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Abstract. We present a new algorithm of the finite element method
(FEM) implemented as KANTBP 5M code in MAPLE for solving boun-
dary-value problems (BVPs) for systems of second-order ordinary differ-
ential equations with continuous or piecewise continuous real or complex-
valued coefficients. The desired solution in a finite interval of the real-
valued independent variable is subject to mixed homogeneous boundary
conditions (BCs). To reduce a BVP or a scattering problem with different
numbers of asymptotically coupled or entangled open channels in the two
asymptotic regions to a BVP on a finite interval, the asymptotic BCs for
large absolute values of the independent variable are approximated by
homogeneous Robin BCs. The BVP is discretized by means of the FEM
using the Hermite interpolation polynomials with arbitrary multiplicity
of the nodes, which preserves the continuity of derivatives of the desired
solutions. The relevant algebraic problems are solved using the built-in
linear algebra procedures. To calculate metastable states with complex
eigenvalues of energy or to find bound states with the BCs depending
on a spectral parameter, the Newton iteration scheme is implemented.
Benchmark examples of the code application to BVPs and scattering
problems of quantum mechanics are given.
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1 Introduction

Mathematical modeling of quantum-mechanical collisions of molecules, atoms
and atomic nuclei, guided propagation of waves (oceanic, optical, electromag-
netic), as well as transitions between metastable and bound quantum states
using the methods of coupled channels or normal modes reduces to boundary-
value problems (BVPs) for systems of N coupled second order ordinary differ-
ential equations (ODEs) [1–3].

Mathematical models of the above phenomena, initially formulated as a
multidimensional (quantum mechanical) or three-dimensional elliptic BVP [4],
reduce to a system of ODEs with variable coefficients (real or complex, tabu-
lar or piecewise continuous, or not only continuous, but also having continuous
derivatives up to a given order) on a finite interval. The appropriate boundary
conditions (BCs) are of the mixed type: Robin (third-type or radiation condi-
tion), Neumann and Dirichlet. The procedure implies constructing asymptotes
of the desired solution and its expansion in terms of a suitable basis functions,
including the calculation of the variable coefficients of the ODE as integrals in
the reduction of the original problem in terms of basis functions to be solved by
the Kantorovich method or by the incomplete Galerkin method [5,6].

For example, in molecular and nuclear physics, optical waveguides, for the
spectrum of beryllium dimer [7], sub-barrier fusion of heavy ions [8] or transverse
modes in smoothly irregular optical fibers [9], the proposed approach and the
program of its finite element method (FEM) implementation allow the deter-
mination of scattering or metastable states in the case of different numbers of
asymptotically coupled or entangled open channels [10,11]. The eigenfunctions
and the symmetric (or unitary) scattering matrix composed of square matrices
of transmission amplitudes and rectangular matrices of reflection amplitudes are
found, as well as complex energy eigenvalues and eigenfunctions of metastable
states calculated by means of the Newton method [12].

Standard FEM programs with interpolation Lagrange polynomials (ILPs),
implemented in FORTRAN and in public domain computer algebra systems like
MAPLE and MATHEMATICA solve 3D, 2D and 1D elliptic BVPs [4]. However,
they are not applicable to systems of N ODEs of the above general type.

Indeed, in standard public domain FEM programs the desired solution is
approximated by ILPs, which do not preserve the continuity of the derivatives
of solutions up to a given order, depending on the smoothness of the variable
coefficients of the ODE at the boundary points of the finite element mesh subin-
tervals. This can violate the conservation laws inherent in the original problem.

In the present paper we propose new algorithms and software implementa-
tion of the FEM for solving BVPs for systems of N ODEs. To approximate
the desired solution, the interpolation Hermite polynomials (IHPs) with arbi-
trary multiplicity of the nodes [6] are used, which preserve the continuity of
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the derivatives of the desired solution up to a given order, depending on the
smoothness of the ODE variable coefficients at the boundary points of the finite
element mesh subintervals [13]. The paper continues our previous work presented
in the libraries of computer programs of the Computer Physics Communication
journal [14–16] implemented in FORTRAN and JINRLIB [17] implemented and
executed in MAPLE [18]. In the case of smooth coefficients of the ODE, the
approximation by IHPs saves computer resources and provides not only high
accuracy, but also the continuity of the solution gradient.

We apply MAPLE to construct and analyze the appropriate FEM schemes,
to calculate the IHPs, to approximate the sought solution, to approximate the
tabulated ODE coefficients, to implement smooth matching of the FEM solution
with its analytical asymptotic extension, to construct the asymptotes of the
sought ODE solution necessary for formulating the Robin BCs for the expansion
of the desired solution of the original multidimensional BVP in appropriate basis
functions. Moreover, using MAPLE we calculate the first derivatives of the basis
functions with respect to the parameter – the independent variable of the ODE.
The variable coefficients of the ODE – integrals in the reduction of the original
multidimensional BVP in terms of basic functions and their first derivatives by
the Kantorovich or incomplete Galerkin method are also obtained using MAPLE,
as well as a convenient graphical representation of all the items that make up
the solution of the BVP.

The structure of the paper is as follows. In Sect. 2, we formulate the BVPs
and briefly describe the FEM scheme. Section 3 presents the benchmark exam-
ples of using the code to solve bound state problems and scattering problems
of quantum mechanics and waveguide physics. In Appendices we present the
algorithms of IHPs generation on the standard interval, calculation of the FEM
scheme characteristics and FEM generation of an algebraic eigenvalue problem.
In Conclusion we summarize the results and prospects of application.

All calculations in this paper were performed by KANTBP 5M code using
MAPLE 2019 on PC Intel Pentium 987 2 × 1.5 GHz, 4 Gb, 64bit Windows 8.

2 The Problem Statement

2.1 The Boundary-Value Problems

The proposed approach implemented as program KANTBP 5M is intended
for solving BVPs for systems of the ODEs with respect to unknown functions
Φ(z)=(Φ1(z), . . ., ΦN (z))T of independent variable z∈Ω(zmin, zmax) numerically
using the FEM [10]:

(D − E I) Φ(z) ≡
(

− 1
fB(z)

I
d

dz
fA(z)

d

dz
+V(z)

+
fA(z)
fB(z)

Q(z)
d

dz
+

1
fB(z)

dfA(z)Q(z)
dz

−E I
)

Φ(z)=0. (1)

Here fB(z) > 0 and fA(z) > 0 are continuous or piece-wise continuous positive
functions, I is the unit matrix, V(z) is a symmetric matrix, Vij(z) = Vji(z),
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and Q(z) is an antisymmetric N × N matrix, Qij(z) = −Qji(z), of effective
potentials. The elements of these matrices are continuous or piecewise continuous
real or complex-valued coefficients from the Sobolev space Hs≥1

2 (Ω), providing
the existence of nontrivial solutions Φ(z) subjected to homogeneous Dirichlet,
Neumann or Robin BCs at the boundary points of the interval z ∈ {zmin, zmax}
at given symmetric real or complex-valued N × N matrix G(z) = R(z) −Q(z)

Φ(zt) = 0, lim
z→zt

fA(z)
(
I

d

dz
− Q(z)

)
Φ(z) = 0, (2)

(
I

d

dz
− Q(z)

)
Φ(z)

∣∣∣∣
z=zt

= G(zt)Φ(zt),

where the superscript t = min,max labels the boundary points of the interval.

The Scattering Problem at a fixed energy E in the asymptotic form “incident
wave + outgoing waves” can be written as:

Φ→(z → ±∞) =

{
X(→)

min (z) + X(←)
min (z)R→ + X(c)

min(z)Rc
→, z → −∞,

X(→)
max(z)T→ + X(c)

max(z)Tc
→, z → +∞,

Φ←(z → ±∞) =

{
X(←)

min (z)T← + X(c)
min(z)Tc

←, z → −∞,

X(←)
max(z) + X(→)

max(z)R← + X(c)
max(z)Rc

←, z → +∞.

Here Φ→(z), Φ←(z) are matrix solutions with dimensions N × NL
o , N × NR

o ,
where NL

o , NR
o are the numbers of open channels, X(→)

min (z), X(←)
min (z) are open

channel asymptotic solutions at z → −∞, dimension N ×NL
o , X(→)

max(z), X(←)
max(z)

are open channel asymptotic solutions at z → +∞, dimension N ×NR
o , X(c)

min(z),
X(c)

max(z) are closed channel solutions, dimension N × (N −NL
o ), N × (N −NR

o ),
R→, R← are the reflection amplitude square matrices of dimension NL

o × NL
o ,

NR
o × NR

o , T→, T← are the transmission amplitude rectangular matrices of
dimension NR

o × NL
o , NL

o × NR
o , Rc

→, Tc
→, Tc

←, Rc
← are auxiliary matrices.

For real-valued potentials V(z) and Q(z) the transmission T and reflection R
amplitudes satisfy the relations

T†
→T→ + R†

→R→ = Ioo, T†
←T← + R†

←R← = Ioo,

T†
→R← + R†

→T← = 0, R†
←T→ + T†

←R→ = 0, (3)
TT

→ = T←, RT
→ = R→, RT

← = R←

ensuring unitarity and symmetry of S-matrix

S =
(
R→ T←
T→ R←

)
, S†S = SS† = I.

Here † and T denote conjugate transpose and transpose of a matrix, respectively.
So, for complex potentials V(z) and Q(z) the S-matrix is only symmetric S = ST

and only the last three conditions of (3) hold.
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For set of ODEs (1) with fB(z)=fA(z)=1, Qij(z)=0 and constant effective
potentials Vij(z)=V L,R

ij in the asymptotic region, asymptotic solutions X(∗)
i (z →

±∞) are as follows. The open channel asymptotic solutions i =io = 1, ..., NL,R
o :

X(
→←)

io
(z → ±∞) →

exp
(

±ı
√

E − λL,R
io

z

)

4

√
E − λL,R

io

ΨL,R
io

, λL,R
io

< E.

The closed channels asymptotic solutions i = ic = NL,R
o + 1, . . . , N :

X(c)
ic

(z → ±∞) → exp
(

−
√

λL,R
ic

− E|z|
)

ΨL,R
ic

, λL,R
ic

≥ E.

Here λL,R
i and ΨL,R

i = {ΨL,R
1i , ..., ΨL,R

Ni }T are solutions of the algebraic eigenvalue
problems with matrix VL,R of dimension N ×N for the entangled channels [11]

VL,RΨL,R
i = λL,R

i ΨL,R
i , (ΨL,R

i )T ΨL,R
j = δij . (4)

Note that λL,R
i = V L,R

ii and ΨL,R
i = δji, if V L,R

i�=j = 0, i.e. in the conventional
case of orthogonal channels.

Bound or Metastable States. Eigenfunctions Φm(z) obey the normalization
and orthogonality conditions

(Φm|Φm′) =
∫ zmax

zmin
fB(z)(Φ(m)(z))T Φ(m′)(z)dz = δmm′ .

For bound states with real eigenvalues E: E1 ≤ E2 ≤ ... the Dirichlet or Neu-
mann BC (2) follow from asymptotic expansions. For metastable states with
complex eigenvalues E = �E + ı	E, 	E < 0: �E1 ≤ �E2 ≤ ... the Robin BC
follow from outgoing wave fundamental asymptotic solutions that correspond to
the Siegert outgoing wave BCs [12].

For the set of ODEs (1) with fB(z)=fA(z)=1, Qij(z)=0 and constant effec-
tive potentials Vij(z)=V L,R

ij in the asymptotic region, asymptotic solutions

X(∗)
i (z → ±∞) are as follows. For bound states:

X(c)
ic

(z → ±∞) → exp
(

−
√

λL,R
ic

− Ei|z|
)

ΨL,R
ic

, λL,R
ic

≥E, ic = 1, . . . , N,

and for metastable states:

X(
→←)

io
(z→∞)→exp

(
+ı

√
E−λL,R

io
|z|

)
ΨL,R

io
, λL,R

io
<�E, io=1, ..., NL,R

o ,

X(c)
ic

(z→∞)→ exp
(

−
√

λL,R
ic

−E|z|
)

ΨL,R
ic

, λL,R
ic

≥�E, ic=NL,R
o +1, . . . , N.
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In the considered case matrix R(zt) of logarithmic derivatives for the corre-
sponding Robin BC takes the form

R(zt) = ΨL,RFL,R
(
ΨL,R

)−1

,

where FL,R = diag(...,±
√

λL,R
ic

− E, ...,∓ı
√

E − λL,R
io

, ...) and ΨL,R is the

matrix, composed from solutions ΨL,R
j of algebraic eigenvalue problem (4).

2.2 Finite Element Scheme

Finding solution Φ(z)∈Hs≥1
2 (Ω̄) of BPVs (1)–(2) reduces to the FEM calculation

of stationary points of symmetric quadratic functional

Ξ(Φ, E, zmin, zmax) ≡
∫ zmax

zmin
fB(z)Φ•(z) (D − E I) Φ(z)dz = Π(Φ, E, zmin, zmax)

−fA(zmax)Φ•(zmax)G(zmax)Φ(zmax) + fA(zmin)Φ•(zmin)G(zmin)Φ(zmin),

Π(Φ, E, zmin, zmax) =

∫ zmax

zmin

[
fA(z)

dΦ•(z)

dz

dΦ(z)

dz
+ fB(z)Φ•(z)V(z)Φ(z)

+fA(z)Φ•(z)Q(z)
dΦ(z)

dz
− fA(z)

dΦ(z)•

dz
Q(z)Φ(z) − fB(z)EΦ•(z)Φ(z)

]
dz, (5)

where G(z) = R(z) − Q(z) is a symmetric N × N matrix and • stands for T or
† depending on the problem considered.

High-accuracy computational schemes for solving BVP (1)–(2) are derived
from variational functional (5) basing on the FEM. The general idea of FEM
in a one-dimensional space is to divide the interval [zmin, zmax] into many small
subintervals referred to as elements. The choice of subintervals size (length) is
free enough to account for physical properties or qualitative behavior of the
sought solutions, such as smoothness.

The interval Δ = [zmin, zmax] is covered by a set of n subintervals Δj =
[z(j−1), z(j)], z(0) = zmin, z(n) = zmax in such a way that Δ =

⋃n
j=1 Δj . On each

subinterval Δj = [z(j−1), z(j)] of a length hj = z(j) − z(j−1) we introduce a set
of local functions given by the IHPs [6]: ϕκ

r (z), r = 0, ..., p, κ = 0, . . . , κmax
r − 1,

where κmax
r is referred to as the multiplicity of the nodes zr ∈ Δj , z0 = z(j−1),

zp = z(j). The values of functions ϕκ
r (z) of the order p′ =

∑p
r=0 κmax

r − 1 with
their derivatives up to the order (κmax

r − 1) are determined by expressions

ϕκ
r (zr′) = δrr′δκ0,

dκ′
ϕκ

r (z)
dzκ′

∣∣∣∣
z=z

r′

= δrr′δκκ′ . (6)

IHPs are calculated using analytical formulas [13] implemented in the algorithm
of Appendix A. The numerical solution Φh(z) ≈ Φ(z) is sought in the form of a
finite sum over the basis of local functions Ns(z) at each nodal point z = zρ of
the grid Ωp

hj(z)
[zmin, zmax] on interval z ∈ Δ = [zmin, zmax]:
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Table 1. Interrelation of subscripts μ, ν, i, r, ρ, j, S, s and κ by the example of BVP
(1) with N = 2 solved by FEM with the IHPs of the order p′ = 4 (p′ =

∑p
r=0 κmax

r −1)
with multiplicities (κmax

1 , κmax
2 , κmax

3 ) = (2, 1, 2) on n = 4 finite elements. Here (D)
means using the Dirichlet conditions at z = zmin and z = zmax.

odd j 1 3

even j 2 4

ρ 0 0 0 0 1 1 2 2 2 2 3 3 4 4 4 4 5 5 6 6 6 6 7 7 8 8 8 8

κ 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1

i 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

r (odd j) 0 0 0 0 1 1 2 2 2 2 0 0 0 0 1 1 2 2 2 2

r (even j) 0 0 0 0 1 1 2 2 2 2 0 0 0 0 1 1 2 2 2 2

S (odd j) 1 1 2 2 3 3 4 4 5 5 11 11 12 12 13 13 14 14 15 15

S (even j) 6 6 7 7 8 8 9 9 10 10 16 16 17 17 18 18 19 19 20 20

s 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12 13 13

ν 1 2 1 2

μ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

μ(D) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Φh(z)=
L−1∑
s=0

Φh
sNs(z), Φh

s=(Φh
s1, ..., Φ

h
sN )T ,

dκNs(z)
dzκ

∣∣∣∣
z=zρ

=δss′(κ,ρ). (7)

Basis functions Ns(z) are piecewise polynomials calculated by IHP matching
(see for the details [13,17]). The substitution of expansion (7) into variational
functional (5) reduces problem (1)–(2) to an algebraic problem for the unknown
eigenvalues E or S-matrix and vector Φh = {Φh

μ}LN
μ=1 = {{Φh

si}N
i=1}L−1

s=0 :

(A − E B)Φh = 0. (8)

Here A = A(2)+A(1)+V+Mmin−Mmax and positive definite B are symmetric
NL × NL matrices of stiffness and mass, respectively:

A(2)
μ1,μ2

=
∫

Δ

dNs1(z)
dz

δi1i2

dNs2(z)
dz

fA(z)dz,

A(1)
μ1,μ2

=
∫

Δ

(
Ns1(z)Qi1i2(z)

dNs2(z)
dz

− dNs1(z)
dz

Qi1i2(z)Ns2(z)
)

fA(z)dz,

Vμ1,μ2 =
∫

Δ

Ns1(z)Vi1i2(z)Ns2(z)fB(z)dz,

Bμ1,μ2 =
∫

Δ

Ns1(z)δi1i2Ns2(z)fB(z)dz. (9)

According to the definition of local function Ns(z), the integrals in (9) are cal-
culated only on subinterval Δj in which both Ns1(z) and Ns2(z) are localized.
NL × NL matrices Mmax and Mmin have only one nonzero N × N submatrix:

Mmin
ν1,ν2

= fA(zmin)Rν1,ν2(z
min), Mmax

ν0+ν1,ν0+ν2
= fA(zmax)Rν1,ν2(z

max), (10)

where ν0 = N(L − κmax
r ), respectively. Each element of the eigenvector Φh is

marked by the multi-index notation μ. The dependence of multi-index μ on
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Fig. 1. Phase shift δ vs scattering energy E at L = 18. Here δE(res) = E − E(res).

indices ν, i, r, ρ, j, s, κ defined above and index S used for global enumeration
of local functions ϕκ

r on each of finite elements Δj (see Appendix B) is illustrated
in Table 1 by an example of BVP (1) with N = 2, solved using FEM with fourth-
order IHPs (κmax

1 , κmax
2 , κmax

3 ) = (2, 1, 2) on n = 4 finite elements.
The algorithms for calculating characteristics of FEM scheme and generating

an algebraic eigenvalue problem are given in Appendixes B and C. The algebraic
eigenvalue problem is solved using either built-in linear algebra procedures, or
the continuous analog of Newton method [12].

3 Benchmark Calculations

3.1 ODE with Potential Calculated by Quantum Chemistry

In quantum chemical calculations, effective potentials of interatomic interaction
are presented in the form of numerical tables calculated with a limited accuracy
and defined on a nonuniform mesh of nodes in a finite range of interatomic dis-
tances. It is important that the proposed FEM scheme with IHPs ensures smooth
matching of the tabulated potential with its analytical asymptotic expression, as
well as high-quality smooth approximation of eigenfuntions [7]. Consider, e.g.,
the Schrödinger equation for a diatomic beryllium molecule in the adiabatic
approximation, commonly referred to as Born–Oppenheimer approximation

(
− 1

r2
d

dr
s2r

2 d

dr
+V (r) +

L(L+1)
r2

s2−EvL

)
ΦvL(r)=0,

where s2 = 1/0.2672973729, r is the distance between the atoms in angstroms,
EvL is the energy in cm−1 and L is the total angular momentum quantum
number. The potential V (r) is defined by its values on a grid and an asymptotic
expansion beyond it (see for details [7]). For L = 18 there are 7 bound states
EvL = (−600.3, −392.4, −240.7, −150.4, −96.6, −54.4, −20.3) cm−1 and 1
metastable state EM

1L = (4.788 − 4 · 10−10ı) cm−1. The computation time does
not exceed 20 s. Figure 1 shows phase shifts δ as functions of scattering energy
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E; as expected, the phase shifts equal δ = π/2 at resonant energies and rapidly
change near them. Figure 2 show real and imaginary parts of wave functions of
metastable and scattering states for energies close to a very narrow resonance at
L = 18. For the resonance energy, the scattering wave function in Fig. 2 (b) is
seen to be localized within the potential well, while in the non-resonance case it
becomes no longer observed under a minor change in the incident wave energy.
Our large-scale calculations [7] showed efficiency and robustness of the program
that provides an exhaustive analysis of the spectrum of 252 bound states and 58
metastable states of beryllium dimer in ground X1Σ+

g state.

Fig. 2. Plots of the real (solid curves) and imaginary (dashed curves) parts of
metastable state wave function ΦvL(r) (a) and scattering functions ΦL(r) in the vicinity
of resonance energy E(res) ≈ 4.788 cm−1 (b). Here L = 18 and v = 7.

3.2 ODE System with Piecewise Constant Potentials

Consider, e.g., a BVP similar to that of Ref. [11] for the Schrödinger equation
in 2D domain Ωyz={y∈(0, π), z∈(−∞,+∞)}, with potential

V (y, z)= {0, z < 2;−2y, |z| ≤ 2; 2y, z > 2} .

We seek the solution in the form of expansion Ψ(y, z)=
∑N

i=1 Bi(y)Φi(z)
in a set of basis functions Bi(y)=

√
2√
π

sin(iy), which leads to Eqs. (1) with
fB(z)= fA(z) = 1, Qij(z)= 0 and effective potentials

Vij(z)= i2δij+
{

0, z < −2;−2, |z|≤2; 2, z>2
}

×
{

π/2, i=j; 0, even i−j;
−8ij

π(i2−j2)2
, odd i−j

}
.

For example, let us choose N = 6. The considered system has sets of thresh-
old energies that differ in the left and right asymptotic regions of the z-axis:
λ
(L)
i = {1, 4, 9, 16, 25, 36} and λ

(R)
i = {3.742260, 7.242058, 12.216485, 19.188688,
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Fig. 3. Real (solid curves) and imaginary (dashed curves) parts of elements (R→)ij ,
(R←)ij , (T→)ij = (T←)ji of reflection R→, R← and transmission T→, T← amplitudes,
and reflection coefficients R∗

i = (R†
∗R∗)ii at ∗ =→ (solid curves) and ∗ =← (dashed

curves) as functions of scattering energy E.

Table 2. Eigenvalues Ei, i = 1, 2, 3 of bound states and EM
i , i = 1, ..., 4 of metastable

states obtained by solving the eigenvalue problem with Neumann BC (E) by Newton
method (N) and method of matching fundamental solutions (M).

E −2.12846503065 −0.925565889437 0.835126562953

N −2.12846503036 −0.925565881437 0.835126980234

M −2.12846503156 −0.925565883542 0.835126979072

N 1.35989392876−ı0.00016253897 2.43040517408−ı0.0789059067115

M 1.35989392695−ı0.00016253895 2.43040517183−ı0.0789059070893

N 6.32021061134−ı0.00326071312 7.50608788873−ı0.0194121454599

M 6.32021060910−ı0.00326071319 7.50608789245−ı0.0194121442796

28.173689,39.286376}, respectively. So, we have different numbers of open chan-
nels and entangled channels (4) in the right-hand asymptotic region.

The bound states were calculated on a grid [−25.78125, −18.1875, −13.125,
−9.75, −7.5, −6(1)6] built up a geometric progression of steps in accordance
with a slow exponential decay of solutions at z < −6 subject to the Neumann
BC. The metastable states were found by Newton method on a grid [−4(1)4]
with the Robin BC dependent on the eigenvalue. As initial data, the solution
obtained on a grid [−2(1)2] with the Neumann BC was taken. The same grid
[−4(1)4] was used to solve the scattering problem. In both cases, IHPs of the
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sixth order (κmax
1 , ..., κmax

5 ) = (2, 1, 1, 1, 2) were used. The computation time was
62 s for the eigenvalue and scattering problem and 70 s per iteration when using
the Newton method.

Table 2 presents the calculated energies of bound and metastable states. The
results obtained by method of matching fundamental solutions [11] and FEM are
seen to coincide with an accuracy of 10−9 ÷10−7. The third eigenvalue obtained
by solving the BVP with the Neumann BC differs from the results of two other
methods by 5 · 10−7, which is due to a slow decrease of the solution.

Figure 3 shows real and imaginary parts of elements (R→)ij , (R←)ij ,
(T→)ij = (T←)ji of reflection R→, R← and transmission T→, T← amplitudes
satisfying conditions (3). At E ≤ λ

(R)
1 ≈ 3.742260 we have a single-channel scat-

tering problem on a semiaxis. As follows from scattering theory, in the case of
resonance, the argument of one element S11 = (R→)11 of the S-matrix equals
π/2, i.e., the imaginary part is equal to one and the real part is equal to zero.
These values of real and imaginary parts of (R→)11 are observed at E ≈ 1.1
and E ≈ 2.4 corresponding to the first two resonances in Table 2. So, near
E ≈ 6.3 and E ≈ 7.5 corresponding to the next two resonances, a sharp change
of reflection and transmission amplitudes is seen. Thus, the program provides
an exhaustive analysis of the scattering problem with a different number of open
entangled channels similar to the one present in sub-barrier fusion reactions [8].

4 Conclusion

We presented the FEM scheme and showed its efficiency by benchmark examples
of using the KANTBP 5M program (an upgrade of KANTBP 4M [17] containing
1484 lines) implemented and executed in MAPLE. We showed that the program
provides a suitable tool for solving multichannel scattering and eigenvalue prob-
lems for systems of second-order ODEs with continuous or piecewise continu-
ous real or complex-valued coefficients with a given accuracy. The new type of
FEM discretization is implemented using IHPs with an arbitrary multiplicity of
IHPs nodes, determined by Eqs. (6) and (7) given in Appendices A and B and
Gauss quadratures given in Appendix C, whereas only a fixed multiplicity of the
nodes and analytical integration of polynomial approximants were available in
KANTBP 4M, which preserves the continuity of derivatives of the sought solu-
tions. To reduce the new type of a scattering problem with a different number
of open entangled channels (whereas in KANTBP 4M only non-entangled open
channels could be considered) in the left and right asymptotic regions to a BVP
on a finite interval, the new type of entangled asymptotic BCs determined by
Eq. (4) are approximated by the homogeneous third-type (Robin) conditions.
To calculate metastable states with complex eigenvalues, or to solve a bound
state problem with Robin BC depending on the spectral parameter, the Newto-
nian iteration scheme is implemented. The open code of the KANTBP 5M and
test examples including INPUT and OUTPUT both implemented and executed
in MAPLE of solving eigenvalue problems and scattering problems of quantum
mechanics [7,8,10–12] and adiabatic waveguide modes [9] will be presented in
JINRLIB program library.
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A Generation of IHPs on the Standard Interval

This appendix presents an algorithm for constructing IHPs according to their
characteristics: p is the number of partitions of a finite element, zr are the IHP
nodes with multiplicities κmax

r . They are applied to construct IHPs in the FEM
scheme, then the conditions zr ∈ [0, 1], z0 = 0, zp = 1, κmax

0 = κmax
p are to be

satisfied. For further implementation it is convenient to number IHPs with n′′.

Input: r = 0, ..., p is the number of the node,
κmax

r is the multiplicity of node zr,
Output: n′ is the number of last IHP, IHP(0),...,IHP(n′) the set of IHPs,
r(n′) and κ(n′) are values of r and κ vs n′,
p′ is the degree of IHPs.

1.1.: n′ := −1;
for r:=0 to p do

wr :=
∏p

r′=0,r′ �=r

( z−zr′
zr−zr′

)κmax
r′ ;

1.2.: g0r := 1; g1r :=
∑p

r′=0,r′ �=r
κmax

r′
z−zr′ ;

for κ:=2 to κmax
r − 1 do

gκ
r := dgκ−1

r

dz + g1rgκ−1
r ;

end for;
gκ

r := gκ
r (z → zr), κ := 1, ..., κmax

r − 1
end for;

1.3.: for r:=0 to p do
a0 = H0;
for r′:=1 to κmax

r − 1 do
ar′ := Hr′/r′! − ∑r′−1

r′′=0 ar′′gκ
r′−r′′/(r′ − r′′)!

end for;
for r′:=1 to κmax

r − 1 do
n′ := n′ + 1; r(n′) := r; κ(n′) := r′;
IHP(n′) = wr(z) +

∑κmax
r′ −1

r′=0 ar′(Hr′′ → δrr′′)(z − zr)r′

end for;
end for;
p′ =

∑p
r=0 κmax

r − 1
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B Calculation of the FEM Scheme Characteristics

Note that when calculating the matrices (9) of the algebraic problem (8), we do
it without explicitly calculating Ns(z) from (7) by introducing global numbering
ϕκ

r on each of the finite elements Δj , i.e. ϕS ≡ ϕn′′(z ∈ Δj) ≡ ϕκ
r (z ∈ Δj). In

our implementation, the FEM IHP schemes are numbered so that S increases
with an increase in j, or with a constant j and an increase in n′′, or with con-
stant j and n′′ and an increase in i. For convenience, arrays of length n × 3 are
introduced: E(j, 1) is the minimum S at which ϕS is defined on Δj , E(j, 2) is the
minimum S for which r = p and ϕS is defined on Δj , E(j, 3) is the maximum
S at which ϕS is defined on Δj and a two-dimensional array C with dimension
Smax × 3, where depending on S, C(S, 1), C(S, 2), C(S, 3) correspond to μ (the
number of element of eigenvector Φh), n′′ (the number of IHP) and i (the num-
ber of equation in the system of ODEs from Eq. (1)).

Input: n is the number of finite elements Δj = [zj−1, zj ], Δ = ∪n
j=1Δj

n′ is the number of last IHP,
IHP(0),...,IHP(n′) the set of IHPs,
r(n′′) and κ(n′′) are values of r and κ vs n′′.
Output: E(n, 1 : 3) and C(Smax, 3) are the FEM scheme characteristics

for j from 1 to n do
E(j, 1) := 0;
E(j, 2) := 0;
for n′′ from 0 to n′ do

if (not
((Dirichlet BC on zmin and j = 1 and r(n′′) = 0 and κ(n′′) = 0)
or
(Dirichlet BC on zmax and j = n and r(n′′) = p and κ(n′′) = 0 ))

) then
for i from 1 to N do

S:=S+1;
if (E(j, 1) = 0) then E(j, 1) := S; fi;
if (E(j, 2) = 0 and r(i2) = p) then E(j, 2) := S; fi;
E(j, 2) := S;
C(S, 2) := n′′;
C(S, 3) := i;
if (r(n′′) = 0 and j > 1) then

if ∃S′ ∈ {E(j − 1, 2), ..., E(j − 1, 3)}:
C(S, 3) = C(S′, 3) and κ(C(S, 2)) = κ(C(S′, 2))):

then C(S, 1) := C(S′, 1);
else increase μ and C(S, 1) := μ

End of all cycles and conditions
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C FEM generation of Algebraic Eigenvalue Problem

Input: E(n, 1 : 3) and C(Smax, 3) are FEM scheme characteristics from
Appendix B. IHPg(C(S, 2)) and IHP′

g(C(S, 2)) are the values of IHPs and their
derivatives in Gaussian nodes z̄g (in local coordinates)
wg are the Gaussian weights
Output: Aμ1,μ2 , Bμ1,μ2 are matrix elements of A and B

A = 0, B = 0
for j from 1 to n do

Δzj := z(j) − z(j−1);
for S, S′ from E(j, 1) to E(j, 3) do

if C(S, 3) = C(S′, 3) then
BC(S,1),C(S′,1) := BC(S,1),C(S′,1) +

∑
g wgIHPg(C(S, 2))IHPg(C(S′, 2))

×(Δzj)1+κ(C(S,2))+κ(C(S′,2))fb(z(j−1) + Δzj z̄g);

AC(S,1),C(S′,1) := AC(S,1),C(S′,1) +
∑

g wgIHP′
g(C(S, 2))IHP′

g(C(S′, 2))
×(Δzj)−1+κ(C(S,2))+κ(C(S′,2))fa(z(j−1) + Δzj z̄g);

else
AC(S,1),C(S′,1) := AC(S,1),C(S′,1)
+

∑
g wg(IHPg(C(S, 2))IHP′

g(C(S′, 2)) −IHP′
g(C(S, 2))IHPg(C(S′, 2)))

×(Δzj)κ(C(S,2))+κ(C(S′,2))fa(z(j−1) + Δzj z̄g)
×QC(S,3),C(S′,3)(z(j−1) + Δzj z̄g);

fi;
AC(S,1),C(S′,1) := AC(S,1),C(S′,1) +

∑
g wgIHPg(C(S, 2))IHPg(C(S′, 2))

×(Δzj)1+κ(C(S,2))+κ(C(S′,2))fb(z(j−1) + Δzj z̄g)
×VC(S,3),C(S′,3)(z(j−1) + Δzj z̄g);

End of all cycles
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