
ISSN 1062-8738, Bulletin of the Russian Academy of Sciences: Physics, 2018, Vol. 82, No. 6, pp. 654–660. © Allerton Press, Inc., 2018.
Solution of Quantum Mechanical Problems Using
Finite Element Method and Parametric Basis Functions1

O. Chuluunbaatara, b, S. I. Vinitskya, c, *, A. A. Guseva, V. L. Derbovd, and P. M. Krassovitskiya, e

aJoint Institute for Nuclear Research, Dubna, 141980 Russia
bNational University of Mongolia, Ulan-Bator, 210646 Mongolia

cRUDN University, Moscow, 117198 Russia
dSaratov State University, Saratov, 410012 Russia

eInstitute of Nuclear Physics, Almaty, 050032 Kazakhstan
*e-mail: vinitsky@theor.jinr.ru

Abstract—New computational schemes, symbolic-numerical algorithms and programs implementing the high-
accuracy finite element method (FEM) for the solution of quantum mechanical boundary-value problems (BVPs)
are reviewed. The elliptic BVPs in 2D and 3D domains are solved using the multivariable FEM and Kantorovich
method using parametric basis functions. We demonstrate and compare the efficiency of the proposed calculation
schemes, algorithms, and software by solving the benchmark BVPs that describe the scattering on a barrier and a
well, the bound states of a helium atom, and the quadrupole vibration in a collective nuclear model.
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INTRODUCTION
Conventionally the elliptic boundary-value problems

(BVPs) in multidimensional domains are solved using
the multivariable finite element method (FEM) [1]. The
alternative Kantorovich method (KM) [2] consists in the
expansion of the sought solution over a basis of paramet-
ric functions depended on one of the independent vari-
ables as a parameter, generated by an appropriate auxil-
iary eigenvalue problem in a lower-dimension domain.
As a result the original BVP is reduced to a set of ordinary
second-order differential equations with respect to the
above independent variable [3–6]. The computational
schemes, symbolic-numerical algorithms and programs
implementing the high-accuracy FEM and KM for the
solution of quantum mechanical boundary value prob-
lems (BVPs) arising in atomic, molecular, and nuclear
physics were elaborated [7–10].

In this paper we present a new high-accuracy FEM
calculation scheme for solving 2D and 3D scattering
problems with approximated boundary conditions of the
third type. We demonstrate and compare the efficiency of
the calculation schemes, algorithms and programs by the
examples of solving the benchmark BVPs that describe
the quantum scattering by spherical and nonspherical
barriers and wells, the bound states of helium atom, and
the quadrupole vibration collective nuclear model.

1. THE STATEMENT OF THE PROBLEM

Let us consider of a self-adjoint elliptic partial dif-
ferential equation (PDE) in the domain

 [1]:

(1)

where , , and  are real-val-
ued functions, continuous together with their general-
ized derivatives to a given order. The solution should
satisfy the boundary conditions (BC)

(2)

(3)

where  is the derivative along the conormal
direction,  is the outer normal to the boundary

 of ,  is the unit vector of , and

 is the scalar product in .

1 The article is published in the original.

∈ Ω ⊂1= ( ,..., ) d
dz z z R

( ) ⎛ ⎞∂ ∂− Φ − + − Φ⎜ ⎟∂ ∂⎝ ⎠
∑

=10

1( ) = ( ) ( ) ( ) = 0,
( )

d

ij
ij i j

D E z g z V z E z
g z z z

0( ) > 0g z ( ) = ( )ji ijg z g z ( )V z

∂ΦΦ
∂

∂Φ + σ Φ
∂

( )(I) : ( ) = 0, (II) : = 0,

( )(III) : ( ) ( ) = 0,

S
D S

S
D S

zz
n

z s z
n

∂Φ ∂Φ
∂ ∂∑

=1

( ) ( )ˆ ˆ= ( , ) ( ) ,
d

i ij
ijD j

z zn e g z
n z

∂Φ ∂( ) Dz n
n̂

∂Ω=S Ω îe
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The FEM solution of the BVP is reduced to calculating the stationary points of the Rayleigh–Ritz or Hulten
variational functional

For a discrete spectrum problem the functions
Φm(z) from the Sobolev space ,

, corresponding to the real eigenval-
ues :  satisfy to the normal-
ization and orthogonality conditions (NOCs)

(4)

The implementation of high-accuracy multivariate
schemes of FEM was considered in [10].

2. QUANTUM SCATTERING PROBLEM 
FOR BARRIER AND WELL

The 3D BVP (1)−(3) in spherical coordinates
 with a short-range potential function

 at fixed values of the spectral
parameter  in units  is reduced to
2D BVP

(5)

with the boundary conditions

(6)

where  is a logarithmic derivative that follows
for bounded solutions from the asymptotic boundary
conditions

(7)

We rewrite this problem to the inhomogeneous one for
the scattering wave :

(8)

with the approximted boundary conditions that follow
from asymptotic BCs (7) for scattered wave

(9)

Here the unknowns are the scattering wave  and
the amplitude . Using the relation for solution

 =  calculated by means of
FEM using the partial -matrix

(10)

where  and  are the spherical Bessel functions
of the first and second kinds,  are the Legendre
polynomials [11], multiplying both sides of Eq. (10) by
Legendre polynomials, and integrating over , we
obtain the required formula for calculating the auxil-
iary unknown partial -matrix and scattering the
amplitude :

(11)

Using the evaluated values of , we calculate the
desired scattering amplitude  and the
total cross-section  that satisfy the optical theorem

(12)

We propose such procedure to consider the contri-
bution of the order  in the approximated
boundary conditions (9) and to avoid the use of slowly
converging expansion of the partial boundary condi-
tions [12, 13]. In the case of a spherical barrier or well,
the squared absolute value of the calculated scattering
amplitude  and its real and imaginary parts at
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Fig. 1. The absolute square value of the calculated scatter-

ing amplitude  at , for spherical potential
. (a) V0 = 20, (b) .
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Fig. 2. The same as in Fig. 1 but for nonspherical potential
 and .
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(  and ) are shown in Fig. 1. The cal-
culation using Eqs. (8), (6), and (9)−(12) was carried
out in the 2D domain with the coordinates ,

,  at  on the nonuni-
form grids  and

, using triangle Lagrange elements of 5th
order [10]. The number of mesh points of the rectangular
grid divided into right-angled triangle elements is indi-
cated in parentheses. The amplitudes calculated from
Eqs. (11), (12) at  are coincided with the

accuracy  with exact analytical values, as well as the
optical theorem, i.e. w.r.t. of the second Eq. (12).

Similar results for the nonspherical barrier (having
the shape of a semitransparent disc of finite thickness)
or well  = {V0, ρ = rsinθ ≤ R0 and |z| = r|cosθ| ≤
a/2; 0, otherwise},  are shown in Fig. 2.
The calculation was carried out on the nonuniform
grids {0, (50), 1, (10), R1, (100), 50, (100), rmax = 100}
and {0, (10), ϕ, (10), π – ϕ, (10), π} and

, . The optical the-

orem is implemented with the accuracy  The
obtained results are in a good agreement with the
2D finite difference calculations of Ref. [14].

3. BENCHMARK CALCULATIONS 
OF HELIUM ATOM BOUND STATES

In the hyperspheroidal coordinates, ,
, , related to the perimetric ones as

0 = 20V −0 = 20V
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(13)

the equation for the solution  =

 for S-states of the helium atom
(ignoring the negligible effect of electron reduced
mass) in atomic units (a.u.) reads as [6]
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Fig. 3. (a) Potential curves , . The matrix

elements (b)  ((1) , (2) , (3) ,

(4) , (5) ), (c)  ((1) ,

(2) , (3) , (4) , (5) , (6) )

and (d)  ((1) , (2) , (3) ,

(4) , (5) , (6) ) plotted vs hyperra-

dius  (in a.u.).
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. The parametric surface functions

 and the eigenvalues  are eigenso-
lutions of the 2D BVP with purely discrete spectrum
that satisfy the following boundary conditions (17) and
the NOC

(18)

The 2D BVP (18) was solved using the scaled variable
and parametric surface functions

(19)

As an example, the potential curves  =

 and the matrix elements given by the

integrals

(20)

are presented in Fig. 3. The calculations were carried
out by means of the program POTHEA 2.0 using the
server 2x4 kernels i7k (i7-3770K 4.5 GHz, 32 GB
RAM, GPU GTX680), and the Intel Fortran compiler

17.0. The computing time per one point  for the con-

sidered examples with the accuracy  with triangu-
lar Lagrange elements of the 5th order on the uniform

2D grids ,  at 
was 0.38, 5.08, and 41.21 seconds, respectively [10].
We seek for the solution of the 3D BVP (14)–(17)
expressed as the Kantorovich expansion [2]
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(21)

over the eigenfunctions  of the parametric

2D BVP having the purely discrete spectrum  =

 . Substituting the expan-

sion (21) into the 3D BVP Eqs. (14)–(17), we get the

1D BVP for a finite set of  coupled ordinary differ-

ential equations for  = 

Φ ξ η φ ξ η χ∑
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The solution of this BVP with the help of KANTBP
where  is unit matrix of dimension ,

 and  are matrices of dimen-

sion  given by their matrix elements (20)
with the boundary and normalization conditions
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program [9] on the non-uniform grids

 using the calculated ,

 = , , , i.e.

using 12 surface basis functions, yields the upper esti-

mate for the energy of the ground and the first exited

state of helium atom  a.u. and

 a.u. with 8 significant digits, simi-

lar to the results of the POTHEA program with

28 basis functions [8]. The first three components of

= {0(50),5,(75),20}R ( )jE R
( )ijV R + δ( ) ( )ij j ijH R E R ( )ijQ R , = 1,...,12i j

−1 = 2.90372430E
−2 = 2.14597322E
: PHYSICS  Vol. 82  No. 6  2018
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Fig. 4. The first three components of the radial eigenfunc-

tions  of ground (a) and first exited (b) states of

helium atom plotted vs hyperradius  (in a.u.) ((1) ,

(2) , (3) ).
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Fig. 5. (a) The isolines of potential energy of quadrupole

shape (24) (in MeV) and two non-degenerated eigenfunc-

tions (b)  and (c) .
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the radial eigenfunctions of the ground and the first

exited states of helium atom vs the hyperradius  are

plotted in Fig. 4. One can see that the absolute values

of the components decrease with the increase of their

numbers, which clearly demonstrates the convergence

rate of KM (21).

R
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4. VIBRATIONAL COLLECTIVE  

QUADRUPOLE NUCLEAR MODEL

Let us consider the 2D BVP described by Eqs. (1),

(2), and (4) for ,  with the potential

function  and the spectral param-

eter , and . The quad-

v3C

22=x a 20=y a
( , ) = 2 ( , )U x y mV x y

ε = 2mE 0( , ) = ( , ) = 1ijg x y g x y
MY OF SCIENCES: PHYSICS  Vol. 82  No. 6  2018
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Table 1. The first energy levels of the 2D BVP using triangular  and rectangular  finite elements and the KM  using

 parametric basis functions, classified by irrs (Class.) of the  point group,  (MeV)

Class.

1 381.754344 381.754355 381.754351 1.53933206 A1

2 387.240633 387.240644 387.240641 1.56145419 E1

3 387.240633 387.240646 387.240641 1.56145419 E2

4 617.024951 617.024967 617.024963 2.48800388 E1

5 617.024951 617.024989 617.024963 2.48800388 E2

6 667.104970 667.105020 667.104992 2.68993948 A2

7 695.166557 695.166590 695.166575 2.80309103 A1

8 785.680037 785.680100 785.680078 3.16806483 E1

9 785.680037 785.680136 785.680078 3.16806483 E2

10 898.045395 898.045497 898.045434 3.62115094 A1

11 915.823095 915.823200 915.823167 3.69283535 E1

12 915.823095 915.823309 915.823167 3.69283535 E2

13 993.158636 993.158784 993.158708 4.00467221 E2

14 993.158636 993.158872 993.158708 4.00467221 E1

15 1063.73690 1063.73709 1063.73692 4.28926178 A1

Δεi ε�i εi

max = 28j
v3C iE

i Δεi ε�i εi ε= 2i iE m
rupole potential energy is approximated by the quartic
potential [5]:

(24)

We use the set of parameters , ,

, c0 = 65/16 that provide a crude approxima-

tion for the shape of , which has been fitted in
the following points: the minima at

, V(0, 1/4) = 0; the maxima at

, ; and the saddle

point at , V(0, 1/5) = 729/400 (see

Fig. 5). The fitting points in our parametrization are

related to those of Ref. [15] as .

We choose the effective mass parameter to be

. Thus, there are ground and doubly
degenerate excited states, localized in three wells. The

point symmetry group  of the 2D problem (1), (2),

(4), (24) has four irreducible representations (irrs.) A1,
A2, E1 and E2 to classify the solutions, the E-type
states being doubly degenerate [16]. The calculated
eigenvalues are presented in Table 1. The first eigen-
functions of the irrs. A1, A2 are shown in Fig. 5. The
BVP was solved using four ways:

(1) The solution of the 2D BVP was calculated
using the FEM scheme on the rectangular grid

 ×  with
Lagrange interpolation polynomials of the order

. The first 15 eigenvalues were calculated with
9 significant digits and are presented in Table 1.

+
+ − + + +

2 2

22 20 1 22 20

2 3 2 2 2

2 22 20 20 3 22 20 0

( , ) = ( )

( 3) ( ) .

V a a c a a

c a a a c a a c

−1 = 120c 2 = 240c
3 = 1200c

156

64 92Gd

22 20( , ) = (0,1 4)a a
22 20( , ) = (0,0)a a (0,0) = 65 16V

−22 20( , ) = (0, 1 5)a a

α α22 22 20 20= 2 , =a a

2= = 124m B

3C
v

− −[ 0.4, 0.3,...,0.4] − −[ 0.4, 0.3,...,0.4]

= 12p
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(2) In the solution of the 2D BVP we used 54 finite

elements in the form of equilateral triangles with the

side equal to 1/6, forming a regular hexagon with the

vertices  . In each

finite element the Lagrange interpolation polynomials

of the fifth order were applied [10]. The stiffness and

the mass  matrices were used. The calculated

eigenvalues are presented in Table 1. The results  of

the above FEM calculations give upper estimations of

 for first 15 eigenvalues.

(3) The 2D problem (1), (2), (4), (24) was also

solved using the KM implemented in the FEM pro-

gram KANTBP 3 [9], with jmax 28 parametric basis

functions of one of the independent variables as a

parameter, calculated using the FEM program

ODPEVP [7]. The solution was calculated in the

domain  with Dirichlet BCs at the

boundary  using the calculation

scheme similar to KM presented in Section 3. The cal-

culations were performed on the finite element grid

{‒1/2, –1/3, –1/6, 0, 1/3, 1/2} with Lagrange inter-

polation polynomials of the order . The results

 and  of the above FEM calculations give upper

and lower estimations of , respetively.

(4) We performed also the calculations using KM

with parametric basis function given in analytical form

[5]. The results coincide with those of the calculations

of  presented in Table 1 with 9 significant digits.

π{(0.5cos 3,n π 5

= 00.5sin 3)}nn

×721 721
Δεi

ε�i

+2 2

20 22 < 1 2a a

+2 2

20 22 = 1 2a a

= 12p
Δεi ε�i

εi

εi
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CONCLUSIONS

The proposed calculation schemes, algorithms and
software implemented the high-accuracy finite ele-
ment method and Kantorovich method for solving the
boundary value problems can be applied to analyze the
dynamics of few-body scattering problems, quantum
tunneling and diffraction models, and quantum scat-
tering by nonspherical objects and nuclei.
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