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A FORTRAN 77 program for calculating energy values, reaction matrix and corresponding radial wave
functions in a coupled-channel approximation of the hyperspherical adiabatic approach is presented.
In this approach, a multi-dimensional Schrödinger equation is reduced to a system of the coupled
second-order ordinary differential equations on a finite interval with homogeneous boundary conditions:
(i) the Dirichlet, Neumann and third type at the left and right boundary points for continuous spectrum
problem, (ii) the Dirichlet and Neumann type conditions at left boundary point and Dirichlet, Neumann
and third type at the right boundary point for the discrete spectrum problem. The resulting system of
radial equations containing the potential matrix elements and first-derivative coupling terms is solved
using high-order accuracy approximations of the finite element method. As a test desk, the program is
applied to the calculation of the reaction matrix and radial wave functions for 3D-model of a hydrogen-
like atom in a homogeneous magnetic field. This version extends the previous version 1.0 of the KANTBP
program [O. Chuluunbaatar, A.A. Gusev, A.G. Abrashkevich, A. Amaya-Tapia, M.S. Kaschiev, S.Y. Larsen, S.I.
Vinitsky, Comput. Phys. Commun. 177 (2007) 649–675].

Program summary

Program title: KANTBP
Catalogue identifier: ADZH_v2_0
Program summary URL: http://cpc.cs.qub.ac.uk/summaries/ADZH_v2_0.html
Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland
Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html
No. of lines in distributed program, including test data, etc.: 20 403
No. of bytes in distributed program, including test data, etc.: 147 563
Distribution format: tar.gz
Programming language: FORTRAN 77
Computer: Intel Xeon EM64T, Alpha 21264A, AMD Athlon MP, Pentium IV Xeon, Opteron 248, Intel
Pentium IV
Operating system: OC Linux, Unix AIX 5.3, SunOS 5.8, Solaris, Windows XP
RAM: This depends on

1. the number of differential equations;
2. the number and order of finite elements;
3. the number of hyperradial points; and
4. the number of eigensolutions required.

The test run requires 2 MB
Classification: 2.1, 2.4
External routines: GAULEG and GAUSSJ [2]
Nature of problem: In the hyperspherical adiabatic approach [3–5], a multidimensional Schrödinger
equation for a two-electron system [6] or a hydrogen atom in magnetic field [7–9] is reduced by

✩ This paper and its associated computer program are available via the Computer Physics Communications homepage on ScienceDirect (http://www.sciencedirect.com/
science/journal/00104655).
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separating radial coordinate ρ from the angular variables to a system of the second-order ordinary
differential equations containing the potential matrix elements and first-derivative coupling terms. The
purpose of this paper is to present the finite element method procedure based on the use of high-order
accuracy approximations for calculating approximate eigensolutions of the continuum spectrum for such
systems of coupled differential equations on finite intervals of the radial variable ρ ∈ [ρmin,ρmax]. This
approach can be used in the calculations of effects of electron screening on low-energy fusion cross
sections [10–12].
Solution method: The boundary problems for the coupled second-order differential equations are solved
by the finite element method using high-order accuracy approximations [13]. The generalized algebraic
eigenvalue problem AF = EBF with respect to pair unknowns (E,F) arising after the replacement of the
differential problem by the finite-element approximation is solved by the subspace iteration method
using the SSPACE program [14]. The generalized algebraic eigenvalue problem (A − EB)F = λDF with
respect to pair unknowns (λ,F) arising after the corresponding replacement of the scattering boundary
problem in open channels at fixed energy value, E , is solved by the LDLT factorization of symmetric
matrix and back-substitution methods using the DECOMP and REDBAK programs, respectively [14]. As a
test desk, the program is applied to the calculation of the reaction matrix and corresponding radial wave
functions for 3D-model of a hydrogen-like atom in a homogeneous magnetic field described in [9] on
finite intervals of the radial variable ρ ∈ [ρmin,ρmax]. For this benchmark model the required analytical
expressions for asymptotics of the potential matrix elements and first-derivative coupling terms, and also
asymptotics of radial solutions of the boundary problems for coupled differential equations have been
produced with help of a MAPLE computer algebra system.
Restrictions: The computer memory requirements depend on:

1. the number of differential equations;
2. the number and order of finite elements;
3. the total number of hyperradial points; and
4. the number of eigensolutions required.

Restrictions due to dimension sizes may be easily alleviated by altering PARAMETER statements (see
Section 3 and [1] for details). The user must also supply subroutine POTCAL for evaluating potential
matrix elements. The user should also supply subroutines ASYMEV (when solving the eigenvalue
problem) or ASYMS0 and ASYMSC (when solving the scattering problem) which evaluate asymptotics
of the radial wave functions at left and right boundary points in case of a boundary condition of the
third type for the above problems.
Running time: The running time depends critically upon:

1. the number of differential equations;
2. the number and order of finite elements;
3. the total number of hyperradial points on interval [ρmin,ρmax]; and
4. the number of eigensolutions required.

The test run which accompanies this paper took 2 s without calculation of matrix potentials on the Intel
Pentium IV 2.4 GHz.
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1. Introduction

In our previous paper [1] we have described the finite element method procedure based on the use of high-order accuracy approxima-
tions for calculating approximate eigensolutions of the discrete and continuum spectrum for systems of coupled differential equations on
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a finite interval of the radial variable ρ ∈ [ρmin,ρmax] with homogeneous boundary conditions: the Dirichlet, Neumann type at ρ = ρmin;
the Dirichlet, Neumann and third type at ρ = ρmax.

The purpose of this paper is to extend the framework of work [1] for calculating approximate eigensolutions of the continuum spec-
trum for systems of coupled differential equations on finite intervals of the radial variable ρ ∈ [ρmin,ρmax] using a general homogeneous
boundary condition of the third type at ρ = ρmin. The third-type boundary conditions at ρ = ρmin are formulated by using known asymp-
totics for a set of linear independent regular solutions for problems under consideration [2–9]. This approach can be used in calculations
of effects of electron screening on low-energy fusion cross sections [10–13], channeling processes [14,15], threshold phenomena in the for-
mation and ionization of (anti)hydrogen-like atoms and ions in magnetic traps [16], quantum dots in magnetic field [17–19] and potential
scattering with confinement potentials [20].

The paper is organized as follows. In Section 2 we give a brief overreview of the problem. A description of the new version of the
KANTBP program is given in Section 3. Example of the asymptotic expansions of matrix elements and regular solutions at small ρ together
with Test desk are discussed in Section 4.

2. Statement of the problem

In the Kantorovich approach [21], the d-dimensional Schrödinger equation is reduced to a finite set of N ordinary second-order differ-
ential equations on the finite interval [ρmin,ρmax] for the partial solution χ(ρ) ≡ χ (i)(ρ) = (χ

(i)
1 (ρ), . . . ,χ

(i)
N (ρ))T

(L − 2EI)χ(ρ) ≡
(

− 1

ρd−1
I

d

dρ
ρd−1 d

dρ
+ V(ρ) + Q(ρ)

d

dρ
+ 1

ρd−1

dρd−1Q(ρ)

dρ
− 2EI

)
χ(ρ) = 0. (1)

Here I, V(ρ) and Q(ρ) are the unit, symmetric and antisymmetric matrices of dimension N × N , respectively.
In the present work, scattering problem is solved using the homogeneous third type boundary conditions at ρ = ρmin > 0 and ρ =

ρmax � 1:

dΦ(ρ)

dρ
= R(ρ)Φ(ρ), (2)

where Φ(ρ) = {χ (i)(ρ)}No
i=1 is the required matrix-solution of dimension N × No and No is the number of open channels. Suppose that

a set of linear independent regular solutions Φ̃reg(ρ) = {χ̃ (i)
reg(ρ)}N

i=1 for a problem under consideration with components χ̃ (i)
reg(ρ) =

(χ̃
reg
1i (ρ), . . . , χ̃

reg
Ni (ρ))T is known at small ρ (see, e.g., [2–9,16,22]).

Using a linear combination of these regular solutions, χ̃ (i)
reg(ρ), we can find required matrix solution Φ(ρ) at ρ = ρmin > 0:

Φ(ρ) = Φ̃reg(ρ)C, (3)

where C is the unknown nonzero constant matrix of dimension N × No . Using identity CC−1 = I, the R(ρ) matrix at ρ = ρmin can be
easily found via the known set of linear independent regular solutions Φ̃reg(ρ)

R(ρ) ≡ dΦ̃reg(ρ)

dρ
Φ̃

−1
reg(ρ) = dΦ(ρ)

dρ
Φ−1(ρ). (4)

From this we obtain the quadratic functional (compare with Eq. (23) in [1])

Ξ(Φ, E,ρmin,ρmax) ≡
ρmax∫

ρmin

ΦT(ρ)(L − 2E I)Φ(ρ)ρd−1 dρ

= Π(Φ, E,ρmin,ρmax) − ρd−1
maxΦT(ρmax)G(ρmax)Φ(ρmax), (5)

where Π(Φ, E,ρmin,ρmax) is the symmetric functional

Π(Φ, E,ρmin,ρmax) =
ρmax∫

ρmin

[
dΦT(ρ)

dρ

dΦ(ρ)

dρ
+ ΦT(ρ)V(ρ)Φ(ρ)

+ ΦT(ρ)Q(ρ)
dΦ(ρ)

dρ
− dΦ(ρ)T

dρ
Q(ρ)Φ(ρ) − 2EΦT(ρ)Φ(ρ)

]
ρd−1dρ

+ ρd−1
min ΦT(ρmin)G(ρmin)Φ(ρmin), (6)

and G(ρ) = R(ρ) − Q(ρ) is the matrix of dimension N × N which should be symmetric according to the conventual R-matrix theory. The
matrix G(ρmax) is calculated by a procedure in the framework of the FEM described in our previous paper [1].

After numerical calculation of solution Φ(ρ) in the nodes of the finite element grid Ω on interval [ρmin,ρmax] using scheme imple-
mented in [1] which takes into account Eqs. (2)–(6), matrix C can be evaluated by the formula

C = Φ̃
−1
reg(ρmin)Φ(ρmin). (7)

The matrix C is applied for analysis of the matrix-solution Φ(ρ) in the vicinity of ρ = 0. For example, constant matrix C satisfies ratio

Φ̃
−1
reg(0)Φ(0) even if Φ(0) ≡ 0 or is very close to zero. To extract required matrix C in later case, a user can use known asymptotics of the

regular solutions at ρmin. Value ρmin is defined on the asymptotic domain of the Φ̃reg(ρ).



Author's personal copy

688 O. Chuluunbaatar et al. / Computer Physics Communications 179 (2008) 685–693

Fig. 1. Flow diagram of the new version of the KANTBP program.

3. Description of the program

Fig. 1 presents a flow diagram for the new version of the KANTBP program. The function of each subroutine except for a new user-
supplied subroutine ASYMS0 is described in [1]. KANTBP program is called from the main routine (supplied by a user) which sets
dimensions of the arrays and is responsible for the input data. In the present code each array declarator is written in terms of the
symbolic names of constants. These constants are defined in the following PARAMETER statement in the main routine:

PARAMETER (MTOT=9000000,MITOT=900000,NMESH1=7,MDIM1=6)

where

• MTOT is the dimension of the working DOUBLE PRECISION array TOT.
• MITOT is the dimension of the working INTEGER array ITOT.
• NMESH1 is the dimension of the DOUBLE PRECISION array RMESH containing the information about the subdivision of the hyperradial

interval [0,ρmax] on subintervals and number of elements on each one of them. NMESH1 is always odd and � 3.
• MDIM1 is the dimension of the DOUBLE PRECISION array THRSHL and INTEGER array NDIL containing information about a set of

threshold values and numbers of coupled differential equations, respectively.

A more concrete assignment of these dimensions is discussed below. In order to change the dimensions of the code, all one has to do is
to modify the single PARAMETER statement defined above in the main program unit.
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The calling sequence for the subroutine KANTBP is:

CALL KANTBP(TITLE,IPTYPE,NROOT,MDIM,IDIM,NPOL,RTOL,NITEM,
1 SHIFT,IPRINT,IPRSTP,NMESH,RMESH,NDIR,NDIL,NMDIL,
2 THRSHL,IBOUND,FNOUT,IOUT,POTEN,IOUP,FMATR,IOUM,
3 EVWFN,IOUF,TOT,ITOT,MTOT,MITOT)

A new user-supplied subroutine ASYMS0 for calculating the regular asymptotic matrix-solution and its derivative at ρ = ρmin has been
added to the scattering problem solver program. It should be written as follows:

SUBROUTINE ASYMS0(RMIN,NDIM,SHIFT,NOPEN,QR,PREG,DREG,IOUT)
C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
C . .
C . P R O G R A M .
C . TO CALCULATE THE REGULAR ASYMPTOTIC MATRIX .
C . SOLUTION PREG AND ITS DERIVATIVE DREG .
C . AT RMIN .
C . .
C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

IMPLICIT REAL*8 (A-H,O-Z)
DIMENSION QR(NOPEN),PREG(NDIM,NDIM),DREG(NDIM,NDIM)
RETURN
END

Here array QR contains a set of momentum values, SHIFT contains the given double energy spectrum value, and NOPEN is the number
of open channels. To set the third type boundary conditions at both points ρmin and ρmax, flag IBOUND always should be 8. Other
parameters used in the ASYMS0 and also input and output data for the KANTBP program are described in [1].

4. Test desk

4.1. Asymptotic expansions of the matrix elements at small ρ

The test run which accompanies the KANTBP program computes the reaction matrix and corresponding radial wave functions for
3D-model of a hydrogen-like atom in a homogeneous magnetic field [22]. According to [16], asymptotic values of the potential curves
E j(ρ), radial matrix elements H jj′ (ρ) and Q jj′ (ρ) at small ρ in Eq. (1) describing a hydrogen atom in a homogeneous magnetic field
characterized by l = 2 j − 2 + |m| for even states (σ = +1) and l = 2 j − 1 + |m| for odd states (σ = −1) are given by expansion in powers
of ρ with finite l, l′

E j(ρ) = Ē(0)
j + Ē(2)

j ρ2 +
[kmax/4]∑

k=1

ρ4k Ē(4k)
j , H jj′ (ρ) =

[kmax/4]∑
k=2

ρ4k−2 H̄(4k−2)

j j′ ,

Q jj′ (ρ) =
[kmax/4]∑

k=1

ρ4k−1 Q̄ (4k−1)

j j′ , ρ � min(l, l′)/
√

4γ . (8)

Note, that all

Q̄ (4k−1)

j j′ ≡ 0 and H̄(4k−2)

j j′ ≡ 0 if | j − j′| > 2k. (9)

In this work, the calculations of the above matrix elements were performed using algorithm implemented in MAPLE up to kmax = 16.
Below we present the first several coefficients of the matrix elements expansions:

Ē(0)
j = l(l + 1), Ē(2)

j = γm, Ē(4)
j = γ 2

2

l2 + l − 1 + m2

(2l − 1)(2l + 3)
,

Q̄ (3)
j j+2 = γ 2

2

√
(l + 1)2 − m2

√
(l + 2)2 − m2

√
2l + 1(2l + 3)2

√
2l + 5

,

H̄(6)
j j = γ 4

2

((
16l4 + 32l3 + 248l2 + 232l + 201

)
m4

+ (−10l2 − 224l4 − 96l5 + 118l − 288l3 − 32l6 − 195
)
m2

+ 16l8 + 64l7 + 46l + 40l6 − 127l4 − 104l5 + 71l2 − 6l3 − 6
)
/
(
(2l − 3)(2l − 1)4(2l + 3)4(2l + 5)

)
,

H̄(6)
j j+4 = −γ 4

√
(l + 1)2 − m2

√
(l + 2)2 − m2

√
(l + 3)2 − m2

√
(l + 4)2 − m2

4
√

2l + 1(2l + 3)2(2l + 5)(2l + 7)2
√

2l + 9
. (10)

Such asymptotic behavior of the effective potentials on the interval ρ ∈ [0,ρmin] allows us to find regular and bound solutions at
ρ → 0 that satisfy the homogeneous third type boundary conditions (2) at ρ = ρmin > 0.
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4.2. Asymptotic expansions of the regular solutions at small ρ

The asymptotics of the regular solutions χ̃
(io)
j;reg(ρ) ≡ χ̃ jio (ρ), j = 1, . . . , N , io = 1, . . . , N , of Eq. (1) are sought as expansions in powers

of ρ up to the finite order kmax

χ̃ ji;reg(ρ) =
kmax∑
k=0

χ̃
(k)
ji ρμio +k, χ̃

(0)
ji = δ ji, χ̃

(k<0)
ji ≡ 0, (11)

where μio is the unknown characteristic parameter. Substituting expansion (11) into (1) and taking into account Eqs. (8)–(10), we obtain

the following system of recurrence relations for the set of the unknown coefficients χ̃
(k)
ji

−(l′ + 1 + μio + k)(μio − l′ + k)χ̃
(k)
ji

= 2Z χ̃
(k−1)
ji − (mγ − ε)χ̃

(k−2)
ji −

k∑
s=4

Ē(s)
j χ̃

(k−s)
ji −

k−2∑
s=4

H̄(s)
j j χ̃

(k−s−2)
ji

−
k−1∑
s=3

min( jmax,i+[s/4])∑
j′=max(1,i−[s/4]), j′ 
= j

(2l + 2k − s)Q̄ (s)
j j′ χ̃

(k−s−1)

j′ i −
k−2∑
s=4

min( jmax,i+[s/4])∑
j′=max(1,i−[s/4]), j′ 
= j

H̄(s)
j j′ χ̃

(k−s−2)

j′ i , (12)

where indices l′ and l are defined as

l′ = 2( j − 1) + |m| + (1 − σ)/2, l = 2(i − 1) + |m| + (1 − σ)/2. (13)

As follows from Eqs. (11) and (12) at k = 0, the conventional characteristic equation gives two roots for the unknown μio : μio = −l − 1
and μio = l. Value μio = −l − 1 corresponds to irregular unbound solutions and is not considered here. Value μio = l corresponds to the
required regular and bound solutions and is the one we have used in our calculations.

Note that components of vector {χ̃ (k)
ji }N

j=1 at fixed i in the left-hand side of Eq. (12) equal to zero if 2( j − i) = k. In this case we can

put χ̃
(k)

i+k/2,i = 0 because this term will be determined as the leading term of the asymptotic form of the (i + k/2)th solution. A more

detailed analysis of (12) with the account of (9) shows that the right-hand side of Eq. (12) is equal to zero and all χ̃
(k)
ji are equal to zero

if | j − i| > k/2.
Thus, the system (12) can be solved sequentially for k = 1,2, . . . ,kmax. The calculation was performed using the algorithm implemented

in MAPLE up to kmax = 16. Below we display the first several non-zero coefficients of the regular solutions expansions:

χ̃
(0)
ii = 1, χ̃

(1)
ii = − Z

l + 1
, χ̃

(2)
ii = −−2Z 2 + (ε − mγ )(l + 1)

2(l + 1)(2l + 3)
,

χ̃
(3)
ii = Z(−2Z 2 + (ε − mγ )(3l + 4))

6(l + 1)(l + 2)(2l + 3)
,

χ̃
(4)
i−1i = Q̄ (3)

i−1i(2l + 5)

6(2l + 3)
,

χ̃
(4)
ii = Ē(4)

i

4(2l + 5)
+ (ε − mγ )2

8(2l + 3)(2l + 5)
+ Z 4 − Z 2(ε − mγ )(3l + 5)

6(l + 1)(l + 2)(2l + 3)(2l + 5)
,

χ̃
(4)
i+1i = Q̄ (3)

i+1i(2l + 5)

2(2l + 7)
. (14)

The test run which accompanies the KANTBP program computes the reaction matrix and corresponding radial wave functions for 3D-
model of a hydrogen-like atom in a homogeneous magnetic field with σ = −1, Z = 1, γ = 1 and m = 0 on the finite intervals of the
radial variable ρ ∈ [ρmin = 0.3,ρmax = 100]. All needed potential elements are calculated with the help of the POTHMF program [22]. The
asymptotics from Eq. (11) and needed coefficients of the matrix elements (8) are included in the subroutine ASYMS0 up to kmax = 16.

File ‘INPUT2.INP’ contains the initial data NAMELIST POTDAT for the calculation of the potential matrix elements for the given atomic
state by the POTHMF program. Also this file contains the initial data NAMELIST PARSCP for the calculation of the reaction matrix and
corresponding radial wave functions for the KANTBP program. File ‘INPUT2.INP’ contains the following data:

&POTDAT TITLE=’ Potential and dipole matrices elements ’,
IMATRX=1,IDIPOL=0,IFUNAS=15,WC=0.1D1,CHARGE=1.D0,MDIM=6,
NPOL=4,SHIFTS=3.4D0,IPRINT=1,IPRSTP=1501,
RMESH=0.3D0,180.D0,3.D0,200.D0,20.D0,200.D0,100.D0,
FNOUTP=’FNOUTP.LPR’,IOUTP=7,NMESHR=7,NMESHL=7,
IPARTL=1,MQNL=0,POTENL=’POTENL.PTN’,IOUPL=8,
WFUNAS=’WFUNAS.PTN’,IOUWF=0

&END
&PARSCP TITLE2=’ Reaction matrix ’,

IPTYPE=1,NROOT=1,IDIM=3,SHIFT=3.4D0,IPRINT=2,IPRSTP=400,
IBOUND=8,NDIR=1, NDIL=6, NMDIL=1,
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THRSHL=1.D0,3.D0,5.D0,7.D0,9.D0,11.D0,
FNOUTL=’3DNSSC.LPR’,NOUT=14,FMATRL=’3DNSSC.MAT’,NOUM=15,
EVWFNL=’3DNSSC.WFN’,NOUF=2

&END

Physical parameters CHARGE, WC, MQNL, IPARTL and order of asymptotic solutions IFUNAS are accessed via general common block
COMMON /CHARGE/ CHARGE, WC, MQNL, IPARTL, IFUNAS. As an example, calculation of matrix C is performed by means of Eq. (7) and
presented in output file. Note, that values of the partial solutions χ

(i)
j (ρ) at ρ = 0.3 presented in the TEST RUN OUTPUT are equal to the

corresponding results presented in the TEST RUN OUTPUT of [22] which verifies and confirms the accuracy of the developed calculation
scheme.
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Appendix A. TEST RUN OUTPUT

PROBLEM: Reaction matrix
********

C O N T R O L I N F O R M A T I O N
------------------------------------

NUMBER OF DIFFERENTIAL EQUATIONS. . . . . (MDIM ) = 6
NUMBER OF FINITE ELEMENTS . . . . . . . . (NELEM ) = 580
NUMBER OF GRID POINTS . . . . . . . . . . (NGRID ) = 2321
ORDER OF SHAPE FUNCTIONS. . . . . . . . . (NPOL ) = 4
ORDER OF GAUSS-LEGENDRE QUADRATURE. . . . (NGQ ) = 5
DIMENSION OF ENVELOPE SPACE . . . . . . . (IDIM ) = 3
BOUNDARY CONDITION CODE . . . . . . . . . (IBOUND) = 8
DOUBLE ENERGY SPECTRUM. . . . . . . . . . (SHIFT ) = 3.40000

SUBDIVISION OF RHO-REGION ON THE FINITE-ELEMENT GROUPS:
******************************************************

NO OF NUMBER OF BEGIN OF LENGTH OF GRID END OF
GROUP ELEMENTS INTERVAL ELEMENT STEP INTERVAL
----- --------- -------- --------- -------- --------

1 180 0.300 0.01500 0.00375 3.000
2 200 3.000 0.08500 0.02125 20.000
3 200 20.000 0.40000 0.10000 100.000

LAST ADDRESS OF ARRAY ITOT USED = 62082

T O T A L S Y S T E M D A T A
-------------------------------

TOTAL NUMBER OF ALGEBRAIC EQUATIONS. . . . (NN ) = 13926
TOTAL NUMBER OF MATRIX ELEMENTS. . . . . . (NWK) = 257541
MAXIMUM HALF BANDWIDTH . . . . . . . . . . (MK ) = 30
MEAN HALF BANDWIDTH . . . . . . . . . . (MMK) = 18

LAST ADDRESS OF ARRAY TOT USED = 263150

NDIM, MDIM= 6 6

LAST ADDRESS OF ARRAY TOT USED = 371869
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NUMBER OF OPEN CHANNELS. . . . . . . . . (NOPEN) = 2
VALUE OF I-TH MOMENTUM . . . . . . . . . (I,QR ) = 1 0.1549E+01
VALUE OF I-TH MOMENTUM . . . . . . . . . (I,QR ) = 2 0.6325E+00

TO HAVE REQUIRED EPSC=1.D-14
VALUE OF MATCHING POINT (RMATCH) = 31.6417
RECOMMENDED RIGHT BOUND OF
INTERVAL IS NOT LESS THAN (RMAX ) = 33

C H E C K W R O N S K I A N
------------------------------

1.00000 -.102478E-17
0.197052E-17 1.00000

********************************************************************************

R E A C T I O N M A T R I X
-------------------------------

-1.46347 2.19626
2.19626 -8.72933

********************************************************************************

R R A D I A L E I G E N F U N C T I O N S
- -----------------------------------------

0.3000 0.6533D-01 0.1740D+01 -.1153D-01 0.3368D-01 -.1256D-04 0.3139D-04
0.2082D-07 -.8510D-07 0.7188D-10 -.2697D-09 0.1034D-12 -.3923D-12

1.8000 -.2666D-01 0.6352D+00 -.8888D+00 0.2455D+01 0.1111D-01 -.4781D-01
0.4547D-02 -.1653D-01 0.3372D-03 -.1260D-02 0.1491D-04 -.5729D-04

4.7000 0.2964D+00 -.3511D+00 0.4099D+00 -.1755D+01 0.1383D+00 -.5735D+00
-.4163D-01 0.1528D+00 0.8703D-02 -.2809D-01 -.8857D-03 0.4631D-02

13.2000 -.1068D-01 -.4437D-01 0.1694D+00 -.6822D+00 -.7173D-02 0.3852D-01
-.1107D-03 0.5968D-03 -.3290D-04 0.2413D-03 -.2221D-04 0.8926D-04

28.0000 0.5274D-01 -.5965D-01 -.8324D-02 -.1117D-01 0.4526D-02 -.1857D-01
-.1015D-04 0.3768D-04 0.1217D-04 -.4945D-04 0.2971D-07 0.4214D-07

68.0000 0.2000D-01 -.1611D-01 0.3989D-01 -.1601D+00 0.6037D-04 0.8285D-04
0.1750D-05 -.7186D-05 0.4147D-07 -.5194D-08 -.3349D-08 0.1340D-07

********************************************************************************

********************************************************************************

C M A T R I X
------------------

0.261805 6.97335
-.468245 1.37416
-.574532E-02 0.144615E-01
0.976111E-04 -.402277E-03
0.382014E-05 -.143464E-04
0.611522E-07 -.231952E-06

********************************************************************************
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