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Abstract—A method for solving the problem of quantum transmission through potential barriers or potential wells
for a compound system consisting of several identical particles coupled via pair oscillator-type potentials in the
oscillator representation of the symmetrized coordinates is considered. The efficiency of the proposed approach,
algorithms and programs is demonstrated by the examples of calculation of complex energy values and analysis of
metastable states of compound systems of two, three, and four identical particles on a straight line, which lead to
the effect of quantum transparency of the potential barriers or quantum reflection from the wells.
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INTRODUCTION
The mechanisms of quantum transparency of bar-

riers in the tunneling of a bound pair of particles or a
cluster due to metastable states of the composite sys-
tem “bound pair or cluster + barrier” have been a sub-
ject of our earlier studies. With the decreasing number
of the molecular degrees of freedom, e.g., in a rigid
molecule model, the problem offers a great potential
for analytical studies [1]. The analysis of quantum
transparency mechanism for a system consisting of

identical particles is of interest for both nuclear and
molecular physics, as well as for physics of semicon-
ductor composite nanostructures [2]. The results of
the work were applied to the quantum tunneling of
clusters consisting of several identical particles placed
on a straight line and coupled by pair oscillator-type
interactions, through narrow and high Gaussian
repulsive barriers, commensurate with the mean size
of the incoming cluster. Examples of calculations for
various values of the Gaussian repulsive barrier
parameters were considered, as well as for a long-
range repulsive barrier, including the channeling
problem for a pair of ions [3]. The resonance quantum
transparency of barriers (or ref lection from wells) for a
such cluster, caused by the presence of the metastable
states, embedded in the continuous energy spectrum
and localized near the points where the potential
energy of the composite system is minimal were ana-
lyzed [4, 5]. This class of problems was shown to
require the development of new analytical and numer-
ical methods and computer programs, as well as the
upgrade of the existing ones [6].

In this paper we present a brief review of the method
for solving the problem of quantum transmission
through potential barriers or wells for a cluster of several
identical particles coupled via pair oscillator potentials
in the oscillator representation of the new symmetrized
coordinates. In this representation the wave function of
the composite system is sought in the form of expansion
over the basis of harmonic oscillator functions symmet-
ric with respect to the permutations of the particles with
unknown functions of center mass variable. The effi-
ciency of the proposed approach is demonstrated by the
analysis of the shape and Feshbach resonances corre-
sponding to metastable states with complex energies of
composite systems of two, three, and four identical par-
ticles on a straight line, which give rise to quantum
transparency of the repulsive barriers and the resonance
reflection from the wells.

1. PROBLEM STATEMENT

We consider the penetration of a cluster of  iden-
tical quantum particles with mass , coupled by oscil-
lator interaction, through a short-range potential bar-
rier or well  in the s-wave approximation, corre-
sponding to one-dimensional Euclidian space,

 We assume that the spin part of
the wave function is known, so that only the spatial
part of the wave function  is to be considered,
which may be symmetric or antisymmetric with
respect to a permutation of n identical particles. The
Schrodinger equation describing the penetration of a1 The article is published in the original.
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cluster of n identical spinless quantum particles with
energy E in oscillator units has the form

(1)

Our goal is to find the solutions  of Eq. (1),
which are totally symmetric (or antisymmetric) with
respect to the permutations of n particles that belong
to the permutation group . The permutation of par-
ticles is nothing but a permutation of the Cartesian
coordinates   The reduction is
provided by using the appropriately chosen new
symmetrized coordinates  = 
where  is coordinate of center of masses and

 are relative coordinates, rather
than the conventional Jacobi coordinates [2, 4, 7]. The
symmetrized coordinates are determined by the
orthogonal transformation 

(2)

where  and  and .
In the symmetrized coordinates Eq. (1) takes the form

(3)

This equation is invariant under the permutations
 for , i.e., the invariance of

Eq. (1) under the permutations  
is conserved, which significantly simplifies the con-
struction of states, symmetric (or antisymmetric) with
respect to the operations of permutation of n particles
[2, 4, 8], as compared to the Jacobi coordinates in the
center-of-mass reference frame [9]. However, the
invariance of Eq. (3) under the permutations 
does not yield the invariance of Eq. (1) with respect to
the permutations , which is the essence of the
problem of constructing translation-invariant models
of light nuclei [9].

2. OSCILLATOR REPRESENTATION 
FOR SEVERAL IDENTICAL PARTICLES

Let us define the set of cluster functions  ≡
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under the permutations of n identical particles and the
corresponding values of energy  of the spectrum

  as the solutions of the
eigenvalue problem for the equation

(4)

The desired solutions  are sought for in the
form of linear combinations of the known functions of
the -dimensional harmonic oscillator

 =  in a layer of

the corresponding eigenvalues  =

, , at ,
using the two-step algorithm [2]:

(1) The eigenfunctions symmetric (or antisymmetric)
under the permutations   are
generated using the standard method [10]. These func-
tions are also symmetric (or antisymmetric) under the
permutations , , but possess no
symmetry with respect to the permutations ,

.
(2) Using the eigenfunctions obtained at the previous

step, the set of linearly-independent functions, symmet-
ric (or antisymmetric) under the permutation  is
constructed, from which we get the desired orthonor-
malized basis using the Gram–Schmidt procedure.

In the case when , the eigenfunctions
 were calculated in analytic form [4].

In the case when , the eigenvalues of energy
 are -fold degenerate, where the

value of K is determined by the condition of equal
energies  =  for one of the values

K' = 0, 4, 6, 8, 10, 14; , .

For the case , the energy eigenvalues  pos-

sess the multiplicity of degeneracy  +
 + , where the values of  and 

are determined by the condition of equal energies
 = , for one of the values

of K' = 0, 1, 2, 3, 4, 5 and ; ,

.
The solution of the problem (3) in the symmetrized

coordinates (2) is sought in the form of expansion over
the basis of harmonic oscillator functions (4)

(5)
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Substituting the expansion (5) into Eq. (3), we get the
boundary value problem for a finite set of  coupled
ordinary differential equations for  =

(6)

where  is unit matrix of dimension , 
and  are matrices of dimension  given
by their matrix elements  and  cal-
culated in analytic form

The rectangular matrix solutions  describe the
transmission and reflection of a particle incident on
the barrier or well and have the asymptotic form “inci-
dent plane wave + outgoing waves” at :

(7)

where  and  are the  transmission and
reflection amplitude matrices,  is the number of
open channels for a fixed energy 
( , ), and the subscript  takes
the values → or ← and denotes the initial direction of
the particle incidence on the barrier or well from the
respective left or right side, and  are rectangu-
lar matrix functions with matrix elements

As a result, we arrive at a multichannel scattering
problem for the set of  coupled ordinary differen-
tial equations for the functions depending on the cen-
ter-of-mass variable  (see, for details [2, 4]).

3. ANALYSIS OF SHAPE 
AND FESHBACH RESONANCES

The analysis of shape and Feshbach resonances is
given for transmission of two, three or four identical
particles  coupled by the harmonic oscillator
potential  = ,  via
the Gaussian barrier ( ) or well ( ):

(8)
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The case of sub-barrier penetration was considered in
[2, 4, 7]. Here we consider the case of over-barrier and
over-well transmission (i.e. for ). This is the

probability  =  = , where the
asterisk denotes a complex conjugation, of a transition
from the eigenstate io to any of No eigenstates in open

channels  of the boundary-value prob-
lem for Eqs. (6), (7) in the Galerkin form and the com-
plex eigenvalues  +  of metastable
states are calculated using the program KANTBP [6].

Figure 1 shows that the dependence of the proba-
bility  upon the energy E is non-monotonic, and
the observed shape resonance peaks are manifesta-
tions of the quantum transparency effect below the bar-
rier height (for ). For the symmetric states we
have the following threshold energies in oscillator units:

 = ,  =

 and  =
. As can be seen from the

figures, up to a certain value of the collision energy E
there is almost complete reflection with the exception
of small energy regions where resonant transmission
(the shape resonance) is observed, and to each maxi-
mum of the transmission coefficient there corre-
sponds a metastable state. Above this region there is
almost total transmission except for small regions over
the energy E where resonance reflection is observed
(Feshbach resonance). For systems of three and four
particles at small barrier height the peaks correspond-
ing to resonances are smoothed out.

Figure 2 presents the total transmission probability
 versus the energy E for the clusters of 

particles coupled by oscillator potential, propagating
above the Gaussian well with  and .
One can see that the resonance structure becomes
enriched when the number of transmitted particles
increases. In contrast to the case of a barrier, in the
vicinity of the well resonance, we see both the reso-
nance reflection and the transmission. Thus, for 
we see double-resonance structures, similar to the
double-well case. For  and  the double
structure can appear when the depth of wells 
increases. In Table 1 the values of complex energies

 +  of the corresponding meta-
stable states for the transmission of  particles
above the Gaussian well at ,  are sum-
marized that correspondes to some peaks presented in
Fig. 2.

Figures 3 and 4 present the probability density pro-
files  for the symmetric states of two parti-
cles transmitted above a Gaussian barrier and well at

,  demonstrating resonance reflection
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Fig. 2. The total transmission probability  versus the
energy E (in oscillator units). The cluster of  par-
ticles (a, b, c), coupled by the oscillator potential, propa-
gates above the Gaussian well (8) with  and

. The cluster is initially in the ground state.
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Fig. 1. The total probability  of the transmission
through (or above) a Gaussian potential barrier (8) with

,  (dotted curves) and , 
(solid curves). versus the energy E (in oscillator units) for
the ground state of a cluster of  particles (a, b, c),
coupled by the oscillator potential.
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Fig. 3. Profiles of probability densities  for symmetric states of the cluster of two particles, transmitted above the

Gaussian barrier , . The cluster is initially in the ground state. Peak reflection (a) E = 9.6479,  = 0.3779 and

(b) ,  = 0.4765, reveals itself at the Feshbach resonance energies:  and

, respectively (in oscillator units).
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Fig. 4. Profiles of probability densities  for symmetric states of the cluster of two particles, transmitted above the

Gaussian well , . The cluster is initially in the ground state. Peak reflection (a) E = 4.3954,  = 10–12 and

(b) ,  = 10–11, reveals itself at the Feshbach resonance energies:  and

, respectively (in oscillator units).
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Table 1. The threshold energies  and complex energies  of metastable states in the case of trans-
mission of a cluster comprised by  and 4 particles above the Gaussian well ,  (in oscillator units)

1 4.4348 0.2572 2 5.3307 0.0620 3 5.7747 0.0742
1 4.6764 0.0058 2 5.7911 0.0621 3 6.4441 0.1050
5 8.5158 0.0506 6 6.9922 0.0751 3 6.7934 0.0033
5 8.7675 0.1261 6 7.9457 0.0565 7 8.3668 0.0651
9 12.6009 0.1215 8 8.9601 0.0588 7 8.7797 0.0080
9 12.7330 0.0142 8 9.4950 0.2251 9 9.4050 0.1995

13 16.6841 0.0364 8 9.8617 0.0852 9 9.9926 0.1225
13 16.7050 0.0914 10 11.4173 0.1678 9 10.0755 0.0676

th
iE = +M M MRe Imm m mE E i E

= 2, 3n α = −2 σ = 1 10

= 2n = 2n = 2n = 3n = 3n = 3n = 4n = 4n = 4n

th
iE MRe mE − MIm mE th

iE MRe mE − MIm mE th
iE MRe mE − MIm mE
at resonance energies. The series of resonances in the
transmission  with the initial ground state io = 1 are
induced by Feshbach metastable states for the closed
channels.

CONCLUSIONS

We have formulated a model of cluster of  identi-
cal particles bound by the oscillator-type potential
under the influence of the external field of a target in
the new symmetrized coordinates. As a result the ini-
tial problem appears to be reduced to a multichannel
scattering problem for the set of coupled-channel
equations using harmonic oscillator basis, symmetric
with respect to the permutations of the particles. We
have proved that the effects of resonance transmission
and reflection are due to the existence of metastable
states with complex energy, embedded in the contin-
uum, corresponding to shape and Feshbach reso-
nances.

The proposed approach can be adapted and
applied to the analysis of quantum transparency or
total ref lection effects, to the study of the quantum
diffusion of molecules and micro-clusters through
surfaces, the fragmentation mechanism in neutron-
rich light nuclei production.
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