracy for the adiabatic eigenfunctions and their derivatives was proposed. The method developed
was tested on a parametric eigenvalue problem for a hydrogen atom on a three-dimensional sphere which has an analytical so-
lution [21]. The accuracy, efficiency and robustness of the algorithm were studied in details. The method was also applied to the
computation of the ground state energy of the helium atom and negative hydrogen ion [20], and low-excited states of a hydrogen
atom in strong magnetic field [22]. The results obtained have shown an excellent agreement with the results of calculations by other
methods.

The method of calculating the potential matrix elements of radial coupling suggested in paper [20] can be used in scattering
calculations using some appropriate propagation scheme. In scattering calculations, in order to eliminate derivatives of the adiabatic
surface eigenfunctions in hyperradius, the diabatic-by-sector approach is widely used [23]. The price for using this approximation
is a slower convergence of the diabatic basis and therefore a larger number of hyperradial equations to be solved in order to get
the required accuracy of the S-matrix elements [24,25]. Matrix elements computed by the method [20] can be directly incorporated
in the popular hyperspherical close-coupling scheme. Applications of the method to scattering problems can be very useful and
promising.

In this work we present program KANTBP for solving the eigenvalue and scattering problems for the multi-dimensional
Schrödinger equation using the KM approach. In this method the multi-dimensional boundary problem is reduced to a system
of ordinary differential equations of the second order with variable coefficients on a semi-axis with the help of expansion of the
solution over a set of orthogonal solutions of an auxiliary parametric eigenvalue problem. Reduction of the boundary problem
on a finite interval is implemented in the program with help of the Dirichlet, Neumann and third type boundary conditions in
calculations of the eigenvalue problem for bound states and the third type boundary condition in a form appropriate for the R-
matrix calculations of the multi-channel scattering problem [26–28]. Then a FEM is applied to construct numerical schemes for
solving corresponding boundary problem for a system of ordinary differential equations with an accuracy of order O(hp+1) in
the grid step h. The order of approximation, p, depends on the smoothness of required solution. Note that variable coefficients
of ordinary differential equations and the corresponding solutions can have a long-range asymptotic behavior [29]. That is why
one has to be very careful in the formulation of the boundary problems under consideration. As a benchmark, we consider known
exactly solvable 2D-model of three identical particles on a line with pair zero-range potentials [30–32] based on an adequate
formulation of spectral problems and corresponding numerical schemes. For this benchmark model the needed analytical expres-
sions for the potential matrix elements and first-derivative coupling terms, their asymptotics and asymptotics of radial solutions
of the boundary problems for coupled differential equations have been produced with help of a MAPLE computer algebra sys-
tem.

The paper is organized as follows. In Section 2 we give a brief overreview of the problem. The construction of the finite-element
high-order schemes is discussed in Section 3. A description of the KANTBP program is given in Section 4. Subroutine units are
briefly described in Section 5. Test desk is discussed in Section 6.
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2. Statement of the problem

In many cases the solution of a multi-dimensional quantum-mechanical problem is reduced to a solution of the time-independent
Schrödinger equation for wave function Ψ (ρ,Ω)

(1)
(
H + U(ρ,Ω)

)
Ψ (ρ,Ω) = EΨ (ρ,Ω),

where H is the d > 1 dimensional Hamiltonian, U(ρ,Ω) is the given potential, E is the energy of a system, ρ is the hyperradius,
and Ω is the set of angular coordinates which describe the internal motion of system on sphere Sd−1(Ω). In the close coupling
approximation, known in mathematics as the KM [15] the partial wave function Ψi(ρ,Ω) is expanded over the one-parametric
basis functions {Bj (Ω;ρ)}Nj=1:

(2)Ψi(ρ,Ω) =
N∑

j=1

Bj (Ω;ρ)χ
(i)
j (ρ).

In Eq. (2), the vector-functions χ (i)(ρ) = (χ
(i)
1 (ρ), . . . , χ

(i)
N (ρ))T are unknown, and the surface functions B(Ω;ρ) = (B1(Ω;ρ),

. . . ,BN(Ω;ρ))T is an orthonormal basis with respect to the set of angular coordinates Ω for each value of hyperradius ρ which
is treated here as a given parameter. In the Kantorovich approach [15], the functions Bj (Ω;ρ) are determined as solutions of the
following parametric eigenvalue problem:

(3)

(
− 1

ρ2
Λ̂

2
Ω + 2U(ρ,Ω)

)
Bj (Ω;ρ) = εj (ρ)Bj (Ω;ρ),

where Λ̂
2
Ω is the generalized self-adjoint angular momentum operator. The eigenfunctions of this problem satisfy the same boundary

conditions in angular variable Ω for Ψi(ρ,Ω) and are normalized as follows

(4)
〈
Bi(Ω;ρ)

∣∣ Bj (Ω;ρ)
〉
Ω

=
∫

B∗
i (Ω;ρ)Bj (Ω;ρ)dΩ = δij ,

where “ ∗ ” denotes the complex conjugate and δij is the Kroneker symbol.
After minimizing the Rayleigh–Ritz variational functional (see [20]), and using the expansion (2) equation (1) is reduced to a

finite set of N ordinary second-order differential equations for the χ(ρ) ≡ χ (i)(ρ)

(5)(L − 2EI)χ(ρ) ≡
(

− 1

ρd−1
I

d

dρ
ρd−1 d

dρ
+ V(ρ) + Q(ρ)

d

dρ
+ 1

ρd−1

dρd−1Q(ρ)

dρ
− 2EI

)
χ(ρ) = 0.

Here I, V(ρ) and Q(ρ) are matrices of dimension N × N whose elements are given by the relation

Vij (ρ) = Hij (ρ) + εi(ρ) + εj (ρ)

2
δij , Iij = δij ,

Hij (ρ) = Hji(ρ) =
〈
∂Bi(Ω;ρ)

∂ρ

∣∣∣∣ ∂Bj (Ω;ρ)

∂ρ

〉
Ω

,

(6)Qij (ρ) = −Qji(ρ) = −
〈
Bi(Ω;ρ)

∣∣∣∣ ∂Bj (Ω;ρ)

∂ρ

〉
Ω

.

Let us consider the general radial homogeneous boundary conditions for the partial function Ψ i (ρ,Ω) at the endpoints of the
finite interval 0 < ρ < ρmax < ∞:

(7)μ1
∂Ψi(ρ,Ω)

∂ρ
− λ1Ψi(ρ,Ω) = 0, ρ = 0, Ω ∈ Sd−1(Ω),

(8)μ2
∂Ψi(ρ,Ω)

∂ρ
− λ2Ψi(ρ,Ω) = 0, ρ = ρmax, Ω ∈ Sd−1(Ω),

where μ1, λ1 are some constants and μ2 = μ2(ρmax), λ2 = λ2(ρmax) are some numbers depending on the ρ = ρmax. Since the
adiabatic functions form a complete set, one can alternatively require that projections of (7) and (8) onto all adiabatic functions
fulfill

(9)

〈
Bj (Ω;ρ)

∣∣∣∣ μl

∂Ψi(ρ,Ω)

∂ρ
− λlΨi(ρ,Ω)

〉
Ω

= 0, l = 1,2,

using which we obtain the following matrix homogeneous boundary conditions

(10)μl

(
I

d

dρ
− Q(ρ)

)
χ(ρ) − λlχ(ρ) = 0, l = 1,2.

From here for l = 1, the left boundary condition imposed on function χ(ρ) at ρ = 0 has one of the following form:
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1. if limρ→0 ρd−1|Vii(ρ)| = ∞, we have the Dirichlet boundary condition

(11)χ(0) = 0,

2. if limρ→0 ρd−1|Vii(ρ)| < ∞, we have the Neumann type boundary condition

(12)lim
ρ→0

ρd−1
(

I
d

dρ
− Q(ρ)

)
χ(ρ) = 0.

2.1. The bound state case

For the bound state problem the energy E and radial wave function χ(ρ) are calculated. For large ρ the radial wave function
χ(ρ) satisfies the exponentially or power decreased asymptotic behavior. From Eq. (10) for l = 2, the right boundary condition
imposed on function χ(ρ) at ρ = ρmax has one of the following form:

• if μ2 = 0, we have the Dirichlet boundary condition

(13)χ(ρmax) = 0,

• if λ2 = 0, we have the Neumann type boundary condition

(14)

(
I

d

dρ
− Q(ρ)

)
χ(ρ) = 0,

• if μ2 �= 0 and λ2 �= 0, we have the homogeneous third type boundary condition

(15)

(
I

d

dρ
− Q(ρ)

)
χ(ρ) = λχ(ρ),

i.e., λ ≡ λ(ρ) = λ2(ρ)/μ2(ρ) and χ(ρ) should be the eigenvalue and corresponding eigenvector of the above eigenvalue
problem. After substituting (15) in Eq. (5) we obtain the following eigenvalue problem at ρ = ρmax

(16)
(
V(ρ) + Q2(ρ)

)
χ̂(ρ) = μ(ρ)χ̂(ρ), χ̂(ρ) = χ(ρ),

where eigenvalues μ(ρ) and λ(ρ) satisfy the following relation

(17)μ(ρ) = 1

ρd−1

dρd−1λ(ρ)

dρ
+ λ2(ρ) + 2E.

Note that, the eigenvalue μ(ρ) should be a fixed value for the any E and λ(ρ) at ρ = ρmax and this condition plays a very
important role in the future calculations.

2.2. The scattering case

Most physical matrix potentials V(ρ) and Q(ρ) satisfy the following asymptotic behavior at large ρ

(18)Vij (ρ) =
∑
l=2

v
(l)
ij

ρl
, Qij (ρ) =

∑
l=1

q
(l)
ij

ρl
, for i �= j,

(19)Vjj (ρ) = εj − 2Zj

ρ
+ lj (lj + d − 2)

ρ2
+
∑
l=3

v
(l)
jj

ρl
,

where ε1 � · · · � εN are the threshold energy values. For the scattering problem we need to obtain the reaction matrix K and radial
wave functions at given momentum 2E > ε1. For large ρ the radial wave functions {χ (i)(ρ)}No

i=1 satisfy the following asymptotic
conditions

(20)χ
(i)
j (ρ) → sin(wj (ρ))δji + cos(wj (ρ))Kji√

kjρd−1
+ O(ρ−(d+1)/2), j = 1,No,

(21)χ
(i)
j (ρ) → exp(−vj (ρ))√

qjρd−1
+ O

(
ρ−(d+1)/2 exp

(−vj (ρ)
))

, j = No + 1,N,
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where

wj(ρ) = kjρ + Zj

kj

ln(2kjρ) − 2lj + d − 3

4
π + δc

j ,

δc
j = arg


(
2lj + d − 1

2
− ı

Zj

kj

)
,

(22)vj (ρ) = qjρ − Zj

qj

ln(2qjρ).

Here No is the number of open channels, δc
j is the known Coulomb phase shift, K = {Kji}No

ji=1 is the required reaction matrix,

kj =√
2E − εj for j = 1,No and qj =√

εj − 2E for j = No + 1,N .
Let us consider the quadratic functional

Ξ(Φ,E,ρmax) ≡
ρmax∫
0

ΦT(ρ)(L − 2EI)Φ(ρ)ρd−1 dρ

(23)= Π(Φ,E,ρmax) − ρd−1
max ΦT(ρmax)Φ(ρmax)Λ,

where Π(Φ,E,ρmax) is the symmetric functional

Π(Φ,E,ρmax) =
ρmax∫
0

(
dΦT(ρ)

dρ

dΦ(ρ)

dρ
+ ΦT(ρ)V(ρ)Φ(ρ)

(24)+ ΦT(ρ)Q(ρ)
dΦ(ρ)

dρ
− dΦ(ρ)T

dρ
Q(ρ)Φ(ρ) − 2EΦT(ρ)Φ(ρ)

)
ρd−1 dρ,

and Φ(ρ) = {χ (i)(ρ)}No

i=1 is the matrix-solution of dimension N ×No which satisfies the following eigenvalue problem at ρ = ρmax

(25)
dΦ(ρ)

dρ
− Q(ρ)Φ(ρ) = Φ(ρ)Λ, Λ = {

δij λ
(i)
}No

ij=1.

After using FEM, Eq. (23) can be approximated by the following problem at ρ = ρmax (see details in Section 3)

(26)G(ρ)Φ(ρ) = dΦ(ρ)

dρ
− Q(ρ)Φ(ρ),

where G(ρ) is the symmetric matrix of dimension N × N . From here, we obtain the relation between Φ(ρ) and its derivative at
ρ = ρmax

(27)
dΦ(ρ)

dρ
= R(ρ)Φ(ρ), R(ρ) = G(ρ) + Q(ρ).

After that, Φ(ρ) and its derivative can be rewritten via the two independent fundamental regular and irregular asymptotic matrix-
solutions Φreg(ρ) = {χ (i)

reg(ρ)}No

i=1, Φ irr(ρ) = {χ (i)
irr (ρ)}No

i=1 of Eq. (5) and their derivatives at ρ = ρmax

(28)Φ(ρ) = Φreg(ρ) + Φ irr(ρ)K,
dΦ(ρ)

dρ
= dΦreg(ρ)

dρ
+ dΦ irr(ρ)

dρ
K.

Using formula (27), we obtain the following matrix equation for the reaction matrix K

(29)

(
dΦ irr(ρ)

dρ
− R(ρ)Φ irr(ρ)

)
K = −

(
dΦreg(ρ)

dρ
− R(ρ)Φreg(ρ)

)
.

In addition, it should be noted that the regular and irregular functions satisfy the generalized Wronskian relation for large ρ

(30)Wr
(
Q(ρ);Φ irr(ρ),Φreg(ρ)

)= Ioo,

where Wr(•;a(ρ),b(ρ)) is a generalized Wronskian with a long derivative defined as

(31)Wr
(•;a(ρ),b(ρ)

)= ρd−1
[

aT(ρ)

(
db(ρ)

dρ
− •b(ρ)

)
−
(

da(ρ)

dρ
− •a(ρ)

)T

b(ρ)

]
.

This Wronskian will be used to estimate a desirable accuracy of the above expansion. Here Ioo is the unit matrix of dimension
No × No and Eq. (30) at ρ = ρmax is equivalent to

(32)Wr
(
R(ρ);Φ irr(ρ),Φreg(ρ)

)= Wr
(
Q(ρ);Φ irr(ρ),Φreg(ρ)

)
.
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Note that, when some channels are closed, the left and right matrices of Eq. (29) are rectangle matrices. Therefore, we obtain the
following formula for the reaction matrix K

(33)K = −X−1(ρmax)Y(ρmax),

where

X(ρ) =
(

dΦ irr(ρ)

dρ
− R(ρ)Φ irr(ρ)

)
oo

,

(34)Y(ρ) =
(

dΦreg(ρ)

dρ
− R(ρ)Φreg(ρ)

)
oo

,

are the square matrices of dimension No × No depended on the open–open matrix (channels).

2.3. Construction of the regular and irregular matrix-solutions

We can construct the regular and irregular matrix-solutions by various methods (see [33–37]). For example, we can find regu-
lar and irregular matrix-solutions Φreg(ρ), Φ irr(ρ) of Eq. (5) with components χ

(i)
reg(ρ) = (χ

reg
1i (ρ), . . . , χ

reg
Ni (ρ))T and χ

(i)
irr (ρ) =

(χ irr
1i (ρ), . . . , χ irr

Ni(ρ))T using the following asymptotic form for large ρ

χ
reg
ji (ρ) = sin(wi(ρ))√

kiρd−1

∑
l=0

s
(l,1)
j i

ρl
+ cos(wi(ρ))√

kiρd−1

∑
l=0

c
(l,1)
j i

ρl
,

(35)χ irr
ji (ρ) = cos(wi(ρ))√

kiρd−1

∑
l=0

c
(l,2)
j i

ρl
+ sin(wi(ρ))√

kiρd−1

∑
l=0

s
(l,2)
j i

ρl
,

with initial data

(36)s
(0,1)
j i = δji, c

(0,1)
j i = 0, c

(0,2)
j i = δji , s

(0,2)
j i = 0.

Substituting expansions (18), (19) and (35) into Eq. (5) and equating expressions of sin(wi(ρ)), cos(wi(ρ)), and again equating
coefficients of expansion for the same powers of ρ, we arrive to a set of recurrence relations with respect to unknown coefficients
s
(l,1)
j i , s

(l,2)
j i and c

(l,1)
j i , c

(l,2)
j i . By means of initial data (36) we have a step-by-step procedure for determining of series coefficients

s
(l,1)
j i , s

(l,2)
j i and c

(l,1)
j i , c

(l,2)
j i [38,39].

3. High-order approximations of the finite-element method

In order to solve numerically the Sturm–Liouville problem for Eq. (5) subject to the corresponding boundary conditions from
Eqs. (11), (12) and (13), (14), (15), (25) the high-order approximations of the FEM [40,41] elaborated in our previous paper [42]
have been used. Such high-order approximations of the FEM have been proved [42] to be very accurate, stable, and efficient for a
wide set of quantum-mechanical problems. Computational schemes of the High-order of accuracy are derived from the Rayleigh–
Ritz variationals functional for the bound state problem

(37)Rb(χ ,E,λ) =
{ ρmax∫

0

N∑
i,j=1

[χHχ]ij ρd−1 dρ − λρd−1
max

N∑
j=1

χ2
j (ρmax)

}{ ρmax∫
0

N∑
j=1

χ2
j (ρ)ρd−1 dρ

}−1

,

and for the scattering problem with χ(ρ) ≡ χ (i)(ρ) and λ ≡ λ(i)

(38)Rs(χ , λ) =
{ ρmax∫

0

N∑
i,j=1

[
χ(H − 2E)χ

]
ij
ρd−1 dρ

}{
ρd−1

max

N∑
j=1

χ2
j (ρmax)

}−1

,

on the basis of the FEM. Here

[χHχ]ij = χ ′
i (ρ)χ ′

j (ρ)δij + χi(ρ)Vij (ρ)χj (ρ) + Qij (ρ)
[
χi(ρ)χ ′

j (ρ) − χ ′
i (ρ)χj (ρ)

]
,

(39)
[
χ(H − 2E)χ

]
ij

= [χHχ]ij − 2Eχi(ρ)χj (ρ)δij ,

and symbol “ ′ ” denotes a derivative in ρ.
The general idea of the FEM in one-dimensional space is to divide interval [0, ρmax] into many small domains called elements.

The size of elements can be defined very freely so that physical properties can be taken into account.
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Now we cover the interval � = [0, ρmax] by a system of n subintervals �j = [ρj−1, ρj ] in such a way that � =⋃n
j=1 �j . In

each subinterval �j the nodes

(40)ρ
p
j,r = ρj−1 + hj

p
r, hj = ρj − ρj−1, r = 0,p,

and the Lagrange elements {φp
j,r (ρ)}pr=0

(41)φ
p
j,r (ρ) =

p∏
i=0,i �=r

(ρ − ρ
p
j,i)

(ρ
p
j,r − ρ

p
j,i)

are determined. By means of the Lagrange elements φ
p
j,r (ρ), we define a set of local functions Nl(ρ) as follows:

(42)N
p
l (ρ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{
φ

p

1,0(ρ), ρ ∈ �1,

0, ρ /∈ �1,
l = 0,{

φ
p
j,r (ρ), ρ ∈ �j,

0, ρ /∈ �j,
l = r + p(j − 1), r = 1,p − 1,⎧⎨

⎩
φ

p
j,p(ρ), ρ ∈ �j,

φ
p

j+1,0(ρ), ρ ∈ �j+1,

0, ρ /∈ �j

⋃
�j+1,

l = jp, j = 1, n − 1,

{
φ

p
n,p(ρ), ρ ∈ �n,

0, ρ /∈ �n,
l = np.

The functions {Np
l (ρ)}Ll=0, L = np, form a basis in the space of polynomials of the pth order. Now, we approximate each function

χμ(ρ) by a finite sum of local functions N
p
l (ρ)

(43)χμ(ρ) =
L∑

l=0

χl
μN

p
l (ρ), χl

μ ≡ χl
μ

(
ρ

p
j,r

)
.

For the bound state problem, after substituting expansion (43) into the variational functional (37) and minimizing it [40,41] we
obtain that vector-solution χh is the eigenvector of the generalized eigenvalue problem

(44)(Ap − λhM)χh = 2Eh Bp χh.

Here M is a diagonal matrix with zero elements, except the last N elements that are equal ρd−1
max , and in case of the Dirichlet and

Neumann type boundary conditions λh ≡ 0. For the third type of boundary condition we use the following additional condition (17)

(45)μ = 1

ρd−1

dρd−1λh

dρ
+ (λh)2 + 2Eh,

where μ is the first eigenvalue of the problem (16). In this case we use the following iterative scheme for solutions λ ≡ λh, E ≡ Eh

and χ ≡ χh

(Ap − λ(j−1)M)χ (j−1) = 2E(j−1) Bp χ (j−1),

(46)(λ(j))2 = μ − dλ(j−1)

dρ
− d − 1

ρmax
λ(j−1) − 2E(j−1),

with initial value λ(0).
To solve the scattering problem at a fixed value of energy E, after substituting expansion (43) into the variational functional

(38) and minimizing it [40,41] we obtain that matrix-solution Φh ≡ ((χ (1))h, . . . , (χ (No))h) is a set of eigenvectors of a special
eigenvalue problem

(47)GpΦh ≡ (Ap − 2EBp)Φh = MΦhΛh, Λh = {
δij (λ

(i))h
}No

ij=1,

where Mp is a diagonal matrix with zero elements except the last N elements equal to ρd−1
max . Eq. (47) can be rewritten in the

following form

(48)

(
Gp

aa Gp
ab

Gp
ba Gp

bb

)(
Φh

a

Φh
b

)
= ρd−1

max

(
0 0
0 I

)(
Φh

a

Φh
b

)
Λh, Φh =

(
Φh

a

Φh
b

)
,

where Φh
a and Φh

b ≡ Φ(ρmax) are the matrix-solutions of dimension (LN −N)×No and N ×No, respectively. From here, we obtain
the following eigenvalue problem with respect to Φh

b and Λh, of nonhomogeneous problem with respect to Φh
b with right-hand side
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from Eq. (25)

(49)
(
Gp

bb − Gp
ba

(
Gp

aa

)−1Gp
ab

)
Φh

b = ρd−1
max Φh

bΛ
h ≡ ρd−1

max

(
dΦh

b

dρ
− Q(ρmax)Φ

h
b

)
,

and explicit expression for component, Φh
a ,

(50)Φh
a = −(Gp

aa

)−1Gp
abΦ

h
b.

From Eqs. (27) and (49) we can obtain the relation between Φh
b and its derivative

dΦh
b

dρ
= R(ρmax)Φ

h
b,

(51)R(ρmax) = ρ1−d
max

(
Gp

bb − Gp
ba

(
Gp

aa

)−1Gp
ab

)+ Q(ρmax),

i.e. we have found the required R(ρmax) matrix without calculation of eigenvalue Λh and corresponding eigenvector Φh of the
eigenvalue problem (47). For calculating Eq. (51) consider the following auxiliary system of algebraic equation, as the determinant
of the matrix Gp nonzero,

(52)

(
Gp

aa Gp
ab

Gp
ba Gp

bb

)(
Fp

a

Fp
b

)
= ρd−1

max

(
0
I

)
.

The above equation has solutions

(53)Fp
a = −(Gp

aa

)−1Gp
abFp

b , Fp
b = ρd−1

max

(
Gp

bb − Gp
ba

(
Gp

aa

)−1Gp
ab

)−1
.

From here, our required R(ρmax) matrix is equal to

(54)R(ρmax) = (
Fp

b

)−1 + Q(ρmax),

and required solution Φ is calculated by formulae (50) and (53)

(55)Φh
a = Fp

a

(
Fp

b

)−1
Φh

b, Φh
b = Φreg(ρmax) + Φ irr(ρmax)K,

where reaction matrix K is evaluated from (33) and asymptotics of solution Φreg(ρ) = {χ (i)
reg(ρ)}No

i=1, Φ irr(ρ) = {χ (i)
irr (ρ)}No

i=1 are
determined in (28).

Let Em and χm(ρ) be the exact solutions of Eq. (44) and Eh
m and χh

m(ρ) be the corresponding numerical solutions. Then the
following estimations are valid [40]

(56)
∣∣Eh

m − Em

∣∣� c1|Em|h2p,
∥∥χh

m(ρ) − χm(ρ)
∥∥

0 � c2|Em|hp+1,

where h is the maximal step of the finite-element grid, m is the number of the corresponded solution, and the positive constants c1

and c2 do not depend on step h. Similar estimations are valid for approximate values of the eigenvalue (λ(i))h and corresponding
solution (χ (i)(ρ))h. The stiffness matrix Ap and the mass matrix Bp are symmetric and have a banded structure, and Bp matrix is
positively defined. They have the following form

(57)Ap =
n∑

j=1

ap
j , Bp =

n∑
j=1

bp
j ,

where the local matrices ap
j and bp

j are calculated as

(
ap
j

)qr

μν
=

+1∫
−1

{
δμν

4

h2
j

(
φ

p
j,q

)′
(ρ)
(
φ

p
j,r

)′
(ρ) + Vμν(ρ)φ

p
j,q(ρ)φ

p
j,r (ρ)

+ Qμν(ρ)
[
φ

p
j,q(ρ)

(
φ

p
j,r

)′
(ρ) − (

φ
p
j,q

)′
(ρ)φ

p
j,r (ρ)

] 2

hj

}
ρd−1 hj

2
dη,
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(58)
(
bp

j

)qr

μν
= δμν

+1∫
−1

φ
p
j,q(ρ)φ

p
j,r (ρ)ρd−1 hj

2
dη,

ρ = ρj−1 + 0.5hj (1 + η), q, r = 0,p, μ, ν = 1,N.

Integrals (58) are evaluated using the Gaussian quadrature formulae

(
ap
j

)qr

μν
=

p∑
g=0

{
δμν

4

h2
j

(
φ

p
j,q

)′
(ρg)

(
φ

p
j,r

)′
(ρg) + Vμν(ρg)φ

p
j,q(ρg)φ

p
j,r (ρg)

+ Qμν(ρg)
[
φ

p
j,q(ρg)

(
φ

p
j,r

)′
(ρg) − (

φ
p
j,q

)′
(ρg)φ

p
j,r (ρg)

] 2

hj

}
ρd−1

g

hj

2
wg,

(59)
(
bp

j

)qr

μν
=

p∑
g=0

δμνφ
p
j,q(ρg)φ

p
j,r (ρg)ρ

d−1
g

hj

2
wg,

where ρg = ρj−1 + 0.5hj (1 + ηg), ηg and wg , g = 0,p are the Gaussian nodes and weights.
This way the following solution strategy can be used: since we know functions V(ρ) and Q(ρ) we choose first the FEM grid,

then we calculate these matrix elements in the Gaussian points and finally we evaluate the integrals. This allow us to organize the
calculation scheme for a system of N equations as follows. We evaluate the values of all matrix elements for these N equations
in the Gaussian nodes and store them into the external file. Then we use it to investigate the convergence rate of the Kantorovich
expansion as a function of number of equations.

In order to solve the generalized eigenvalue problem (44), the subspace iteration method [40,41] elaborated by Bathe [41] for the
solution of large symmetric banded matrix eigenvalue problems has been chosen. This method uses a skyline storage mode, which
stores components of the matrix column vectors within the banded region of the matrix, and is ideally suited for banded finite-
element matrices. The procedure chooses a vector subspace of the full solution space and iterates upon the successive solutions in
the subspace (for details, see [41]). The iterations continue until the desired set of solutions in the iteration subspace converges to
within the specified tolerance on the Rayleigh quotients for the eigenpairs. Generally, 10–16 iterations are required for the subspace
iterations to converge the subspace to within the prescribe tolerance. If matrix Ap − λhM in Eq. (44) is not positively defined,
problem (44) is replaced by the following problem:

(60)Ãp χh = Ẽh Bp χh, Ãp = Ap − λhM − αBp.

The number α (the shift of the energy spectrum) is chosen in such a way that matrix Ãp is positive. The eigenvector of problem
(44) is the same, and Eh = Ẽh + α.

For the solution of Eq. (16) it is impossible to define some minimum shift, because a total set of eigenvalues, μ(ρmax), should
be defended on ρ = ρmax. But, we can use the following lower and upper bounds for the eigenvalues [43]

(61)
∣∣μ(ρmax) − fii

∣∣� N∑
j=1,i �=j

|fij |, fij = (
V(ρmax) + Q2(ρmax)

)
ij
, i = 1,N,

and from them we can determine the minimum shift of a full set of eigenvalues μ(ρmax)

(62)α = min
i=1,N

(
fii −

N∑
j=1,j �=i

|fij |
)

− 1.

After that, we can rewrite (16) in the following form

(
V(ρmax) + Q2(ρmax) − αI

)
χ̂(ρmax) = μ̃(ρmax)χ̂(ρmax),

(63)μ(ρmax) = μ̃(ρmax) + α.

In this case left matrix should be positively defined, and can be diagonalized by the generalized Jacobi method.
From the estimates above one can see that we have a high accuracy for calculating the bound states and corresponding wave

functions of both (eigenvalues and continuous) cases. From this point of view, the main error in the solution depends only on the
number of equations N and computer precision used in calculations.
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Fig. 1. Flow diagram of the KANTBP program.

4. Description of the program

Fig. 1 presents a flow diagram for the KANTBP program. The function of each subroutine is described in Section 5. The
KANTBP program is called from the main routine (supplied by a user) which sets dimensions of the arrays and is responsible for
the input data. In the present code each array declarator is written in terms of the symbolic names of constants. These constants are
defined in the following PARAMETER statement in the main routine:
PARAMETER (MTOT = 9000000, MITOT = 900000, NMESH1 = 7, MDIM1 = 6) where

• MTOT is the dimension of the working DOUBLE PRECISION array TOT.
• MITOT is the dimension of the working INTEGER array ITOT.
• NMESH1 is the dimension of the DOUBLE PRECISION array RMESH containing the information about the subdivision

of the hyperradial interval [0, ρmax] on subintervals and number of elements on each one of them. NMESH1 is always odd
and � 3.

• MDIM1 is the dimension of the DOUBLE PRECISION array THRSHL and INTEGER array NDIL containing information
about a set of threshold values and numbers of coupled differential equations, respectively.

A more concrete assignment of these dimensions is discussed below. In order to change the dimensions of the code, all one has to
do is to modify the single PARAMETER statement defined above in the main program unit.

The calling sequence for the subroutine KANTBP is:

CALL KANTBP(TITLE,IPTYPE,NROOT,MDIM,IDIM,NPOL,RTOL,NITEM,
1 SHIFT,IPRINT,IPRSTP,NMESH,RMESH,NDIR,NDIL,NMDIL,
2 THRSHL,IBOUND,FNOUT,IOUT,POTEN,IOUP,FMATR,IOUM,
3 EVWFN,IOUF,TOT,ITOT,MTOT,MITOT)
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where the arguments have the following type and meaning:

• POTCAL is the name of the user-supplied subroutine which calculates the potential matrices V(ρ) and Q(ρ) and should be
written as follows:

SUBROUTINE POTCAL(RHO,VV,QQ,MDIM,IOUT)
C..................................................................
C. .
C. P R O G R A M .
C. TO CALCULATE THE POTENTIAL MATRIX ELEMENTS .
C. VV AND QQ OF DIMENSION MDIM X MDIM IN POINT .
C. RHO .
C. .
C..................................................................

IMPLICIT REAL*8 (A-H,O-Z)
DIMENSION VV(MDIM,MDIM),QQ(MDIM,MDIM)
RETURN
END

• ASYMEV is the name of the user-supplied subroutine for the bound state problem which calculates the initial value λ(0)(ρ) for
the homogeneous third boundary condition at ρ = ρmax and should be written as follows:

SUBROUTINE ASYMEV(RMAX,NDIM,MDIM,SHIFT,DLAMBDA,IOUT)
C..................................................................
C. .
C. P R O G R A M .
C. TO CALCULATE THE INITIAL VALUE DLAMBDA FOR. .
C. THE HOMOGENEOUS THIRD TYPE BOUNDARY CONDITION .
C. AT RMAX .
C. .
C..................................................................

IMPLICIT REAL*8 (A-H,O-Z)
RETURN
END

• ASYMSC is the name of the user-supplied subroutine for the scattering problem which calculates the regular, irregular asymp-
totic matrix-solutions Φreg(ρ), Φ irr(ρ) and their derivatives at ρ = ρmax and should be written as follows:

SUBROUTINE ASYMSC(RMAX,NDIM,NOPEN,QR,PREG,PIRR,DREG,DIRR,IOUT)
C.................................................................
C. .
C. P R O G R A M .
C. TO CALCULATE THE REGULAR, IRREGULAR .
C. ASYMPTOTIC MATRIX SOLUTIONS PREG, PIRR .
C. AND THEIR DERIVATIVES DREG, DIRR AT RMAX .
C. .
C.................................................................

IMPLICIT REAL*8 (A-H,O-Z)
DIMENSION QR(NOPEN),PREG(NDIM,NOPEN),PIRR(NDIM,NOPEN),

1 DREG(NDIM,NOPEN),DIRR(NDIM,NOPEN)
RETURN
END

Here in the ASYMEV, DLAMBDA is the initial value λ(0) and in the ASYMSC, array QR contains a set of momentum values,
and NOPEN is the number of open channels. All parameters except VV, QQ, DLAMBDA, PREG, PIRR, DREG and DIRR in
the subroutines POTCAL, ASYMEV and ASYMSC have the same meaning as described below and should not be changed by
subroutines POTCAL, ASYMEV and ASYMSC.
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4.1. Input data

TITLE CHARACTER title of the run to be printed on the output listing. The title should be no longer than 70
characters.

IPTYPE INTEGER IPTYPE contains information about type of the problem solved. If IPTYPE = 0 the program
calculates the eigenvalue problem; otherwise, it calculates the scattering problem.

NROOT INTEGER number of eigenvalues (energy levels) and eigenvectors (radial wave functions) required.
NROOT should be equals to 1 in case of IBOUND > 4 and not used for the scattering problem.

MDIM INTEGER maximum number of coupled differential equations.
IDIM INTEGER dimension of the envelope space.
NPOL INTEGER order of finite-element shape functions (interpolating Lagrange polynomials). Usually set to 6.
RTOL REAL*8 convergence tolerance on eigenvalues (1.D–06 or smaller). This value is not used for the

scattering problem.
NITEM INTEGER maximum number of iterations permitted (usually set to 16). This value is not used for the

scattering problem.
SHIFT REAL*8 For the eigenvalue problem, SHIFT contains the energy spectrum. If SHIFT = 0 the value of

the energy shift is determined automatically by the program; otherwise, the NROOT
eigenvalues and eigenvectors closest to the shift given are calculated (the nonzero value of
SHIFT is recommended since it significantly speeds up the calculation). For the scattering
problem, SHIFT contains the given double energy spectrum.

IPRINT INTEGER level of print:
= 0—minimal level of print. The initial data, short information about the numerical scheme
parameters, main flags and keys, and energy values calculated are printed out;
= 1—radial functions calculated are printed out with step IPRSTP additionally;
= 2—potential matrix is printed out with step IPRSTP;
= 3—information about nodal point distribution is printed out;
= 4—global matrices A and B are printed out additionally;
= 5—the highest level of print. The local stiffness and mass matrices together with all current
information about the course of the subspace iteration method solution of the generalized
eigenvalue problem are printed out.

IPRSTP INTEGER step with which potential matrix and radial wave functions are printed out.
NMESH INTEGER dimension of array RMESH. NMESH always should be odd and � 3.
RMESH REAL*8 array RMESH contains information about subdivision of interval [0, ρmax] of hyperradius ρ on

subintervals. The whole interval [0, ρmax] is divided as follows: RMESH(1) = 0,
RMESH(NMESH) = ρmax, and the values of RMESH(I) set the number of elements for each
subinterval [RMESH(I − 1), RMESH(I + 1)], where I = 2,4, . . . , NMESH − 1.

NDIR INTEGER dimension of array NDIL. If NDIR > MDIM the message about the error is printed and the
execution of the program is stopped.

NDIL INTEGER array NDIL containing information about the set of numbers of coupled differential equations
and always should be NDIL(NDIR) � MDIM.

NMDIL INTEGER key parameter. If NMDIL = 0 the potential matrix elements of radial coupling are calculated
and written to file POTEN; otherwise, they are read from file POTEN.

THRSHL REAL*8 array THRSHL of dimension MDIM containing values of the thresholds. This array is not used
for the eigenvalue problem.

IBOUND INTEGER parameter defining the type of boundary conditions set in the boundary points ρ = 0 and
ρ = ρmax:
= 1—the Dirichlet–Dirichlet boundary conditions:
χi(0) = 0, χi(ρmax) = 0;
= 2—the Dirichlet–Neumann boundary conditions:
χi(0) = 0, lim

ρ→ρmax
χ ′

i (ρ) = 0;

= 3—the Neumann–Dirichlet boundary conditions:
lim
ρ→0

ρnχ ′
i (ρ) = 0, χi(ρmax) = 0;

= 4—the Neumann–Neumann boundary conditions:
lim
ρ→0

ρnχ ′
i (ρ) = 0, lim

ρ→ρmax
χ ′

i (ρ) = 0.

= 6—the Dirichlet—third type boundary conditions (only for NROOT = 1):
at ρ = 0 the Dirichlet boundary condition
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(see the case 2) is used and at ρmax the user-supplied subroutine ASYMEV for the calculation
of initial value λ(0)(ρmax) or user-supplied subroutine ASYMSC for the calculation of the
regular, irregular asymptotic matrix-solutions Φreg(ρ), Φ irr(ρ) and their derivatives at
ρ = ρmax are used;
= 8—the Neumann—third type boundary conditions (only for NROOT = 1):
at ρ = 0 the Neumann boundary condition (see the case 4) is used and at ρmax the same
boundary condition is used as in case 6.
Here n = IDIM-1. IBOUND should always be equal to 6 or 8 for the scattering problem.

FNOUT CHARACTER name of the output file (up to 55 characters) for printing out the results of the calculation. It is
system specific and may include a complete path to the file location.

IOUT INTEGER number of the output logical device for printing out the results of the calculation (usually set
to 7).

POTEN CHARACTER name of the input/output file (up to 55 characters) containing potential matrix elements of
radial coupling.

IOUP INTEGER number of the logical device for reading/storing data from/into file POTEN.
FMATR CHARACTER name of the scratch file (up to 55 characters) for storing stiffness matrix.
IOUM INTEGER number of the logical device for storing stiffness matrix.
EVWFN CHARACTER name of the output file (up to 55 characters) for storing the results of the calculation, namely,

the energy values or reaction matrix, finite-element grid points, and radial wave functions. It is
used only if IOUF > 0.

IOUF INTEGER number of the logical device for storing data into file EVWFN.
TOT REAL*8 working vector of the DOUBLE PRECISION type.
ITOT INTEGER working vector of the INTEGER type.
MTOT INTEGER dimension of the DOUBLE PRECISION working array ITOT. The last address ILAST of array

TOT is calculated and then compared with the given value of MTOT. If ILAST > MTOT the
message about an error is printed and the execution of the program is aborted. In the last case,
in order to carry out the required calculation it is necessary to increase the dimension MTOT of
array TOT to the quantity ILAST taken from the message.

MITOT INTEGER dimension of the INTEGER working array ITOT. The last address ILAST of array ITOT is
calculated and then compared with the given value of MITOT. If ILAST > MITOT the
message about an error is printed and the execution of the program is aborted. In the last case,
in order to carry out the required calculation it is necessary to increase the dimension MITOT
of array ITOT to the quantity ILAST taken from the message.

4.2. Output data

The results of the calculation of energy values or reaction matrix and radial wave functions are written using unformatted
segmented records into file EVWFN, according to the following operator:

WRITE(IOUF) NDIM,NN,NROOT,NGRID,(EIGV(I),I=1,NROOT)
1 ,(XGRID(I),I=1,NGRID),((R(I,J),I=1,NN),J=1,NROOT)

or

WRITE(IOUF) NDIM,NN,NOPEN,NGRID,((RR(I,J),I=1,NOPEN),J=1,NOPEN)
1 ,(XGRID(I),I=1,NGRID),((R(I,J),I=1,NN),J=1,NOPEN)

In the above, parameters presented in the WRITE statement have the following meaning:

• NDIM is the number of radial equations.
• NGRID is the number of finite-element grid points.
• NN = NGRID * NDIM.
• NROOT is the number of roots (energy levels).
• NOPEN is the number of open channels.
• Array EIGV contains the energy values calculated.
• Array RR contains the reaction matrix values calculated.
• Array XGRID contains the values of the finite-element grid points.
• Array R contains NROOT or NOPEN eigenfunctions each per NN elements in length stored in the following way: for each of

the NGRID mesh points per NDIM elements of eigenfunction (see scheme below):
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1-st root 2-nd root ... last root

1 1 1
2 2 2

1-st point . 1-st point . ... 1-st point .
. . .
. . .

NDIM NDIM NDIM

1 1 1
2 2 2

2-nd point . 2-nd point . ... 2-nd point .
. . .
. . .

NDIM NDIM NDIM
. . .
. . .
. . .
1 1 1
2 2 2

last point . last point . ... last point .
. . .
. . .

NDIM NDIM NDIM

5. Description of subprogram units

A flow diagram for the KANTBP program is presented in Fig. 1. The function of each subroutine is briefly described below.
Additional details may be found in COMMENT cards within the program.

• Subroutine ADDVEC assembles the element stiffness and mass matrices into the corresponding global vector using a compact
storage form.

• Subroutine ASSMBL controls the calculation of element stiffness and mass matrices and assembles them into the corresponding
global matrices.

• User-supplied subroutine ASYMEV calculates the initial value λ(0)(ρmax) of the bound state problem for the homogeneous
third type boundary condition.

• User-supplied subroutine ASYMSC calculates the regular, irregular asymptotic matrix-solutions Φreg(ρ), Φ irr(ρ) and their
derivatives at ρ = ρmax of the scattering problem.

• Subroutine BOUNDC sets the Dirichlet or Neumann boundary conditions.
• Subroutine COLMHT calculates column heights in banded matrix.
• Subroutine CHECKD prints error messages when input data are incorrect and stops the execution of program KANTBP.
• Subroutine DECOMP calculates LDLT factorization of stiffness matrix. This factorization is used in subroutine REDBAK to

reduce and back-substitute the iteration vectors.
• Subroutine EMASSD calculates an element mass matrix.
• Subroutine ERRDIM prints error messages when high-speed storage requested by a user is exceeded and stops the execution

of program KANTBP.
• Subroutine ESTIFD calculates a diagonal part of the local on element stiffness matrix.
• Subroutine ESTIFN calculates a nondiagonal part of the local on element stiffness matrix.
• Subroutine EVSOLV prepares all input data for the SSPACE program, prints out the calculated eigensolutions, and writes them

into the file EVWFN, if necessary.
• Subroutine FEGRID calculates nodal points for the finite-element grid.
• Subroutine GAULEG [44] calculates nodes and weights of the Gauss–Legendre quadrature.
• Subroutine GAUSSJ [44] calculates linear equation solution by the Gauss–Jordan matrix inversion method.
• Subroutine HQPOT calculates potential matrix elements of radial coupling in the Gaussian nodes of the finite-element mesh.
• Subroutine JACOBI solves the generalized eigenproblem in subspace using the generalized Jacobi iteration.
• Subroutine MAXHT calculates addresses of diagonal elements in banded matrix.
• Subroutine MULT evaluates a product of the two vectors stored in compact form.
• Subroutine NODGEN generates a nodal point distribution for the finite-element grid.
• User-supplied subroutine POTCAL calculates the potential matrices V(ρ) and Q(ρ) of dimension MDIM × MDIM.



Author's personal copy

664 O. Chuluunbaatar et al. / Computer Physics Communications 177 (2007) 649–675

• Subroutine SCHECK evaluates shift for Sturm sequence check (called only if SHIFT = 0).
• Subroutine SCSOLV calculates the reaction matrix and radial function, and writes them into the file EVWFN, if necessary.
• Subroutine SHAPEF calculates shape functions of the given order and their derivatives with respect to the master element

coordinate η at a specified value of ρ.
• Subroutine SSPACE [41] finds the smallest eigenvalues and the corresponding eigenvectors in the generalized eigenproblem

using the subspace iteration method [41]. We have added to this program the possibility of finding the eigensolutions closest to
the energy spectrum shift given and also the possibility of using the previously calculated eigenvectors as the starting vectors
for inverse iterations. The list of arguments for this program is adequately commented in the routine; so, the interested reader
is referred to the program listing for further details. Warning messages will be issued if the requested accuracy RTOL is not
obtained after NITEM iterations or if the stiffness matrix A is not positively defined.

6. Test deck

The KANTBP program has been used and tested for a variety of physical problems [13,22,32,38,45–47]. Below we present exact
solvable three-body benchmark for which the needed analytical expressions for the potential matrix elements and first-derivative
coupling terms, their asymptotics and asymptotics of radial solutions of the boundary problems for coupled differential equations
have been produced with help of a MAPLE computer algebra system.

We consider three identical particles in the center-of-mass reference frame (CMRF) described by the Jacobi coordinates,

(64)η =
√

1

2
(x1 − x2), ξ =

√
2

3

(
x1 + x2

2
− x3

)
,

in the plane R2, where {{x1, x2, x3} ∈ R3 | x1 + x2 + x3 = 0} are the Cartesian coordinates of the particles on a line. In polar
coordinates

(65)η = ρ cos θ, ξ = ρ sin θ, −π

6
< θ � 2π − π

6
, 0 � ρ < ∞,

the Schrödinger equation for the wave function Ψ (ρ, θ) takes the form

(66)−1

2

(
1

ρ

∂

∂ρ
ρ

∂

∂ρ
+ 1

ρ2

∂2

∂θ2

)
Ψ (ρ, θ) + U(ρ, θ)Ψ (ρ, θ) = EΨ (ρ, θ),

where E is the relative energy in the CMRF. To obtain an exact solution which can be used below for a comparison with the
numerical results, we involve the sum of delta-functions for describing the pair interactions with identical finite strengths. Thus,
U(ρ, θ) assumes the form

(67)U(ρ, θ) = g

1∑
l=−1

δ

(√
2ρ

∣∣∣∣cos

(
θ − 2π

3
l

)∣∣∣∣
)

,

where g = √
2cκ̄ , and κ̄ = π/6 is the effective strength of the pair potential [31,48–50]. For the attractive case c < 0, we have

the bound pair state φ0(η) = √
κ̄ exp(−κ̄|η|) with the energy −ε

(0)
0 = c2κ̄2, so that 2E = q2 + ε

(0)
0 , where q is proportional to the

relative momentum of the third particle with respect to the bound pair [31,32,49,50].
Using a six-fold symmetric representation compatible with (67), we formulate the following boundary problem corresponding

to equation (66) for regular and bounded solution by the radial variable ρ [31]:

(68)−
(

1

ρ

∂

∂ρ
ρ

∂

∂ρ
+ 1

ρ2

∂2

∂θ2

)
Ψ (ρ, θ) = 2EΨ (ρ, θ),

with boundary conditions by the angle variable θn � θ < θn+1

1

ρ

∂Ψ (ρ, θi)

∂θ
= (−1)i−ncκ̄Ψ (ρ, θi),

(69)Ψ (ρ, θn+1 − 0) = Ψ (ρ, θn+1 + 0), i = n,n + 1,

where θn = κ̄(2n − 1), n = 0,5.

Remark. Problem (66), (67) is exactly solvable model. For the discrete spectrum in attractive case we have exact energies for a
ground state and a half-bound state

(70)2Eb
exact = −4c2κ̄2 = −c2 π2

9
, 2Ehb

exact = −c2κ̄2 = −c2 π2

36
.

For the continuous spectrum in both the attractive and repulsive cases we have exact scattering matrix S [30,31] that connected with
reaction matrix K = KT by the conventional formulae K = ı(I + S)−1(I − S) or S = (I + ıK)(I − ıK)−1.
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We consider here a formal expansion of the solution of Eqs. (66), (67) using a set of one-dimensional orthonormal basis functions
Bj (θ;ρ) ∈ W 1

2 (−π/6,2π − π/6):

(71)Ψ (ρ, θ) =
N∑

j=1

Bj (θ;ρ)χj (ρ),

where the functions Bj (θ;ρ) are determined as solutions of the following one-dimensional parametric eigenvalue problem:

− 1

ρ2

∂2Bj (θ;ρ)

∂θ2
= εj (ρ)Bj (θ;ρ),

1

ρ

∂Bj (θi;ρ)

∂θ
= (−1)i−ncκ̄Bj (θi;ρ), i = n,n + 1,

(72)Bj (θn+1 − 0;ρ) = Bj (θn+1 + 0;ρ).

After substituting the expansion (71) into the Rayleigh–Ritz variational functional and minimizing the functional, the solution of
Eq. (68) is reduced to a solution of the finite set of N ordinary second-order differential equations (5).

As was shown in paper [48] the boundary problem (72) has the analytical solutions for the attractive case

(73)B1(θ;ρ) =
√

y2
1 − x2

π(y2
1 − x2) − x

cosh

[
6y1

(
θ − nπ

3

)]
, ε1(ρ) = −36y2

1(ρ)

ρ2
,

(74)Bj (θ;ρ) =
√√√√ y2

j + x2

π(y2
j + x2) + x

cos

[
6yj

(
θ − nπ

3

)]
, εj (ρ) = 36y2

j (ρ)

ρ2
, j � 2,

and for the repulsive case the index j stats from 1 in Eq. (74). The transcendental equations for the attractive case

y1(ρ) tanh
(
πy1(ρ)

)= −x, 0 � y1(ρ) < ∞, x = c
π

36
ρ,

(75)yj (ρ) tan
(
πyj (ρ)

)= x, j − 3

2
< yj (ρ) < j − 1,

and for the repulsive case

(76)yj (ρ) tan
(
πyj (ρ)

)= x, x = c
π

36
ρ, j − 1 < yj (ρ) < j − 1

2
,

follow from problems (72). Roots yj (ρ) of these equations are calculated numerically with a given accuracy for fixed values ρ from
the considering interval � = [0, ρmax]. The potential matrices V(ρ) and Q(ρ) are defined by formulas (6) and calculated by the
analytical expressions using yj (ρ) and parameter x.

For the attractive case needed matrix elements Hij (ρ) and Qij (ρ) for i, j = 1,N read as follows:

H11(ρ) = −
(

cπ

36

)2 1

ỹ6
1

[
4π2y4

1 − ỹ4
1

4ỹ2
1

+ π2y2
1

3

(
ỹ2

1 + 4x
)]

,

H1j (ρ) = Hj1(ρ) =
(

cπ

36

)2 (−1)1+j y1yj

ỹ3
1 ỹ3

j

[
2π(πx2 + x)

(
1

ỹ2
1

− 1

ỹ2
j

)
+ π + 2π2x + 4(y2

1 ỹ2
j + ỹ2

1y2
j )

(y2
1 + y2

j )2

]
,

Q1j (ρ) = −Qj1(ρ) = −cπ

18

(−1)1+j y1yj

(y2
1 + y2

j )ỹ1ỹj

,

(77)ỹ1 =
√

π(y2
1 − x2) − x,

and

Hjj (ρ) = −
(

cπ

36

)2 1

ỹ6
j

[4π2y4
j − ỹ4

j

4ỹ2
j

− π2y2
j

3

(
ỹ2
j − 4x

)]
,

Hij (ρ) = Hji(ρ) =
(

cπ

36

)2 (−1)i+j yiyj

ỹ3
i ỹ3

j

[
2π(πx2 + x)

(
1

ỹ2
i

+ 1

ỹ2
j

)
− π − 2π2x + 4(y2

i ỹ2
j + ỹ2

i y2
j )

(y2
i − y2

j )2

]
,

Qij (ρ) = −Qji(ρ) = −cπ

18

(−1)i+j yiyj

(y2
i − y2

j )ỹi ỹj

,
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(78)ỹj =
√

π(y2
j + x2) + x, i, j = 2,N.

For the repulsive case one will be used only the formula (78) but with i, j starting from 1, i.e., i, j = 1,N .

Comments: The above matrix potentials are included in the subroutine POTCAL by default. Interaction constant c is accessed
via general common block COMMON/IPROB/CCONST.

We consider a reduction of the boundary problem from semi-axis to finite interval using known asymptotic behavior of variable
coefficients Hij (ρ), Qij (ρ) and εj (ρ) and solutions χj (ρ) for a large value of radial variable ρ [31,32]. For the attractive case the
first threshold value ε1 is equal to −c2κ̄2, other threshold values are equal to zero and for the repulsive case all threshold values εj

are equal to zero. In the left boundary point we have used Neumann boundary condition (12).

6.1. Bound state problem with the attractive interaction

In case of the attractive interaction, the above problem has the bound state energies and corresponded wave functions χj (ρ) that
satisfy the following asymptotics for large ρ [32]

(79)χ1(ρ) → exp (−q̄ρ)√
ρ

, χj (ρ) → Cj

exp (−q̄ρ)

ρ3
.

Here q̄2 = −2E + ε1 � 0, and Cj is the independent constant in ρ. For the calculation of the ground state energy, we have used the
right boundary condition

(80)χj (ρmax) = 0.

The following values of numerical parameters and characters have been used in the test run via the supplied input file 3DDGSS.INP

&PARAM TITLE=’ Ground state energy level of the 2D problem ’,
IPTYPE=0,NROOT=1,MDIM=6,IDIM=2,NPOL=4,RTOL=1.D-15,
NITEM=20,SHIFT=-1.1D0,IPRINT=0,IPRSTP=100,
NMESH=5,RMESH=0.0D0,100.D0,10.D0,150.D0,50.D0,
NDIR=2, NDIL=1,6, NMDIL=0,
IBOUND=3,
FNOUT=’3DNGSS.LPR’,IOUT=7,POTEN=’3DNGSS.PTN’,IOUP=10,
FMATR=’3DNGSS.MAT’,IOUM=11,EVWFN=’3DNGSS.WFN’,IOUF=0

&END

6.2. Half-bound state problem with the attractive interaction

From formula (79) we obtain the homogeneous third type boundary condition at ρ = ρmax

lim
ρ→ρmax

dχ1(ρ)

dρ
= −

(
1

2ρmax
+ q̄

)
χ1(ρmax),

(81)lim
ρ→ρmax

dχj (ρ)

dρ
= −

(
3

ρmax
+ q̄

)
χj (ρmax).

In this case we choose initial value λ(0) = −(1/(2ρmax) + q̄), which is corrected during calculations. This function is included in
the subroutine ASYMEV by default. The following values of numerical parameters and characters have been used in the test run
via the supplied input file 3DDHSS.INP

&PARAM TITLE=’ Half bound state energy level of the 2D problem ’
IPTYPE=0,NROOT=1,MDIM=6,IDIM=2,NPOL=4,RTOL=1.D-13,
NITEM=100,SHIFT=-0.2742D0,IPRINT=0,IPRSTP=100,
NMESH=5,RMESH=0.0D0,100.D0,10.D0,1500.D0,500.D0,
NDIR=2, NDIL=1,6, NMDIL=0,
IBOUND=8,
FNOUT=’3DNHBS.LPR’,IOUT=7,POTEN=’3DNHBS.PTN’,IOUP=10,
FMATR=’3DNHBS.MAT’,IOUM=11,EVWFN=’3DNHBS.WFN’,IOUF=0

&END
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6.3. Scattering problem with the attractive interaction

For scattering problem we have used the following two independent fundamental asymptotic solutions χ
(reg)

j i (ρ), χ
(irr)
j i (ρ) for

large ρ: for i = 1

χ
(reg)

11 (ρ) = 1√
qρ

sin(qρ),

χ
(irr)
11 (ρ) = 1√

qρ
cos(qρ),

χ
(reg)

j1 (ρ) = + 1√
q

cos(qρ)
c
(3)
j1

ρ3
,

(82)χ
(irr)
j1 (ρ) = − 1√

q
sin(qρ)

c
(3)
j1

ρ3
,

for i �= 1, j = 1

χ
(reg)

1i (ρ) = + (−1)1+i

√
k

cos(kρ + δ(0))
c
(3)
1i

ρ3
,

(83)χ
(irr)
1i (ρ) = − (−1)1+i

√
k

sin(kρ + δ(0))
c
(3)
1i

ρ3
,

and for i �= 1, j �= 1

χ
(reg)

ii (ρ) = (−1)i+1

√
kρ

(
sin(kρ + δ(0))

(
1 + s

(2)
ii

ρ2

)
+ cos(kρ + δ(0))

(
c
(1)
ii

ρ
+ c

(2)
ii

ρ2

))
,

χ
(irr)
ii (ρ) = (−1)i+1

√
kρ

(
cos(kρ + δ(0))

(
1 + s

(2)
ii

ρ2

)
− sin(kρ + δ(0))

(
c
(1)
ii

ρ
+ c

(2)
ii

ρ2

))
,

χ
(reg)

j i (ρ) = (−1)i+1

√
kρ

(
sin(kρ + δ(0))

(
s
(1)
j i

ρ
+ s

(2)
j i

ρ2

)
+ cos(kρ + δ(0))

c
(2)
j i

ρ2

)
,

(84)χ
(irr)
j i (ρ) = (−1)i+1

√
kρ

(
cos(kρ + δ(0))

(
s
(1)
j i

ρ
+ s

(2)
j i

ρ2

)
− sin(kρ + δ(0))

c
(2)
j i

ρ2

)
.

Here k1 ≡ q = √
2E − ε1, kj ≡ k = √

2E, j = 2,N and

c
(3)
j1 = −q

72

c2π2
Q

(5/2)

j1 , c
(3)
1i = k

72

c2π2
Q

(5/2)

1i ,

s
(2)
ii = − (4ε

(2)
i − 1)(4ε

(2)
i − 9)

128k2
+ 1

2

N∑
l=2,l �=i

Q
(2)
il Q

(2)
li , i �= 1,

c
(1)
ii = 4ε

(2)
i − 1

8k
, c

(2)
ii = ε

(3)
i

4k
,

s
(1)
j i = −Q

(2)
j i , s

(2)
j i = 1

2

(
N∑

l=2,l �=j,l �=i

Q
(2)
j l Q

(2)
li − Q

(3)
j i

)
, j �= 1, i �= 1,

c
(2)
j i = − (2ε

(2)
j + 2ε

(2)
i − 1)Q

(2)
j i

8k
,

Q
(5/2)

j1 = −216(−1)j+1(2j − 3)

|c|3/2π2
, Q

(5/2)

1i = 216(−1)1+i (2i − 3)

|c|3/2π2
,

Q
(2)
ij = 18(−1)i+j (2i − 3)(2j − 3)

cπ2(i − j)(i + j − 3)
, Q

(3)
ij = − 36

cπ2
Q

(2)
ij ,

(85)ε
(2)
i = (6i − 9)2, ε

(3)
i = − 72

cπ2
ε
(2)
i .
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In order to compare with results [31], δ(0) = π/4, and 2E = 0.085844322191962 (q = 0.6) have been chosen. The above matrix-
solutions are included in the subroutine ASYMSC by default for c < 0. The following values of numerical parameters and characters
have been used in the test run via the supplied input file 3DDSCM.INP

&PARAS TITLE=’ Reaction matrix of the 2D problem - I ’,
IPTYPE=1,MDIM=6,IDIM=2,NPOL=4,
SHIFT=0.858443221919622D-1,IPRINT=0,IPRSTP=150,
NMESH=5,RMESH=0.0D0,2000.D0,100.D0,4000.D0,2000.D0,
NDIR=2, NDIL=1,6, NMDIL=0,
THRSHL=-0.274155677808037D0,0.D0,0.D0,0.D0,0.D0,0.D0,
IBOUND=8,
FNOUT=’3DNSCM.LPR’,IOUT=7,POTEN=’3DNSCM.PTN’,IOUP=10,
FMATR=’3DNSCM.MAT’,IOUM=11,EVWFN=’3DNSCM.WFN’,IOUF=0

&END

6.4. Scattering problem with the repulsive interaction

In case of the repulsive interaction, we have used asymptotic solutions (84) with

s
(2)
ii = − (4ε

(2)
i − 1)(4ε

(2)
i − 9)

128k2
+ 1

2

N∑
l �=i,l=1

Q
(2)
il Q

(2)
li ,

c
(1)
ii = 4ε

(2)
i − 1

8k
, c

(2)
ii = ε

(3)
i

4k
,

s
(1)
j i = −Q

(2)
j i , s

(2)
j i = 1

2

(
N∑

l=1,l �=j,l �=i

Q
(2)
j l Q

(2)
li − Q

(3)
j i

)
,

c
(2)
j i = − (2ε

(2)
j + 2ε

(2)
i − 1)Q

(2)
j i

8k
,

Q
(2)
ij = 18(−1)i+j (2i − 1)(2j − 1)

cπ2(i − j)(i + j − 1)
, Q

(3)
ij = − 36

cπ2
Q

(2)
ij ,

(86)ε
(2)
i = (6i − 3)2, ε

(3)
i = − 72

cπ2
ε
(2)
i ,

and indexes i, j start from 1. In order to compare with results [31], δ(0) = π/4, and 2E = 0.01 (k = 0.1) have been chosen.
The matrix-solutions (84), (86) are included in the subroutine ASYMSC by default for c > 0. The following values of numerical
parameters and characters have been used in the test run via the supplied input file 3DDSCP.INP

&PARAS TITLE=’ Reaction matrix of the 2D problem - II ’,
IPTYPE=1,MDIM=6,IDIM=2,NPOL=4,
SHIFT= 0.01D0,IPRINT=0,IPRSTP=150,
NMESH=7,RMESH=0.0D0,2000.D0,100.D0,4000.D0,2000.D0,
2000.D0,11000.D0,
NDIR=2, NDIL=1,6, NMDIL=0,
THRSHL= 0.D0,0.D0,0.D0,0.D0,0.D0,0.D0,
IBOUND=8,
FNOUT=’3DNSCP.LPR’,IOUT=7,POTEN=’3DNSCP.PTN’,IOUP=10,
FMATR=’3DNSCP.MAT’,IOUM=11,EVWFN=’3DNSCP.WFN’,IOUF=0

&END

These four tests run approximately for 1.01 s, 11.01 s, 7.06 s and 9.39 s without calculation of matrix potentials on the Intel
Pentium IV 2.4 GHz, respectively. Total run time is 28.48 s.
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Appendix A. Test run output

PROBLEM: Ground state energy level of the 2D problem
********

C O N T R O L I N F O R M A T I O N
------------------------------------

NUMBER OF DIFFERENTIAL EQUATIONS...... (MDIM ) = 6
NUMBER OF ENERGY LEVELS REQUIRED...... (NROOT ) = 1
NUMBER OF FINITE ELEMENTS............. (NELEM ) = 250
NUMBER OF GRID POINTS................. (NGRID ) = 1001
ORDER OF SHAPE FUNCTIONS............. (NPOL ) = 4
ORDER OF GAUSS-LEGENDRE QUADRATURE... (NGQ ) = 5
NUMBER OF SUBSPACE ITERATION VECTORS.. (NC ) = 2
DIMENSION OF ENVELOPE SPACE........... (IDIM ) = 2
BOUNDARY CONDITION CODE............... (IBOUND) = 3
SHIFT OF DOUBLE ENERGY SPECTRUM....... (SHIFT ) = -1.10000
CONVERGENCE TOLERANCE................. (RTOL ) = 0.100000E-14

SUBDIVISION OF RHO-REGION ON THE FINITE-ELEMENT GROUPS:
******************************************************

NO OF NUMBER OF BEGIN OF LENGTH OF GRID END OF
GROUP ELEMENTS INTERVAL ELEMENT STEP INTERVAL
----- --------- -------- --------- -------- --------

1 100 0.000 0.10000 0.02500 10.000
2 150 10.000 0.26667 0.06667 50.000

T O T A L S Y S T E M D A T A
-------------------------------

TOTAL NUMBER OF ALGEBRAIC EQUATIONS.... (NN ) = 1000
TOTAL NUMBER OF MATRIX ELEMENTS........ (NWK) = 3496
MAXIMUM HALF BANDWIDTH................. (MK ) = 5
MEAN HALF BANDWIDTH................. (MMK) = 3

NDIM, MDIM= 1 6

THERE ARE 0 ROOTS LOWER THEN SHIFT
CONVERGENCE REACHED FOR RTOL 0.1000E-14
I T E R A T I O N N U M B E R 6
RELATIVE TOLERANCE REACHED ON EIGENVALUES
0.3955E-18

********************************************************************************

R O O T N U M B E R E I G E N V A L U E
----------------------- ---------------------

1 -0.5482213063633842

********************************************************************************

T O T A L S Y S T E M D A T A
-------------------------------

TOTAL NUMBER OF ALGEBRAIC EQUATIONS.... (NN ) = 6000
TOTAL NUMBER OF MATRIX ELEMENTS........ (NWK) = 110856
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MAXIMUM HALF BANDWIDTH................. (MK ) = 30
MEAN HALF BANDWIDTH................. (MMK) = 18

NDIM, MDIM= 6 6

THERE ARE 0 ROOTS LOWER THEN SHIFT
CONVERGENCE REACHED FOR RTOL 0.1000E-14
I T E R A T I O N N U M B E R 6
RELATIVE TOLERANCE REACHED ON EIGENVALUES
0.2729E-16

********************************************************************************

R O O T N U M B E R E I G E N V A L U E
----------------------- ---------------------

1 -0.5483113526413836

********************************************************************************

PROBLEM: Half bound state energy level of the 2D problem
********

C O N T R O L I N F O R M A T I O N
------------------------------------

NUMBER OF DIFFERENTIAL EQUATIONS...... (MDIM ) = 6
NUMBER OF ENERGY LEVELS REQUIRED...... (NROOT ) = 1
NUMBER OF FINITE ELEMENTS............. (NELEM ) = 1600
NUMBER OF GRID POINTS................. (NGRID ) = 6401
ORDER OF SHAPE FUNCTIONS............. (NPOL ) = 4
ORDER OF GAUSS-LEGENDRE QUADRATURE... (NGQ ) = 5
NUMBER OF SUBSPACE ITERATION VECTORS.. (NC ) = 2
DIMENSION OF ENVELOPE SPACE........... (IDIM ) = 2
BOUNDARY CONDITION CODE............... (IBOUND) = 8
SHIFT OF DOUBLE ENERGY SPECTRUM....... (SHIFT ) = -0.274200
CONVERGENCE TOLERANCE................. (RTOL ) = 0.100000E-12

SUBDIVISION OF RHO-REGION ON THE FINITE-ELEMENT GROUPS:
******************************************************

NO OF NUMBER OF BEGIN OF LENGTH OF GRID END OF
GROUP ELEMENTS INTERVAL ELEMENT STEP INTERVAL
----- --------- -------- --------- -------- --------
1 100 0.000 0.10000 0.02500 10.000
2 1500 10.000 0.32667 0.08167 500.000

T O T A L S Y S T E M D A T A
-------------------------------

TOTAL NUMBER OF ALGEBRAIC EQUATIONS.... (NN ) = 6401
TOTAL NUMBER OF MATRIX ELEMENTS........ (NWK) = 22401
MAXIMUM HALF BANDWIDTH................. (MK ) = 5
MEAN HALF BANDWIDTH................. (MMK) = 3

NDIM, MDIM= 1 6
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THERE ARE 1 ROOTS LOWER THEN SHIFT
CONVERGENCE REACHED FOR RTOL 0.1000E-12
I T E R A T I O N N U M B E R 9
RELATIVE TOLERANCE REACHED ON EIGENVALUES
0.6835E-14

I T E R A T I O N N U M B E R 22
RELATIVE TOLERANCE REACHED ON LAMBDA
0.4462E-13

********************************************************************************

R O O T N U M B E R E I G E N V A L U E L A M B D A
----------------------- --------------------- ----------------

1 -0.1370771705679387 -0.6232569850201794E-03

********************************************************************************

T O T A L S Y S T E M D A T A
-------------------------------

TOTAL NUMBER OF ALGEBRAIC EQUATIONS.... (NN ) = 38406
TOTAL NUMBER OF MATRIX ELEMENTS........ (NWK) = 710421
MAXIMUM HALF BANDWIDTH................. (MK ) = 30
MEAN HALF BANDWIDTH................. (MMK) = 18

NDIM, MDIM= 6 6

THERE ARE 1 ROOTS LOWER THEN SHIFT
CONVERGENCE REACHED FOR RTOL 0.1000E-12
I T E R A T I O N N U M B E R 9
RELATIVE TOLERANCE REACHED ON EIGENVALUES
0.1629E-13

I T E R A T I O N N U M B E R 15
RELATIVE TOLERANCE REACHED ON LAMBDA
0.7793E-13

********************************************************************************

R O O T N U M B E R E I G E N V A L U E L A M B D A
----------------------- --------------------- ----------------

1 -0.1370777081621216 -0.1131640030879691E-02

********************************************************************************

PROBLEM: Reaction matrix of the 2D problem - I
********

C O N T R O L I N F O R M A T I O N
------------------------------------

NUMBER OF DIFFERENTIAL EQUATIONS..... (MDIM ) = 6
NUMBER OF FINITE ELEMENTS............ (NELEM ) = 6000
NUMBER OF GRID POINTS................ (NGRID ) = 24001
ORDER OF SHAPE FUNCTIONS............. (NPOL ) = 4
ORDER OF GAUSS-LEGENDRE QUADRATURE... (NGQ ) = 5
DIMENSION OF ENVELOPE SPACE.......... (IDIM ) = 2
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BOUNDARY CONDITION CODE.............. (IBOUND) = 8
DOUBLE ENERGY SPECTRUM............... (SHIFT ) = 0.858443E-01

SUBDIVISION OF RHO-REGION ON THE FINITE-ELEMENT GROUPS:
******************************************************

NO OF NUMBER OF BEGIN OF LENGTH OF GRID END OF
GROUP ELEMENTS INTERVAL ELEMENT STEP INTERVAL
----- --------- -------- --------- -------- --------
1 2000 0.000 0.05000 0.01250 100.000
2 4000 100.000 0.47500 0.11875 2000.000

T O T A L S Y S T E M D A T A
-------------------------------

TOTAL NUMBER OF ALGEBRAIC EQUATIONS.... (NN ) = 24001
TOTAL NUMBER OF MATRIX ELEMENTS........ (NWK) = 84001
MAXIMUM HALF BANDWIDTH................. (MK ) = 5
MEAN HALF BANDWIDTH................. (MMK) = 3

NDIM, MDIM= 1 6

NUMBER OF OPEN CHANNELS......... (NOPEN) = 1
VALUE OF I-TH MOMENTUM.......... (I,QR ) = 1 0.6000E+00

C H E C K W R O N S K I A N
------------------------------

1.00000

********************************************************************************

R E A C T I O N M A T R I X
-------------------------------

-.224884

********************************************************************************

T O T A L S Y S T E M D A T A
-------------------------------

TOTAL NUMBER OF ALGEBRAIC EQUATIONS.... (NN ) = 144006
TOTAL NUMBER OF MATRIX ELEMENTS........ (NWK) = 2664021
MAXIMUM HALF BANDWIDTH................. (MK ) = 30
MEAN HALF BANDWIDTH................. (MMK) = 18

NDIM, MDIM= 6 6

NUMBER OF OPEN CHANNELS........ (NOPEN) = 6
VALUE OF I-TH MOMENTUM......... (I,QR ) = 1 0.6000E+00
VALUE OF I-TH MOMENTUM......... (I,QR ) = 2 0.2930E+00
VALUE OF I-TH MOMENTUM......... (I,QR ) = 3 0.2930E+00
VALUE OF I-TH MOMENTUM......... (I,QR ) = 4 0.2930E+00
VALUE OF I-TH MOMENTUM......... (I,QR ) = 5 0.2930E+00
VALUE OF I-TH MOMENTUM......... (I,QR ) = 6 0.2930E+00

C H E C K W R O N S K I A N
------------------------------
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1.00000 -.497999E-09 -.320749E-07 -.160361E-06 -.466201E-06 -.105346E-05
0.202460E-08 1.00000 0.722264E-07 0.141761E-06 -.134774E-07 -.153784E-05
-.512979E-07 0.843397E-07 1.00002 0.907839E-06 0.516355E-07 -.528737E-05
-.289234E-06 0.190461E-06 0.121896E-05 1.00046 0.399782E-05 -.107733E-04
-.876239E-06 0.116431E-06 0.602785E-06 0.616311E-05 1.00545 -.838095E-06
-.203693E-05 -.125993E-05 -.427531E-05 -.816296E-05 0.764553E-05 1.03840

********************************************************************************

R E A C T I O N M A T R I X
-------------------------------

-.126136 0.500076E-07 0.947352E-08 0.623779E-07 0.254430E-06 0.646967E-06
0.488556E-07 0.594057 0.329502E-01 0.643311E-02 0.227628E-02 0.102439E-02
-.731879E-09 0.329500E-01 0.633301 0.416376E-01 0.972776E-02 0.378363E-02
0.126927E-09 0.643288E-02 0.416358E-01 0.634932 0.430101E-01 0.103123E-01
0.647861E-08 0.227596E-02 0.972623E-02 0.429971E-01 0.625075 0.422897E-01
0.163590E-07 0.102391E-02 0.378175E-02 0.103055E-01 0.422177E-01 0.583695

********************************************************************************

PROBLEM: Reaction matrix of the 2D problem - II
********

C O N T R O L I N F O R M A T I O N
------------------------------------

NUMBER OF DIFFERENTIAL EQUATIONS..... (MDIM ) = 6
NUMBER OF FINITE ELEMENTS............ (NELEM ) = 8000
NUMBER OF GRID POINTS................ (NGRID ) = 32001
ORDER OF SHAPE FUNCTIONS............. (NPOL ) = 4
ORDER OF GAUSS-LEGENDRE QUADRATURE... (NGQ ) = 5
DIMENSION OF ENVELOPE SPACE.......... (IDIM ) = 2
BOUNDARY CONDITION CODE.............. (IBOUND) = 8
DOUBLE ENERGY SPECTRUM............... (SHIFT ) = 0.100000E-01

SUBDIVISION OF RHO-REGION ON THE FINITE-ELEMENT GROUPS:
******************************************************

NO OF NUMBER OF BEGIN OF LENGTH OF GRID END OF
GROUP ELEMENTS INTERVAL ELEMENT STEP INTERVAL
----- --------- -------- --------- -------- --------

1 2000 0.000 0.05000 0.01250 100.000
2 4000 100.000 0.47500 0.11875 2000.000
3 2000 2000.000 4.50000 1.12500 11000.000

T O T A L S Y S T E M D A T A
-------------------------------

TOTAL NUMBER OF ALGEBRAIC EQUATIONS.... (NN ) = 32001
TOTAL NUMBER OF MATRIX ELEMENTS........ (NWK) = 112001
MAXIMUM HALF BANDWIDTH................. (MK ) = 5
MEAN HALF BANDWIDTH................. (MMK) = 3

NDIM, MDIM= 1 6

NUMBER OF OPEN CHANNELS......... (NOPEN) = 1
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VALUE OF I-TH MOMENTUM.......... (I,QR ) = 1 0.1000E+00

C H E C K W R O N S K I A N
------------------------------

1.00000

********************************************************************************

R E A C T I O N M A T R I X
-------------------------------

-2.56560

********************************************************************************

T O T A L S Y S T E M D A T A
-------------------------------

TOTAL NUMBER OF ALGEBRAIC EQUATIONS.... (NN ) = 192006
TOTAL NUMBER OF MATRIX ELEMENTS........ (NWK) = 3552021
MAXIMUM HALF BANDWIDTH................. (MK ) = 30
MEAN HALF BANDWIDTH................. (MMK) = 18

NDIM, MDIM= 6 6

NUMBER OF OPEN CHANNELS........ (NOPEN) = 6
VALUE OF I-TH MOMENTUM......... (I,QR ) = 1 0.1000E+00
VALUE OF I-TH MOMENTUM......... (I,QR ) = 2 0.1000E+00
VALUE OF I-TH MOMENTUM......... (I,QR ) = 3 0.1000E+00
VALUE OF I-TH MOMENTUM......... (I,QR ) = 4 0.1000E+00
VALUE OF I-TH MOMENTUM......... (I,QR ) = 5 0.1000E+00
VALUE OF I-TH MOMENTUM......... (I,QR ) = 6 0.1000E+00

C H E C K W R O N S K I A N
------------------------------

1.00000 0.567061E-08 0.102062E-07 0.138098E-07 0.108079E-07 -.191238E-07
0.586799E-08 1.00000 0.349612E-07 0.436920E-07 0.312694E-07 -.679934E-07
0.110412E-07 0.401423E-07 1.00002 0.113035E-06 0.551983E-07 -.152542E-06
0.160442E-07 0.529045E-07 0.147761E-06 1.00037 0.277508E-06 -.279382E-06
0.154999E-07 0.479263E-07 0.963258E-07 0.404796E-06 1.00291 0.206195E-06
-.106373E-07 -.399516E-07 -.946524E-07 -.160079E-06 0.524729E-06 1.01472

********************************************************************************

R E A C T I O N M A T R I X
-------------------------------

-2.56205 -.615521E-01 -.127812E-01 -.462205E-02 -.218770E-02 -.121841E-02
-.615521E-01 -2.63648 -.789722E-01 -.196070E-01 -.805618E-02 -.418943E-02
-.127812E-01 -.789723E-01 -2.64465 -.825942E-01 -.217596E-01 -.945895E-02
-.462208E-02 -.196071E-01 -.825940E-01 -2.65580 -.850115E-01 -.231961E-01
-.218774E-02 -.805632E-02 -.217598E-01 -.850074E-01 -2.69374 -.891220E-01
-.121843E-02 -.418952E-02 -.945904E-02 -.231949E-01 -.890963E-01 -2.80482

********************************************************************************
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