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A FORTRAN program for calculating energy values, reflection and transmission matrices, and correspond-
ing wave functions in a coupled-channel approximation of the adiabatic approach is presented. In this 
approach, a multidimensional Schrödinger equation is reduced to a system of the coupled second-order 
ordinary differential equations on a finite interval with the homogeneous boundary conditions of the 
third type at left- and right-boundary points for the discrete spectrum and scattering problems. The re-
sulting system of such equations, containing potential matrix elements and first-derivative coupling terms 
is solved using high-order accuracy approximations of the finite element method. The scattering problem 
is solved with non-diagonal potential matrix elements in the left and/or right asymptotic regions and 
different left and right threshold values. Benchmark calculations for the fusion cross sections of 36S+48Ca, 
64Ni+100Mo reactions are presented. As a test desk, the program is applied to the calculation of the re-
flection and transmission matrices and corresponding wave functions of the exact solvable wave-guide 
model, and also the fusion cross sections and mean angular momenta of the 16O+144Sm reaction.
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Solution method: The boundary-value problems for the system of CCSODEs are solved by the FEM using 
high-order accuracy approximations [13,14]. The generalized algebraic eigenvalue problem A F = E B F
with respect to pair unknowns (E, F), arising after the replacement of the differential eigenvalue problem 
by the finite-element approximation, is solved by the subspace iteration method [14]. The generalized 
algebraic eigenvalue problem of a special form (A − E B) F = D F with respect to pair unknowns (D, F)

arising after the corresponding replacement of the scattering boundary problem in open channels at 
fixed energy value, E , is solved by the L D LT factorization of the symmetric matrix and back-substitution 
methods [14].
Additional comments including restrictions and unusual features: The user must supply subroutine POTCAL 
for evaluating potential matrix elements. The user should also supply subroutines ASYMEV (when solving 
the eigenvalue problem) or ASYMSL and ASYMSR (when solving the scattering problem) which evaluate 
asymptotics of the wave functions at boundary points in the case of a boundary conditions of the third-
type for the above problems.
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1. Introduction

The KANTBP (KANTorovich Boundary Problem) versions 1.0 [1] and 2.0 [2] were intended only to calculate the energy levels, reaction 
matrix and radial wave functions of the bound state problem and the elastic scattering problem in the coupled-channel hyperspherical 
adiabatic approach, in which the original problems were reduced to a system of coupled-channel second order differential equations 
(CCSODEs) with respect to a radial variable on a semi-axis. The KANTBP version 3.0 [3] was intended for calculate of the energy levels, 
reflection and transmission amplitude matrices and corresponding wave functions of the bound state problem and scattering problem for 
the system of CCSODEs on a whole axis. Moreover, the scattering problem is solved under the condition that potential matrix elements 
in left and right asymptotic regions have only a “almost” diagonal form, and the left and right thresholds are the same. However a wider 
range of physical scattering problems are reduced to a system of CCSODEs with non-diagonal potential matrix elements in the left and/or 
right asymptotic regions and different left and right thresholds. The purpose of this version is to provide a computational program for 
calculating the reflection and transmission amplitude matrices and corresponding wave functions of the scattering spectrum problem thus 
covering a wider range of physical scattering problems.

The KANTBP 3.1 extends the framework of the previous versions of KANTBP for the case of the scattering problem. As in [3], it calculates 
the reflection and transmission amplitude matrices and corresponding wave functions of the continuous spectrum of the boundary-
value problem for the system of CCSODEs on finite intervals of the variable z ∈ [zmin, zmax] using a general homogeneous boundary 
condition of the third-type at z = zmin and z = zmax. The third-type boundary conditions are formulated for the continuous problems 
under consideration by using known asymptotes for a set of linearly independent asymptotic regular and irregular solutions in the open 
channels and a set of linearly independent regular asymptotic solutions in the closed channels, respectively. We have considered more 
general cases, namely, in left and right asymptotic regions z ≤ zmin and z ≥ zmax the potential matrix elements are non-diagonal and 
constant or weakly dependent on the variable z; the left and right thresholds are different, and the left and right threshold values may 
not be known in advance.

We have applied the new approach to the computation of sub-barrier and above-barrier fusion cross sections as well as the astro-
physical S factor of some reactions, to study the deep sub-barrier fusion hindrance phenomenon in [5,6], and study of fast fission and 
quasifission in the 40Ca+208Pb reaction leading to the formation of the transfermium nucleus 248No [7]. The results obtained using KANTBP 
3.1 and the modified Numerov method in the CCFULL program [8], the Gauss reduction method in the NRV project [9–11] are compared.

Benchmark calculations for the fusion cross sections of 36S+48Ca, 64Ni+100Mo reactions, which are studied in [5], are presented. In our 
previous study, the fusion cross sections are calculated at the experimental incident energy in order to compare with the data for 36S+48Ca, 
2
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64Ni+100Mo reactions, while in this work they are calculated at �E = 0.1 MeV for a strict test. The calculated fusion cross sections are 
also compared with those obtained by the CCFULL program [8], and the advantage of KANTBP 3.1 is more prominent. As a test desk, the 
program is applied to the calculation of the reflection and transmission matrices and corresponding wave functions of the exact solvable 
wave-guide model considered in [12], and the fusion cross sections and mean angular momenta of the 16O+144Sm reaction.

The paper is organized as follows. In Section 2 we give a brief overview of the problem. A description of the KANTBP 3.1 program is 
given in Section 3. Benchmark calculations and test desk are given in Section 4.

2. Physical scattering asymptotic forms of solutions in longitudinal coordinates and the scattering matrix

In the Kantorovich approach [1,4], a multidimensional Schrödinger equation is reduced to a finite set of N ordinary second-order 

differential equations on the finite interval z ∈ (zmin, zmax) for the partial solution χ ( j)(z) =
(
χ

( j)
1 (z), . . . ,χ( j)

N (z)
)T

(
−I

1

zd−1

d

dz
zd−1 d

dz
+ V(z) + Q(z)

d

dz
+ 1

zd−1

d zd−1 Q(z)

dz
− 2E I

)
χ ( j)(z) = 0. (1)

Here I, V(z) and Q(z) are the unit, real valued symmetric and antisymmetric N × N matrices, respectively. Below we consider only the 
scattering problem with d = 1.

The matrix-solution �v(z) = �(z), describing the incidence wave of the particle and its scattering, which has the asymptotic form 
“incident wave + outgoing waves”, is

�v(z) =

⎧⎪⎪⎨
⎪⎪⎩

{
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v =→,{
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v =←,

(2)

where v =→ and v =← denote the initial direction of particle motion along the z axis; R→ of the dimension N L
o × N L

o and R← of 
the dimension N R

o × N R
o are the reflection matrices, T→ of the dimension N R

o × N L
o and T← of dimension N L

o × N R
o are the transmission 

matrices; �←(z) = {χ ( j)(z)}N R
o

j=1 and �→(z) = {χ ( j)(z)}N L
o

j=1; N L
o and N R

o are the number of the open channels at z ≤ zmin and z ≥ zmax.
Let Q(z) = 0, and the V(z) matrix is constant or weakly dependent on the variable z in the vicinity of the asymptotic regions z ≤ zmin

and z ≥ zmax. In this case, the open channel asymptotic vector solutions at λL,R
io

< 2E , i = io = 1, . . . , N L,R
o , have the form:

X(±)
io
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(
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The closed channels asymptotic vector solutions at λL,R
ic

≥ 2E , i = ic = N L,R
o + 1, . . . , N , are as follows:

X(−)
ic

(z) → exp

(
+

√
λL

ic
− 2Ez

)
�L

ic
, z ≤ zmin, v =←,

Y(+)
ic

(z) → exp

(
−

√
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)
�R

ic
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Here λL,R
i and �L,R

i = {�L,R
1i , . . . , �L,R

Ni }T are the solutions of algebraic eigenvalue problems with the matrices VL = V (zmin) and VR =
V (zmax) of the dimension N × N for entangled channels

VL,R�
L,R
i = λ

L,R
i �

L,R
i , (�

L,R
i )T �

L,R
j = δi j. (5)

In addition, the eigenvalues λL,R
i are ordered in ascending order, and the maximum element of the eigenvector �L,R

i in the absolute value 
is positive. The left N L

o and right N R
o numbers of open channels are defined as:

N L
o = max

2E>λL
j

j ≤ N, N R
o = max

2E>λR
j

j ≤ N. (6)

We also consider the case when the V(z) and Q(z) matrices have the following asymptotic behavior

V ij(z) =
(
εL

j + 2Z L
j

z

)
δi j + O (z−l), l > 1, Q ij(z) = O (z−l), l ≥ 1, z ≤ zmin, (7)

and/or

V ij(z) =
(
εR

j + 2Z R
j

z

)
δi j + O (z−l), l > 1. Q ij(z) = O (z−l), l ≥ 1, z ≥ zmax. (8)
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In this case, we usually have orthogonal channels. We put V L
ij = εL

i δi j and/or V R
ij = εR

i δi j , and the eigenvalues λL
i and/or λR

i are ordered in 
ascending order of the thresholds εL

i and/or εR
i , and the corresponding eigenvectors �L

i and/or �R
i are columns of the permutated unit 

matrix I. In these cases, the open and closed channel asymptotic vector solutions have the form:
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where j is the element number of the eigenvector �L
i and/or �R

i , which is 1.
The reflection Rv and transmission Tv matrices, and the solution �v(z) are calculated by the same methods, described in [4]. The 

scattering matrix S

S =
(

R→ T←
T→ R←

)
(11)

is composed of reflection and transmission matrices. Similar, as in [4], it is easy to show that the scattering matrix (11) is symmetric and 
unitary. Note that if N L

o = 0 (or N R
o = 0), then S = R← (or S = R→).

In addition, it should be noted that the open channel asymptotic vector solutions X(±)(z) and Y(±)(z) satisfy the relations

Wr(Q(z);X(∓)(z),X(±)(z)) = ±2ıIL
oo, Wr(Q(z);X(±)(z),X(±)(z)) = 0L

oo, (12)

Wr(Q(z);Y(∓)(z),Y(±)(z)) = ±2ıIR
oo, Wr(Q(z);Y(±)(z),Y(±)(z)) = 0R

oo,

where IL,R
oo is the unit N L,R

o × N L,R
o matrix, and 0L,R

oo is the zero N L,R
o × N R,L

o matrix, and Wr(•; a(z), b(z)) is the generalized Wronskian 
with a long derivative defined as

Wr(•;a(z),b(z)) = aT (z)

(
db(z)

dz
− •b(z)

)
−

(
da(z)

dz
− •a(z)

)T

b(z). (13)

This Wronskian is used to estimate the desirable accuracy of asymptotic expansions (3), (9), (10). Then the following properties of the 
reflection and transmission matrices are held:

T†→T→ + R†→R→ = IL
oo, T†←T← + R†←R← = IR

oo,

T†→R← + R†→T← = 0L
oo, R†←T→ + T†←R→ = 0R

oo, (14)

TT→ = T←, RT→ = R→, RT← = R←.

It means that the scattering matrix (11) is symmetric and unitary.

Remark 1. Depending on the physical statement of the problem, the asymptotic form of the matrix-solution may differ from (2) due 
to additional phase shifts, signs, etc. (for example, see Eq. (27)). Then the required reflection R̂v and transmission T̂v matrices and the 
corresponding matrix-solution �̂v(z) are expressed as a linear combination of the calculated reflection Rv and transmission Tv matrices 
and the corresponding matrix-solution �v(z):

�̂v(z) = �v(z)Uv , R̂v = ±Uv Rv Uv , T̂← = U→T←U←, T̂→ = U←T→U→, (15)

where U→ and U← are the known symmetric and unitary N L
o × N L

o and N R
o × N R

o matrices.

Eq. (1) with asymptotic boundary conditions (2) is solved by the finite element method using high-order accuracy approximations as 
in previous versions of the KANTBP program. More detailed information on the construction of high-order approximations of the finite 
element method on non-uniform grids is given in [1].
4
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3. Description of the KANTBP 3.1 program

The KANTBP program is called from the main routine (supplied by the user) which sets the dimensions of the arrays and is responsible 
for the input data. The KANTBP program does not require installation. A description of all subroutines can be found in comments in the 
program source code. Users can also find instructions on how to compile KANTBP in the README file.

The calling sequence for the KANTBP subroutine is:

CALL KANTBP(TITLE,IPTYPE,ISC,ISCAT,NROOT,MDIM,IDIM,NPOL,
1 RTOL,NITEM,SHIFT,IPRINT,IPRSTP,NMESH,RMESH,
2 NDIR,NDIL,NMDIL,THRSHL,THRSHR,IBOUND,FNOUT,
3 IOUT,POTEN,IOUP,FMATR,IOUM,EVWFN,IOUF)

In the present program each array declarator is written in terms of the symbolic names of constants. These constants are defined in 
the following PARAMETER statement in the main routine:

PARAMETER (NMESHM=111,MDIMM=111)
Here

• NMESHM is the maximal dimension of the DOUBLE PRECISION array RMESH, and NMESHM ≥ NMESH.
• NMESH is the dimension of the DOUBLE PRECISION array RMESH, containing information about the subdivision of the longitudinal 

interval [zmin, zmax] on subintervals and the number of elements on each of them. NMESH is always odd and ≥ 3.
• MDIMM is the maximal dimension of the DOUBLE PRECISION array THRSHL, THRSHR and INTEGER array NDIL, containing information 

about a set of left and right threshold values and numbers of coupled differential equations, respectively, and MDIMM ≥ MDIM.

When solving the reflection and transmission matrices, the case NOPENR = 0 or NOPENL = 0 may arise. Therefore, the flag ISC (from 
KANTBP 3.0 [3]) for performing the calculation of the reflection and transmission matrices takes into account the following cases:

• = 1 – if NOPENR > 0, the calculation of the reflection matrix is carried out only with the direction v =←. If NOPENL > 0, the 
calculation of the transmission matrix is carried out additionally. The properties of the reflection and transmission matrices are also 
verified. If NOPENR = 0, the message NO RIGHT OPEN CHANNELS is printed.
= 2 – if NOPENL > 0, the calculation of the reflection matrix is carried out only with the direction v =→. If NOPENR > 0, the 
calculation of the transmission matrix is carried out additionally. The properties of the reflection and transmission matrices are also 
verified. If NOPENL = 0, the message NO LEFT OPEN CHANNELS is printed.
= 3 – if NOPENR > 0 and NOPENL > 0, the calculation of the reflection and transmission matrices is carried out with both directions 
v =← and v =→. The properties of the reflection and transmission matrices are also verified.

We have added a new flag ISCAT for performing the calculation of the left THRSHL and right THRSHR threshold values:

• = 1 – V(z) and Q(z) matrices have asymptotic behavior (7) and (8) at z ≤ zmin and z ≥ zmax, respectively. In this case, the user must 
set both the left THRSHL and right THRSHR threshold values.
= 2 – V(z) and Q(z) matrices have asymptotic behavior (7) at z ≤ zmin, and Q(z) = 0 and V(z) is the constant matrix at z ≥ zmax. In 
this case, the user must set the left THRSHL threshold values, and the right THRSHR values are calculated by the program.
= 3 – Q(z) = 0 and V(z) is the constant matrix at z ≤ zmin, the V(z) and Q(z) matrices have the asymptotic behavior (8) at z ≥ zmax. 
In this case, the user must set the right THRSHR threshold values, and left THRSHL threshold values are calculated by the program.
= 4 – Q(z) = 0 and V(z) is the constant matrix at z ≤ zmin and z ≥ zmax. In this case, the user does not set the left THRSHL and right 
THRSHR threshold values, they are calculated by the program.

The meaning of all arguments, except for those above, is presented in [1,4].

Output data

The results of the calculation of the reflection and transmission matrices and corresponding wave functions are written using unfor-
matted segmented records into file EVWFN, according to the following operator:

WRITE(IOUF) NDIM,NN,NL,NR,NGRID,((RR(I,J),I=1,NR),J=1,NR),
1 ((TT(I,J),I=1,NL),J=1,NR),
1 (XGRID(I),I=1,NGRID),((R(I,J),I=1,NN),J=1,NR)

In the above, the parameters presented in the WRITE statement have the following meaning:

• NDIM is the number of coupled equations,
• NGRID is the number of finite-element grid points,
• NN = NGRID × NDIM,
• NL and NR are the numbers of open channels: NL = NOPENL, NR = NOPENR for v =←, NL = NOPENR, NR = NOPENL for v =→,
• Arrays RR and TT contain the calculated values of reflection and transmission matrices,
• Array XGRID contains the values of the finite-element grid points,
• Array R contains NR eigenfunctions each per NN elements in length stored (see the scheme in [1]).
5
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User-supplied subroutines

SUBROUTINE ASYMSL(ZMIN,ZMAX,NDIM,NOPENL,NOPENR,SHIFT,THRSHL,
1 THRSHR,EIGL,EIGR,PREGL,DREGL,PREGR,PIRRR,DREGR,
2 DIRRR,IOUT)

• ASYMSL is the name of the subroutine for the scattering problem, �←(z), which calculates the regular Y(−)(z) ≡ PREGR, irregular 
Y(+)(z) ≡ PIRRR asymptotic rectangle-solutions and their derivatives DREGR, DIRRR, respectively, at z = zmax, and the regular X(−)(z) ≡
PREGL asymptotic square-solution and its derivative DREGL at z = zmin.

SUBROUTINE ASYMSR(ZMIN,ZMAX,NDIM,NOPENL,NOPENR,SHIFT,THRSHL,
1 THRSHR,EIGL,EIGR,PREGR,DREGR,PREGL,PIRRL,DREGL,
2 DIRRL,IOUT)

• ASYMSR is the name of the subroutine for the scattering problem, �→(z), which calculates the regular X(+)(z) ≡ PREGL, irregular 
X(−)(z) ≡ PIRRL asymptotic rectangle-solutions and their derivatives DREGL, DIRRL, respectively, at z = zmin, and the regular Y(+)(z) ≡
PREGR asymptotic square-solution and its derivative DREGR at z = zmax.

In the above user-supplied subroutines, the arrays EIGL and EIGR contain the eigenvectors �L
i and �R

i , SHIFT contains the given double 
energy spectrum value. To set third-type boundary conditions at both points zmin and zmax , flags IBOUND and IDIM always should be 8 and 1, 
respectively. All the parameters, except the regular and irregular asymptotic solutions and their derivatives, should not be changed by 
subroutines ASYMSL and ASYMSR.

4. Benchmark calculations and test desk

4.1. Exact solvable wave-guide model

For example we consider the multichannel scattering problem for the Schrödinger equation of the exact solvable wave-guide problem 
[12] (

− ∂2

∂ y2
− ∂2

∂z2
+ U (y, z) − 2E

)
�(y, z) = 0 (16)

in the 2D domain 	yz = {y∈(0, π), z∈(−∞, +∞)}, with the potential

U (y, z) = {0, z < −2;−2y, |z| ≤ 2;2y, z > 2} . (17)

We seek for the solution in the form of the expansion

�(y, z) =
N∑

i=1

Bi(y)�i(z) (18)

in the set of basis functions Bi(y) = √
2/π sin(iy), leading to the system of Eq. (1) with Q ij(z) = 0 and the effective potentials V ij(z):

V ij(z) =
π∫

0

dyBi(y)U (y, z)B j(y) = i2δi j

+
{

0, z <−2; −2, |z| ≤ 2; 2, z > 2

}
×

{
π/2, i= j; 0, even i− j; −8i j

π(i2− j2)2
, odd i− j

}
. (19)

It can be seen from (19) that only the diagonal elements are nonzero in the matrix elements V ij(z) for z < −2, however, they con-
tain nonzero off-diagonal elements for z > 2. The considered system at N = 6 has a set of threshold energies that are different for the 
left- and right-hand asymptotic regions of the z-axis: λ(L)

i = {1, 4, 9, 16, 25, 36} and λ(R)
i = {3.7422604996, 7.2420582214, 12.2164845016, 

19.1886881493, 28.1736887739, 39.2863757754}. The solutions of boundary value problems for system of ODEs (1) with piecewise con-
stant potential (19) can be obtained by the method of matching the fundamental solutions (MMFS) (see Ref. [13]), which is used as a test 
for the algorithm and the KANTBP 3.1 program.

At given 2E = 6 for the wave incident from the left there are two open channels N L
o = 2 and for the wave incident from the right there 

is one open channel N R
o = 1. The desired S-matrix (11) takes the form

S =
⎛
⎜⎝ 0.3588530978+0.7661295164ı −0.2815519545−0.0065313508ı −0.2427831283−0.3821154395ı

−0.2815519545−0.0065313508ı 0.0840387795−0.4855237553ı −0.8035534922+0.1794207067ı

−0.2427831283−0.3821154395ı −0.8035534922+0.1794207067ı −0.1705387708−0.2967670235ı

⎞
⎟⎠ , (20)

where the square R→ , R← and rectangular T→ , T← submatrices are separated by lines.
The calculations were performed with Lagrange elements of the eighth order on the finite element grid 	z = {−20(100)20}, where 

the number of elements is indicated in parentheses (see the input file TEST1.INP for details). Note that the results obtained by the MMFS 
and the numerical results obtained in both intervals z ∈ (−2, 2) and z ∈ (−20, 20) coincide with an accuracy of the order 10−12 (see the 
output file TEST1.LPR and Appendix A). The Wronskian (12) is also satisfied with an accuracy of the order 10−16.
6
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The following values of numerical parameters and characters have been used in the test run via the supplied input file TEST1.INP:

&DIMS NMESH=3,MDIM=6,NDIR=1
&END
&PARAS TITLE=’ REFLECTION AND TRANSMISSION MATRICES ’,

IPTYPE=1,ISC=3,ISCAT=2,IDIM=1,NPOL=8,
SHIFT=6D0,IPRINT=1,IPRSTP=50,
RMESH=-20D0,100D0,20D0,
NDIL=6,NMDIL=0,THRSHL=1.D0,4D0,9D0,16D0,25D0,36D0,IBOUND=8,
FNOUT=’TEST1.LPR’,IOUT=10,POTEN=’TEST1.PTN’,IOUP=11,
FMATR=’TEST1.MAT’,IOUM=20,EVWFN=’TEST1.WFN’,IOUF=21

&END

4.2. Formulation of the problem with diagonalization of the incoming wave boundary conditions

We solve the coupling channel equations in the isocentrifugal approximation (neglecting the Coriolis coupling of relative and internal 
nuclear motion of two heavy ions) on the interval r ∈ (0, ∞) by reducing to the finite interval r ∈ (rmin, rmax)

N∑
n′=1

((
− d2

dr2
− Ẽ

)
δnn′+Wnn′(r)

)
ψn′no (r)=0. (21)

Here Ẽ = 2μE/h̄2 is the center-of-mass energy, no is the number of the open entrance channel with the positive relative energy k2
no

=
Ẽno = Ẽ − 2μεno /h̄2 > 0, no = 1, . . . , No ≤ N , and ε1 ≤ ε2 ≤ . . . ≤ εN are the threshold energies (i.e., the eigenenergies of the Hamiltonian 
of internal motion in the harmonic approximation [8,14]), {ψnno (r)}N

n=1 are the components of the desirable matrix-solution, Wnn′ (r) =
Wn′n(r) are the elements of the coupled-channels matrix of the effective potentials (CCMPs) determined by

Wnn′(r) = 2μ

h̄2

[(
l(l + 1)h̄2

2μr2
+ V (0)

N (r) + Z P ZT e2

r
+ εn

)
δnn′ + Vnn′(r)

]
. (22)

Here μ = A P AT /(A P + AT ) is the reduced mass of the target and the projectile with the masses AT and A P and the charges ZT and Z P , 
respectively. The quantum number l is the orbital momentum of relative motion, Wnn′ (r → ∞) = 2μεno /h̄2δnn′ .

To formulate the incoming wave boundary condition (IWBC) in the point r = rmin with the correct set of threshold energies, we propose 
that W(r) is the constant matrix in a vicinity of the left boundary point r = rmin (see Section 2). In this case, the linearly independent 
matrix solution (LIMS) {φnm(r)}N

n,m=1 of Eqs. (21) can be written in the form

φnm(r) = Anm ym(r). (23)

According to formulas (3), (4), in open channels at K 2
m = Ẽ − λm > 0, m = 1, . . . , Mo ≤ N , and in closed channels at K 2

m = Ẽ − λm ≤ 0, 
m = Mo + 1, . . . , N the solutions ym(r), respectively, have the form:

ym(r) = exp(−ıKmr)√
Km

, ym(r) = exp(|Km|r). (24)

Here A is the N × N matrix of eigenvectors and λ1 ≤ λ2 ≤ . . . ≤ λN are the corresponding eigenvalues of the matrix W ≡ W(rmin).
In this case, the matrix of the asymptotic solutions {ψas

nno
(r)}N

n=1 at no = 1, . . . , No , of Eqs. (22), expressed by the linear combinations 
of the linearly independent solutions φnm(r) determined by Eqs. (23) and (24), is

ψas
nno

(r) =
Mo∑

m=1

φnm(r)T̂mno ≡
Mo∑

m=1

Anm ym(r)T̂mno , r ≤ rmin, (25)

where T̂mno ≡ T̂ (l)
mno is the matrix of desirable partial transmission amplitudes with the correct set of threshold energies K 2

m > 0, m =
1, . . . , Mo ≤ N , in exit open channels of the IWBC.

Remark 2. The LIMS (23) differs from {φ̃nm(r)}N
n,m=1 subjected to the IWBC without diagonalization of the matrix W ≡ W(rmin) at r ≤ rmin

accepted in CCFULL program [8] with the incorrect set of threshold energies counting on the diagonal elements Wnn(rmin)

φ̃nm(rmin) =

⎧⎪⎨
⎪⎩

exp(−ıqm(rmin)r)δnm, qm(rmin) =
√

Ẽ − Wmm(rmin) > 0, m = 1, ..., M̃o

exp(κm(rmin)r)δnm, κm(rmin) =
√

Wmm(rmin) − Ẽ ≥ 0, m = M̃o + 1, ..., N.

(26)

Note that {φ̃nm(r)}N
n,m=1 is not the LIMS of Eqs. (21) at r ≤ rmin.

This is the main difference between our approach and the method proposed in the CCFULL program, and the values of Km =
√

Ẽ − λm

and qm(rmin) =
√

Ẽ − Wmm(rmin) differ significantly at low energy values Ẽ taking into account that some lowest eigenvalues λm are 
smaller than the corresponding lowest diagonal elements Wmm(rmin). Thus, the threshold energies (h̄2/(2μ))λm spread much more widely 
7



O. Chuluunbaatar, A.A. Gusev, S.I. Vinitsky et al. Computer Physics Communications 278 (2022) 108397
Fig. 1. (Color online) Fusion cross sections for 64Ni+100Mo ((a) in linear scale and (b) in logarithmic scale) and 36S+48Ca ((c) in linear scale and (d) in logarithmic scale). The 
experimental data (open circles) from Ref. [18,19] are shown for reference. The results are calculated by means of the modified Numerov (MNumerov) method in CCFULL [8]
(dotted line), the improved Numerov method (MNumerov_2010) in the latest version of CCFULL [15] (dashed line) and KANTBP (solid line). All the calculations are performed 
at �E = 0.1 MeV for a strict test.

than the diagonal elements (h̄2/(2μ))Wmm(rmin) of the coupled matrix, for example, see Fig. 3 for the fusion reaction 64Ni+100Mo system 
in Ref. [6]. It means that in our approach the number Mo of the left exit open channels from Eq. (25) will be different (conventionally 
increasing for a medium nuclei system with ZT Z P

√
μ > 2000) in comparison with M̃o from Eq. (26) of the method proposed in the 

CCFULL program, and its true energy distribution is wider. This obstacle provides an adequate description of the experimental data of the 
fusion cross sections σ f (E) determined by Eq. (30) using correct IWBC Eq. (25) and the transmission amplitudes of Eq. (29) presented in 
Fig. 1 and discussed below.

At r = rmax the asymptotic solutions {ψas
nno

(r)}N
n=1 for no = 1, . . . , No , of Eqs. (21) have the form

ψas
nno

(r) = H−
l (knr)exp(+ıδl,n)√

kn
δnno − H+

l (knr)exp(−ıδl,n)√
kn

R̂nno . (27)

Here H±
l (knr) = ±ıFl(ηn, knr) + Gl(ηn, knr) are the normalized outgoing and incoming Coulomb partial wave functions, and Fl(ηn, knr) and 

Gl(ηn, knr) are the regular and irregular Coulomb partial wave functions, ηn = kn Z P ZT e2/(2En) is the Sommerfeld parameter, En = E − εn , 
δl,n = arg�(l + 1 + ıηn) is the Coulomb phase shift [16],

kn =
√

Ẽ − 2μ

h̄2
εn 

√
Ẽ − 2μ

h̄2
(εn + Vnn(rmax)). (28)

Here the regular and irregular Coulomb functions are calculated by the RCWFNN subroutine, which is a modified version of the RCWFN 
subroutine [17] for DOUBLE PRECISION accuracy, since the original RCWFN subroutine is designed for SINGLE PRECISION accuracy.

The partial tunneling probability Pl(E) from the entrance open channel no , in particular, the ground state (no = 1) is determined by 
the transmission coefficient

Pl(E) ≡ T (l)
nono (E) =

Mo∑
m=1

|T̂mno |2. (29)

Finally, the total fusion cross section is expressed as a sum over partial waves at the center of the mass energy E , which is

σ f (E) =
L∑

l=0

σ
(l)
f (E) = π

k2
no

L∑
l=0

(2l + 1)Pl(E). (30)

To demonstrate the working capacity of our approach and the efficiency of our KANTBP 3.1 program we analyze the couplings of 
relative motion only to the surface vibrations of the target nucleus, comparing our results with those obtained using CCFULL programs 
[8,15].

Here we present the calculations of the fusion cross sections of 36S+48Ca, 64Ni+100Mo reactions. The calculations are performed with 
the Woods-Saxon potential derived from the commonly adopted Akyüz-Winther parameterization, and 26 coupled channels are considered 
in the calculations. A description of all the necessary potentials V (0)

N (r), Vnn′(r) and εn is given in our article [5], and they are calculated 
using subroutines of the CCFULL program [8]. In our previous study, the fusion cross sections are calculated at the experimental incident 
8
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energy to compare with the data for 36S+48Ca, 64Ni+100Mo reactions, while in this work they are calculated at �E = 0.1 MeV for a strict 
test. Fig. 1 shows the fusion cross sections for 64Ni+100Mo ((a) in linear scale and (b) in logarithmic scale) and 36S+48Ca ((c) in linear scale 
and (d) in logarithmic scale). The experimental data (open circles) from Ref. [18,19] are also shown for reference. The results are obtained 
by the modified Numerov method, employed in the CCFULL program [8] (dotted line), the improved Numerov method (MNumerov_2010) 
in latest version of CCFULL program [15] (dashed line) and by means of KANTBP 3.1 program (solid line). The rmax and dr are set as 100 
fm and 0.05 fm for the CCFULL calculations, and rmax is also set as 100 fm in the KANTBP calculation. It can be seen from Fig. 1(b,d) 
that there are clear fluctuations at the sub-barrier energy region of the results by the two Numerov methods, while our improved method 
KANTBP is stable at the whole energy region. In addition, it can be seen that the fusion cross section of 36S+48Ca also fluctuates in the 
region where the energy is greater than 58 MeV from in Fig. 1(c). Part of the reason is due to the instability of Numerov’s algorithm. On 
the other hand, in the CCFULL program, to simplify the calculation, rmin is always set at the bottom of the potential pocket when l = 0, 
and the increase of rmin with increasing angular momentum is not considered.

As the test desk, we calculated the fusion cross sections and mean angular momenta of the 16O+144Sm reaction. In the first test 
(ccfull1.inp), the calculated fusion cross sections and mean angular momenta are comparable with the listed data published by the mod-
ified Numerov method [8]. To check the changes of the results with respect to the channels, we came up with the second test with a 
larger number of coupled channels (ccfull2.inp). The number of right open channels is 2 and 9 for all the input energies and l, while the 
number of left open channels is from 1 up 2 and from 2 up 7 depending on the input energy and l, respectively, for the first and second 
tests. The results of the above tests are in the output files OUTPUT1.out and OUTPUT2.out (also see Appendix B and Appendix C).

The values of the numerical parameters and characters for KANTBP 3.1 used in the above test runs are contained in the input file 
TEST2.INP:

&DIMS NMESH=3,NDIR=1
&END
&PARAS TITLE=’ REFLECTION AND TRANSMISSION MATRICES ’,

IPTYPE=1,ISC=1,ISCAT=3,IDIM=1,NPOL=6,
IPRINT=-1,IPRSTP=120,
NMDIL=0,IBOUND=8,
FNOUT=’TEST2.LPR’,IOUT=10,POTEN=’TEST2.PTN’,IOUP=11,
FMATR=’TEST2.MAT’,IOUM=20,EVWFN=’TEST2.WFN’,IOUF=21

&END

The input files ccfull1.inp and ccfull2.inp:

16.,8.,144.,62. 16.,8.,144.,62.
1.2,-1,1.06,0 1.2,0,1.06,0
1.81,0.205,3,1 1.81,0.205,3,2
1.66,0.11,2,0 1.66,0.11,2,0
6.13,0.733,3,0 6.13,0.733,3,2
0,0.,0.3 0,0.,0.3
105.1,1.1,0.75 55.1,1.1,0.75
55.,72.,1. 52.,72.,1.
30,0.05 30,0.05

Remark 3. In order to carry out the above tests, the user should download the CCFULL program [8], rename adkm to ccfull.f and remove 
the main program and the input data from the file.

Remark 4. We used additional flags “iflagccfull”, “iflagfem” in the input files nucl1.inp and nucl2.inp. If “iflagccfull”, “iflagfem” are one in 
this line, both the modified Numerov method and the KANTBP 3.1 method are used. If one of them is zero, the corresponding calculation 
is switched off. The names of input file and output files, and the answers for the “Different beta_N from beta_C for this mode(n/y)?” for 
the CCFULL program are also included in these input files.

The input files nucl1.inp and nucl2.inp:

ccfull1.inp ccfull2.inp
cross1.dat cross2.dat
spin1.dat spin1.dat
OUTPUT1.dat OUTPUT2.dat
1,1 !iflagccfull,iflagfem 1,1 !iflagccfull,iflagfem
n n
n n
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Appendix A. Test run output for wave-guide model (TEST1.LPR)

PROBLEM: REFLECTION AND TRANSMISSION MATRICES
********

C O N T R O L I N F O R M A T I O N
------------------------------------

NUMBER OF DIFFERENTIAL EQUATIONS. . . . . (MDIM ) = 6
NUMBER OF FINITE ELEMENTS . . . . . . . . (NELEM ) = 100
NUMBER OF GRID POINTS . . . . . . . . . . (NGRID ) = 801
ORDER OF SHAPE FUNCTIONS. . . . . . . . . (NPOL ) = 8
ORDER OF GAUSS-LEGENDRE QUADRATURE. . . . (NGQ ) = 9
DIMENSION OF ENVELOPE SPACE . . . . . . . (IDIM ) = 1
BOUNDARY CONDITION CODE . . . . . . . . . (IBOUND) = 8
DOUBLE ENERGY SPECTRUM. . . . . . . . . . (SHIFT ) = 6.00000

SUBDIVISION OF RHO-REGION ON THE FINITE-ELEMENT GROUPS:
******************************************************

NO OF NUMBER OF BEGIN OF LENGTH OF GRID END OF
GROUP ELEMENTS INTERVAL ELEMENT STEP INTERVAL
----- --------- -------- --------- -------- --------

1 100 -20.000 0.40000 0.05000 20.000

********************************************************************************

NDIM, MDIM= 6 6

T O T A L S Y S T E M D A T A
-------------------------------

TOTAL NUMBER OF ALGEBRAIC EQUATIONS. . . . (NN ) = 4806
TOTAL NUMBER OF MATRIX ELEMENTS. . . . . . (NWK) = 146421
MAXIMUM HALF BANDWIDTH . . . . . . . . . . (MK ) = 54
MEAN HALF BANDWIDTH . . . . . . . . . . (MMK) = 30

NUMBER OF LEFT OPEN CHANNELS. . . . . . (NOPENL) = 2
VALUE OF I-TH MOMENTUM . . . . . . . . . (I,QR ) = 1 0.2236E+01
VALUE OF I-TH MOMENTUM . . . . . . . . . (I,QR ) = 2 0.1414E+01

NUMBER OF RIGHT OPEN CHANNELS. . . . . (NOPENR) = 1
VALUE OF I-TH MOMENTUM . . . . . . . . . (I,QR ) = 1 0.1503E+01

********************************************************************************

CALCULATION OF WAVE FUNCTION WITH DIRECTION <--

I M P A R T O F W R O N S K I A N
--------------------------------------

-2.00000000000

R E P A R T O F RR M A T R I X
------------------------------------

-0.170538770809

I M P A R T O F RR M A T R I X
------------------------------------

-0.296767023500

R E P A R T O F TT M A T R I X
------------------------------------

-0.242783128342
-0.803553492208
10
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I M P A R T O F TT M A T R I X
------------------------------------

-0.382115439589
0.179420706708

********************************************************************************

C H E C K P R O P E R T I E S
----------------------------------------

|RR|^2 + |TT|^2
-------------------------

1.00000

M A X I M A L A B S O L U T E E R R O R = 0.355271E-13

R E P A R T: RR^T - RR
----------------------------------

0.00000

I M P A R T: RR^T - RR
----------------------------------

0.00000

M A X I M A L A B S O L U T E E R R O R = 0.00000

Z R E P A R T O F F U N C T I O N S
- --------------------------------------

-20.0000 0.5213D-01 0.6772D+00 0.6253D-15 -0.1189D-26 -0.6446D-37 -0.1011D-46
-17.5000 0.2306D+00 -0.5700D+00 0.4749D-13 -0.3226D-23 -0.3483D-32 -0.8945D-41
-15.0000 0.3027D+00 0.3755D+00 0.3607D-11 -0.8750D-20 -0.1882D-27 -0.7914D-35
-12.5000 0.2352D+00 -0.1234D+00 0.2740D-09 -0.2374D-16 -0.1017D-22 -0.7002D-29
-10.0000 0.5911D-01 -0.1475D+00 0.2081D-07 -0.6439D-13 -0.5492D-18 -0.6195D-23
-7.5000 -0.1442D+00 0.3959D+00 0.1581D-05 -0.1747D-09 -0.2967D-13 -0.5481D-17
-5.0000 -0.2810D+00 -0.5836D+00 0.1201D-03 -0.4738D-06 -0.1603D-08 -0.4850D-11
-2.5000 -0.2882D+00 0.6819D+00 0.9118D-02 -0.1285D-02 -0.8662D-04 -0.4291D-05
0.0000 -0.4124D+00 0.1768D+00 -0.1435D-01 0.2321D-02 -0.9316D-03 0.3590D-03
2.5000 -0.6280D+00 -0.2971D+00 -0.4394D-01 -0.6268D-02 -0.1645D-02 -0.6270D-03
5.0000 0.4297D+00 0.1467D+00 0.2158D-01 0.4329D-02 0.9346D-03 0.4124D-03
7.5000 -0.4715D-01 -0.1688D-01 -0.2557D-02 -0.4945D-03 -0.1080D-03 -0.4619D-04
10.0000 -0.3510D+00 -0.1236D+00 -0.1853D-01 -0.3629D-02 -0.7896D-03 -0.3413D-03
12.5000 0.6207D+00 0.2185D+00 0.3275D-01 0.6416D-02 0.1396D-02 0.6035D-03
15.0000 -0.6630D+00 -0.2334D+00 -0.3499D-01 -0.6854D-02 -0.1491D-02 -0.6447D-03
17.5000 0.4625D+00 0.1628D+00 0.2441D-01 0.4781D-02 0.1040D-02 0.4497D-03
20.0000 -0.9258D-01 -0.3259D-01 -0.4886D-02 -0.9570D-03 -0.2082D-03 -0.9002D-04

Z I M P A R T O F F U N C T I O N S
- --------------------------------------

-20.0000 -0.2982D+00 -0.1442D+00 0.3676D-14 -0.2451D-26 0.1773D-36 -0.7770D-46
-17.5000 -0.1961D+00 0.3930D+00 0.2792D-12 -0.6648D-23 0.9580D-32 -0.6874D-40
-15.0000 -0.3549D-02 -0.5817D+00 0.2121D-10 -0.1803D-19 0.5176D-27 -0.6082D-34
-12.5000 0.1907D+00 0.6813D+00 0.1611D-08 -0.4892D-16 0.2796D-22 -0.5381D-28
-10.0000 0.2969D+00 -0.6764D+00 0.1224D-06 -0.1327D-12 0.1511D-17 -0.4761D-22
-7.5000 0.2662D+00 0.5680D+00 0.9293D-05 -0.3600D-09 0.8163D-13 -0.4212D-16
-5.0000 0.1126D+00 -0.3726D+00 0.7059D-03 -0.9765D-06 0.4410D-08 -0.3727D-10
-2.5000 -0.9287D-01 0.1200D+00 0.5361D-01 -0.2649D-02 0.2383D-03 -0.3297D-04
0.0000 0.3007D+00 0.2811D+00 0.2660D-01 -0.1192D-01 -0.5822D-03 -0.3794D-03
2.5000 0.6810D+00 0.3115D+00 0.7312D-01 0.9182D-02 0.2041D-02 0.8150D-03
5.0000 -0.9256D+00 -0.3211D+00 -0.4766D-01 -0.9443D-02 -0.2048D-02 -0.8942D-03
7.5000 0.8043D+00 0.2834D+00 0.4252D-01 0.8322D-02 0.1811D-02 0.7825D-03
10.0000 -0.3902D+00 -0.1373D+00 -0.2059D-01 -0.4033D-02 -0.8774D-03 -0.3794D-03
12.5000 -0.1670D+00 -0.5879D-01 -0.8814D-02 -0.1727D-02 -0.3757D-03 -0.1624D-03
15.0000 0.6630D+00 0.2334D+00 0.3499D-01 0.6854D-02 0.1491D-02 0.6447D-03
17.5000 -0.9162D+00 -0.3225D+00 -0.4835D-01 -0.9471D-02 -0.2061D-02 -0.8909D-03
20.0000 0.8337D+00 0.2935D+00 0.4400D-01 0.8619D-02 0.1875D-02 0.8107D-03

********************************************************************************

CALCULATION OF WAVE FUNCTION WITH DIRECTION -->

I M P A R T O F W R O N S K I A N
--------------------------------------

2.00000000000 0.00000000000
0.00000000000 2.00000000000

R E P A R T O F RR M A T R I X
------------------------------------

0.358853097808 -0.281551954563
-0.281551954563 0.840387795384E-01

I M P A R T O F RR M A T R I X
------------------------------------

0.766129516434 -0.653135088664E-02
-0.653135088664E-02 -0.485523755378
11
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R E P A R T O F TT M A T R I X
------------------------------------

-0.242783128342 -0.803553492208

I M P A R T O F TT M A T R I X
------------------------------------

-0.382115439589 0.179420706707

********************************************************************************

C H E C K P R O P E R T I E S
----------------------------------------

|RR|^2 + |TT|^2
-------------------------

1.00000 -0.599243E-13
-0.599243E-13 1.00000

M A X I M A L A B S O L U T E E R R O R = 0.212623E-12

R E P A R T: RR^T - RR
----------------------------------

0.00000 -0.555112E-16
0.555112E-16 0.00000

I M P A R T: RR^T - RR
----------------------------------

0.00000 -0.425007E-16
0.425007E-16 0.00000

M A X I M A L A B S O L U T E E R R O R = 0.699128E-16

Z R E P A R T O F F U N C T I O N S
- --------------------------------------

-20.0000 0.3265D+00 -0.1362D+00 0.2367D+00 -0.9156D+00 0.0000D+00 0.0000D+00 0.0000D+00 0.0000D+00 0.0000D+00
0.0000D+00 0.0000D+00 0.0000D+00

-17.5000 -0.3818D+00 -0.2171D-01 -0.2216D+00 0.6922D+00 0.4459D-13 -0.1747D-12 -0.1256D-23 0.6860D-23 -0.1626D-32
0.1991D-32 -0.3236D-41 0.3557D-40

-15.0000 -0.9139D+00 0.1028D+00 0.1725D+00 -0.3628D+00 0.3387D-11 -0.1327D-10 -0.3406D-20 0.1861D-19 -0.8783D-28
0.1076D-27 -0.2863D-35 0.3147D-34

-12.5000 -0.1024D+01 0.1799D+00 -0.9702D-01 -0.2216D-01 0.2573D-09 -0.1008D-08 -0.9240D-17 0.5048D-16 -0.4745D-23
0.5813D-23 -0.2533D-29 0.2785D-28

-10.0000 -0.6623D+00 0.1740D+00 0.6668D-02 0.4037D+00 0.1954D-07 -0.7658D-07 -0.2507D-13 0.1369D-12 -0.2564D-18
0.3141D-18 -0.2241D-23 0.2464D-22

-7.5000 0.5353D-02 0.8781D-01 0.8470D-01 -0.7235D+00 0.1484D-05 -0.5816D-05 -0.6799D-10 0.3715D-09 -0.1385D-13
0.1697D-13 -0.1983D-17 0.2180D-16

-5.0000 0.6706D+00 -0.3888D-01 -0.1631D+00 0.9324D+00 0.1127D-03 -0.4418D-03 -0.1844D-06 0.1008D-05 -0.7483D-09
0.9167D-09 -0.1755D-11 0.1929D-10

-2.5000 0.1026D+01 -0.1476D+00 0.2165D+00 -0.9985D+00 0.8563D-02 -0.3355D-01 -0.5003D-03 0.2733D-02 -0.4043D-04
0.4953D-04 -0.1552D-05 0.1706D-04

0.0000 0.5474D+00 0.1260D+00 0.1091D+00 -0.3694D+00 -0.8435D-01 0.5301D-01 0.9028D-02 -0.3639D-02 -0.1432D-02
0.2096D-02 0.3994D-04 -0.3403D-03

2.5000 0.1293D+00 0.4856D+00 -0.4128D+00 0.4806D+00 -0.5860D-01 0.6084D-01 -0.4304D-02 0.6976D-02 -0.2145D-02
0.2483D-02 -0.2024D-03 0.6130D-03

5.0000 0.2233D+00 -0.3425D+00 0.5100D-01 -0.1021D+00 0.5149D-02 -0.1364D-01 0.1626D-02 -0.3086D-02 0.3103D-03
-0.6419D-03 0.1844D-03 -0.3112D-03

7.5000 -0.3326D+00 -0.3457D-01 -0.1188D+00 -0.1103D-01 -0.1797D-01 -0.1547D-02 -0.3481D-02 -0.3286D-03 -0.7600D-03
-0.6978D-04 -0.3255D-03 -0.3224D-04

10.0000 0.3300D+00 0.3924D+00 0.1161D+00 0.1382D+00 0.1739D-01 0.2072D-01 0.3409D-02 0.4058D-02 0.7415D-03
0.8830D-03 0.3208D-03 0.3816D-03

12.5000 -0.2059D+00 -0.6069D+00 -0.7249D-01 -0.2136D+00 -0.1087D-01 -0.3203D-01 -0.2129D-02 -0.6273D-02 -0.4632D-03
-0.1365D-02 -0.2002D-03 -0.5901D-03

15.0000 0.6437D-02 0.5991D+00 0.2266D-02 0.2109D+00 0.3396D-03 0.3161D-01 0.6654D-04 0.6193D-02 0.1448D-04
0.1347D-02 0.6259D-05 0.5825D-03

17.5000 0.1954D+00 -0.3718D+00 0.6878D-01 -0.1309D+00 0.1031D-01 -0.1962D-01 0.2020D-02 -0.3844D-02 0.4395D-03
-0.8363D-03 0.1900D-03 -0.3615D-03

20.0000 -0.3257D+00 0.8389D-02 -0.1146D+00 0.2953D-02 -0.1719D-01 0.4427D-03 -0.3367D-02 0.8672D-04 -0.7325D-03
0.1887D-04 -0.3167D-03 0.8157D-05

Z I M P A R T O F F U N C T I O N S
- --------------------------------------

-20.0000 0.8986D-01 -0.1301D+00 0.7845D-02 0.4159D+00 0.0000D+00 0.0000D+00 0.0000D+00 0.0000D+00 0.0000D+00
0.0000D+00 0.0000D+00 0.0000D+00

-17.5000 -0.3538D+00 -0.1871D+00 0.8361D-01 -0.8999D-01 0.1302D-12 0.3266D-12 -0.2947D-23 -0.9292D-23 0.3101D-32
0.6448D-32 -0.2740D-40 -0.7547D-40

-15.0000 -0.6342D+00 -0.1578D+00 -0.1622D+00 -0.2497D+00 0.9890D-11 0.2481D-10 -0.7994D-20 -0.2521D-19 0.1675D-27
0.3484D-27 -0.2424D-34 -0.6677D-34

-12.5000 -0.6221D+00 -0.5571D-01 0.2160D+00 0.5512D+00 0.7512D-09 0.1885D-08 -0.2168D-16 -0.6837D-16 0.9052D-23
0.1882D-22 -0.2145D-28 -0.5907D-28

-10.0000 -0.3229D+00 0.7208D-01 -0.2367D+00 -0.7682D+00 0.5705D-07 0.1431D-06 -0.5882D-13 -0.1855D-12 0.4891D-18
0.1017D-17 -0.1898D-22 -0.5227D-22

-7.5000 0.1252D+00 0.1666D+00 0.2212D+00 0.8675D+00 0.4333D-05 0.1087D-04 -0.1596D-09 -0.5031D-09 0.2642D-13
0.5494D-13 -0.1679D-16 -0.4624D-16

-5.0000 0.5156D+00 0.1843D+00 -0.1717D+00 -0.8340D+00 0.3291D-03 0.8258D-03 -0.4329D-06 -0.1365D-05 0.1428D-08
12
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0.2968D-08 -0.1485D-10 -0.4091D-10
-2.5000 0.6681D+00 0.1169D+00 0.9595D-01 0.6726D+00 0.2500D-01 0.6272D-01 -0.1174D-02 -0.3702D-02 0.7713D-04

0.1604D-03 -0.1314D-04 -0.3620D-04
0.0000 0.5257D+00 0.2314D+00 0.1556D+00 0.4429D+00 -0.4253D-01 -0.1694D-01 0.9521D-03 -0.6627D-02 -0.1029D-02

-0.1783D-02 -0.1681D-03 -0.1133D-03
2.5000 0.4298D+00 0.2942D+00 -0.1081D+00 -0.5911D-01 -0.3976D-02 0.1900D-01 0.1581D-02 0.3082D-02 -0.3855D-03

0.4155D-04 0.2662D-03 0.2962D-03
5.0000 -0.2691D+00 -0.5328D+00 -0.1102D+00 -0.1969D+00 -0.1790D-01 -0.3033D-01 -0.3160D-02 -0.5731D-02 -0.7125D-03

-0.1263D-02 -0.2799D-03 -0.5290D-03
7.5000 0.1006D+00 0.6320D+00 0.3444D-01 0.2219D+00 0.5074D-02 0.3321D-01 0.1015D-02 0.6519D-02 0.2195D-03

0.1417D-02 0.9663D-04 0.6139D-03
10.0000 0.1103D+00 -0.4964D+00 0.3877D-01 -0.1748D+00 0.5808D-02 -0.2620D-01 0.1139D-02 -0.5132D-02 0.2477D-03

-0.1117D-02 0.1072D-03 -0.4827D-03
12.5000 -0.2804D+00 0.1791D+00 -0.9872D-01 0.6305D-01 -0.1480D-01 0.9453D-02 -0.2899D-02 0.1852D-02 -0.6308D-03

0.4029D-03 -0.2727D-03 0.1742D-03
15.0000 0.3479D+00 0.2037D+00 0.1224D+00 0.7172D-01 0.1836D-01 0.1075D-01 0.3596D-02 0.2106D-02 0.7824D-03

0.4583D-03 0.3383D-03 0.1981D-03
17.5000 -0.2879D+00 -0.5120D+00 -0.1013D+00 -0.1802D+00 -0.1519D-01 -0.2702D-01 -0.2976D-02 -0.5293D-02 -0.6475D-03

-0.1152D-02 -0.2799D-03 -0.4978D-03
20.0000 0.1224D+00 0.6327D+00 0.4310D-01 0.2227D+00 0.6461D-02 0.3339D-01 0.1266D-02 0.6541D-02 0.2754D-03

0.1423D-02 0.1191D-03 0.6152D-03

********************************************************************************

C H E C K P R O P E R T I E S
----------------------------------------

R E P A R T: TT_->^1 * RR_<- + RR_->^1 * TT_<-
----------------------------------------------------

0.694361E-12
-0.508538E-12

I M P A R T: TT_->^1 * RR_<- + RR_->^1 * TT_<-
----------------------------------------------------

0.710147E-12
0.107225E-11

M A X I M A L A B S O L U T E E R R O R = 0.118673E-11

R E P A R T: TT_->^T - TT_<-
----------------------------------

0.402622E-12
-0.299427E-12

I M P A R T: TT_->^T - TT_<-
----------------------------------

-0.781597E-12
-0.476535E-12

M A X I M A L A B S O L U T E E R R O R = 0.879203E-12

********************************************************************************

Appendix B. Test run output for the fusion cross sections (OUTPUT1.out)

16 O + 144 Sm Fusion reaction
-------------------------------------------------
Phonon Excitation in the targ.: beta_N= 0.205, beta_C= 0.205, r0= 1.06(fm) omega= 1.81(MeV), Lambda= 3, Nph= 1
-------------------------------------------------
Potential parameters: V0= 105.10(MeV), r0= 1.10(fm), a= 0.75(fm)

Uncoupled barrier: Rb=10.82(fm), Vb= 61.25(MeV), Curv= 4.25(MeV)
-------------------------------------------------

CCFULL CCFULL_FEM

Ecm (MeV) sigma (mb) <l> sigma (mb) <l>
--------------------------------------------------------------------
55.00000 0.97449E-02 5.87031 0.96201E-02 5.93465
56.00000 0.05489 5.94333 0.05335 5.99076
57.00000 0.28583 6.05134 0.27801 6.05530
58.00000 1.36500 6.19272 1.35113 6.14643
59.00000 5.84375 6.40451 5.91437 6.33755
60.00000 20.59856 6.86092 20.99607 6.82686
61.00000 52.14435 7.81887 52.68372 7.83235
62.00000 94.62477 9.18913 94.99815 9.21708
63.00000 139.58988 10.65032 139.92905 10.67174
64.00000 185.55960 11.98384 185.94640 11.99824
65.00000 234.04527 13.13045 234.35034 13.14361
66.00000 283.93527 14.18620 284.12497 14.19634
67.00000 333.26115 15.21129 333.38493 15.21613
68.00000 381.21017 16.20563 381.28717 16.20578
69.00000 427.61804 17.16333 427.65117 17.16036
70.00000 472.48081 18.08211 472.48114 18.07759
71.00000 515.83672 18.96273 515.82630 18.95799
72.00000 557.73621 19.80734 557.74591 19.80343
13
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Appendix C. Test run output the fusion cross sections (OUTPUT2.out)

16 O + 144 Sm Fusion reaction
-------------------------------------------------
Phonon Excitation in the targ.: beta_N= 0.205, beta_C= 0.205, r0= 1.06(fm) omega= 1.81(MeV), Lambda= 3, Nph= 2
Phonon Excitation in the proj.: beta_N= 0.733, beta_C= 0.733, r0= 1.20(fm) omega= 6.13(MeV), Lambda= 3, Nph= 2
-------------------------------------------------
Potential parameters: V0= 55.10(MeV), r0= 1.10(fm), a= 0.75(fm)

Uncoupled barrier: Rb=10.14(fm), Vb= 64.64(MeV), Curv= 4.14(MeV)
-------------------------------------------------

CCFULL CCFULL_FEM

Ecm (MeV) sigma (mb) <l> sigma (mb) <l>
--------------------------------------------------------------------
52.00000 0.00000E+00 0.00000 0.37601E-04 3.22876
53.00000 0.00000E+00 0.00000 0.37789E-03 4.56878
54.00000 0.48512E-03 2.74497 0.27270E-02 5.12163
55.00000 0.01138 3.69681 0.01611 5.49592
56.00000 0.08730 5.90631 0.07383 6.07269
57.00000 0.24317 7.63593 0.44033 5.80180
58.00000 2.49769 7.49669 1.94929 6.46527
59.00000 5.39620 9.02205 6.81172 7.02893
60.00000 12.56862 6.33472 19.16858 7.41121
61.00000 35.56996 6.99202 44.57027 8.42200
62.00000 74.54402 9.25713 77.11841 9.39948
63.00000 99.58784 9.18304 120.37411 10.71804
64.00000 131.11721 11.02638 165.34418 11.70632
65.00000 151.97698 11.81984 212.04877 12.73508
66.00000 187.35451 12.79716 258.33768 13.79770
67.00000 222.43560 13.57383 300.23393 14.74343
68.00000 251.51478 14.17774 334.11927 15.40424
69.00000 278.95512 14.79787 371.29310 16.21770
70.00000 301.80008 15.35957 407.10211 16.99513
71.00000 322.08014 15.82657 441.70166 17.72384
72.00000 330.91749 15.96110 478.64989 18.49331
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