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Abstract—Necessary and sufficient conditions under which two- and three-point iterative methods
have the order of convergence р (2 ≤ р ≤ 8) are formulated for the first time. These conditions can be
effectively used to prove the convergence of iterative methods. In particular, the order of convergence
of some known optimal methods is verified using the proposed sufficient convergence tests. The opti-
mal set of parameters making it possible to increase the order of convergence is found. It is shown that
the parameters of the known iterative methods with the optimal order of convergence have the same
asymptotic behavior. The simplicity of choosing the parameters of the proposed methods is an advan-
tage over the other known methods.
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1. INTRODUCTION

In recent years, a lot of modified iterative methods were developed that improve the local order of con-
vergence of such methods as Newton’s, Ostrowski’s, and King’s. Among them, the most efficient are the
8th order optimal methods that have the index of efficiency 81/4 ≈ 1.682 (e.g., see [1–9] and references
therein). Attempts and comparing these methods from the viewpoint of the behavior of their convergence
were also made (see [10, 11]).

Many of these techniques use the optimal Ostrowski or King methods in the first phase and arbitrary
real parameters and weighting functions that are difficult to determine. The increase of the convergence
order is usually achieved due to additional computations of the function and its derivatives, which can
affect the efficiency of the method.

Thus, the development of new optimal methods is presently still important even though many high-
order optimal methods are available. To analyze the convergence order, Taylor expansions are typically
used, which lead to cumbersome equations and tedious calculations. To overcome these difficulties and
find the optimal weighting functions and parameters, symbolic computations and computer algebra sys-
tems Mathematica and Maple (see [3, 12]) have been recently used.

In this paper, we propose a novel procedure for the optimization and increasing the order of conver-
gence of computational methods. It is shown that the optimal choice of the parameters of the methods
makes it possible to increase the convergence order. In Sections 2 and 3, two-point and three-point iter-
ative methods are considered, and necessary and sufficient conditions for these methods to have the con-
vergence order р for 2 ≤ р ≤ 4 and 5 ≤ р ≤ 8, respectively, are obtained. Numerical experiments supporting
the theoretical conclusions on the convergence order and a comparison with other methods are presented
in Section 4. 
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2. TWO-POINT ITERATIVE METHODS
Let х* be a simple root of the real function f : I ⊂  defined on an open interval I. Consider the

two-point iterative methods

(2.1)

where τn is the iteration parameter. Note that, in most cases, τn in (2.1) takes values ranging from zero
to one (see [13]). It was proved in [9] that the continuous analog of the Newton method converges
for τn ∈ (0, 2).

Definition 1. Let f(х) be a real function with the simple root х* ∈ I, and let {xn} be a sequence of real
numbers converging to х*. The order of convergence р is determined by the condition

(2.2)

or by the equivalent condition

(2.3)

Below, we will use (2.3) to analyze the convergence of specific iterative methods.
More precisely, we find the values of the parameter τn for which iterations (2.1) give the greatest local

order of convergence. To this end, we rewrite (2.1) in the form

(2.4)
Using Taylor’s expansion of  about the point , we obtain

(2.5)

Let us approximate  using the values of the function calculated before. This can be done using the
method of undetermined coefficients so that the condition

(2.6)

is satisfied. Using Taylor’s expansion of the functions f(xn) and  about the point yn, we obtain the
system of linear equations

(2.7)

which has a unique solution

(2.8)

Substitute (2.8) into (2.6) to obtain

(2.9)

where

(2.10)

Writing  in (2.5) in terms of  (2.9), we obtain the formula

(2.11)

We choose τn such that the first term on the right-hand side of Eq. (2.11) vanishes, i.e.,

(2.12)
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It is seen from (2.1) that

(2.13)

Hence, we have θn = O(f(xn)) and τn – 1 = O(f(xn)). Then, (2.11) implies that

under condition (2.12). Therefore, if τn is determined by formula (2.12), method (2.1) has the maximal
fourth order of convergence.

Using the well-known expansion

(2.14)

we write (2.12) as

(2.15)
We formulate a stronger result in the following theorem.
Theorem 1. Let the function f(х) be sufficiently smooth and have a simple root х* ∈ I. Furthermore, let the

initial approximation х0 be sufficiently close to х*. Then, the convergence order of the iterative method (2.1) is
four if and only if the parameter τn satisfies condition (2.15).

Proof. Assume that τn in (2.1) satisfies condition (2.15). Then, according to conditions (2.15) and
(2.13), the right-hand side of (2.11) has the order O(f 4(xn)), i.e.,

Conversely, let the iterative method (2.1) have the fourth order of convergence. Then, (2.11) implies that

This immediately implies that

Method (2.1) uses the values f(xn), f(yn), and  and has the optimal fourth order of convergence.
Its index of efficiency is 41/3 ≈ 1.587, which is in agreement with the Kung–Traub conjecture. The known
fourth-order methods can be written in form (2.1). The most popular methods are summarized in Table 1. It is
easy to verify that all τn in Table 1 satisfy condition (2.15). The convergence of every existing method can
be proved using the sufficient convergence test (2.15). It is seen from Table 1 that method (2.1), (2.15) can
represent, in a certain sense, the class of two-point fourth-order methods.

Theorem 2. Let all the conditions of Theorem 1 be fulfilled. Then, the iterative method (2.1) has the con-
vergence order three if and only if the parameter τn satisfies the condition

(2.16)
Proof. The proof immediately follows from (2.11) and (2.16).
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Table 1. Some iterative methods with the order of convergence 4
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It is clear that the iterative method (2.1) has the convergence order two if τn ≡ 1 + O(θn).
For comparison purposes, consider the iterative method [21]

, (2.17)

where ,

.

In particular, in the case , we can rewrite (2.17) in the form (2.1) with
. Therefore, according to Theorem 2, this method converges with the order p = 3, which is in

agreement with the results obtained in [21] (see Table 9.1 in that paper).

3. THREE-POINT ITERATIVE NEWTON-TYPE METHODS
Consider the three-point iterative methods

(3.1)

where τn is determined by formula (2.12) an t is the iteration parameter to be determined. As in the pre-
ceding section, we rewrite the third expression in (3.1) in the form

(3.2)

Let us use Taylor’s expansion of f ∈  about the point zn:

(3.3)

We approximate  using the values of the functions calculated at the preceding step (see [17]):

(3.4)

where

(3.5)

It is clear from (3.1) that

(3.6)

Substitute (3.6) into (3.5) to obtain

(3.7)

Substitute (3.7) into (3.4) and make some transformations to obtain
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In the derivation of (3.10), we used the following estimates:

(3.11)

Now, choose the parameter tn such that the first term on the right-hand side of (3.10) vanishes:

(3.12)

Taking into account (3.9), (3.11), and Theorem 1, we obtain from (3.12)

(3.13)
Therefore, (3.10) implies

(3.14)
under the conditions (2.12) and (3.12).

Typically, the three-point iterative methods of optimal order have the form

(3.15)

In particular, the iterative methods (3.1) can be rewritten in the form (3.15) with the parameters

(3.16)

To analyze the order of convergence of iterations (3.15), we use the expansion

(3.17)
then, we have

(3.18)

Substitute (3.18) into (3.16) and use expansion (2.14) to obtain

(3.19)

Theorem 3. Let the conditions of Theorem 1 be fulfilled. Then, the convergence order of the iterative
method (3.15) is eight if and only if the parameters  and αn satisfy conditions (3.17) and (3.19), respectively.

Proof. We will use Taylor’s expansion of  about the point zn
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Formula (3.21) and Theorem 1 imply that τn satisfies condition (2.15) or (3.18). Formula (3.22) implies

(3.23)

Substitute (3.18) into (3.23) to obtain (3.19).

Remark 1. Methods (3.15) use four values , , , and  at each iteration step and
have the optimal order. Their index of efficiency is 81/4 ≈ 1.682.

The known three-point iterative methods can be written in the form (3.15). This allows us to compare
them in terms of their computational complexity. It is easy to verify that the parameters  and αn, even
though they are determined by different formulas, have the same asymptotic behavior (3.17) and (3.19).
Thus, the iterative methods (3.15) with the parameters specified by formulas (3.17) and (3.19) completely
describe the class of three-point methods of order eight (see Table 2). Thus, the convergence of every
existing optimal method can be proved using the sufficient convergence tests (3.17) and (3.19) without
using Taylor’s expansion. This is the key property of the approach proposed in this paper.

The known three-point iterative methods of the eighth order can be written in the form (3.15) with the
parameters  and αn. It is easy to verify that all the parameters  and αn presented in Table 2 satisfy con-
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ditions (3.17) and (3.19). Therefore, the convergence of every existing method of order eight can be proved
using the sufficient convergence criteria (3.17) and (3.19). This gives a new simple method for establishing
the convergence order of thee-point iterative methods. Note that conditions (3.17) for  is usually
satisfied.

Theorem 4. Let the conditions of Theorem 1 be fulfilled. Then, the convergence order of the iterative
method (3.15) is p if and only if the parameters  and  are given by Table 3.

Proof. The proof immediately follows from (3.20).
In Table 3, the following formulas were used:

(3.24)

(3.25)

(3.26)

Table 4 shows the list of the parameters  and αn for some known methods. The simplest choice (3.19)
is called optimal. It is clear that the iterative methods (3.15) with the optimal order are the best ones among
the methods with different parameters in terms of the computational cost (see Tables 2 and 3). In Tables 2
and 5, the first and the second divided differences were used
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4. NUMERICAL EXPERIMENTS

Consider the examples discussed in [7, 17]:

All the computations were performed using Maple 18. To check the convergence, we calculate the
computational order of convergence (COC) by the formulas

where xn, ,  are three successive approximations.
The iteration process is stopped when

The errors of computing fi(x) = 0 (i = 1, 2, …, 6) and the approximation order are presented in Tables 5
and 6. It is seen that the actual order of convergence perfectly coincides with the theoretical order of con-
vergence. Table 7 shows the comparison results of methods (2.1) and (3.15) with the methods proposed in
[1, 16, 19]. It is seen from Table 7 that the order of convergence and the required number of iterations are
the same for these methods. The methods proposed in [1, 19] are more complicated than (3.15) because
the implementation of the methods [1, 19] requires a greater number of arithmetic operations.
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= − , ≈ .3
6( ) 10 * 2 15443469 .f x x x …

−

− −

− −= ,
− −

1

1 2

ln(| *|/| *|)
ln(| *|/| *|)n

n n
x

n n

x x x xd
x x x x

−1nx −2nx

≤ ε( ) .nf x

Table 5. Two-point iterative methods (2.1) in the case ε = 10–150. Here х0 is the initial approximation, and l in paren-
theses denotes 10l

τn n COC n COC

f1(x), x0 = 3.1 f2(x), x0 = –1.3

1 + θn + 1.509 (–190) 1.961 (–189) 5 4.000 6.879 (–178) 1.397 (–176) 4 4.000

1 + θn 4.731 (–155) 6.150 (–154) 6 3.000 1.049 (–179) 2.132 (–178) 5 3.000

1 1.258 (–297) 1.016 (–295) 10 2.000 1.258 (–222) 2.555 (–221) 8 2.000

f3(x), x0 = 2.0 f4(x), x0 = 1.0

1 + θn + 1.696 (–428) 4.689 (–428) 6 4.000 2.710 (–228) 1.004 (–226) 6 4.000

1 + θn 2.000 (–188) 5.527 (–188) 7 3.000 3.622 (–401) 1.342 (–399) 8 3.000

1 4.719 (–219) 1.304 (–218) 9 2.000 3.214 (–193) 1.190 (–191) 9 2.000

f5(x), x0 = 1.9 f6(x), x0 = 2.4

1 + θn + 3.113 (–257) 1.868 (–256) 5 4.000 6.026 (–201) 8.392 (–200) 4 4.000

1 + θn 8.313 (–243) 4.988 (–242) 6 3.000 1.362 (–205) 1.896 (–204) 5 3.000

1 2.706 (–285) 1.623 (–284) 9 2.000 3.437 (–250) 4.787 (–249) 8 2.000

−* nx x ( )nf x −* nx x ( )nf x

θ22 n

θ22 n

θ22 n
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Table 6. Three-point iterative methods (3.15). Here β = 2(2 – b), γ = 2(2 – b)2, ε = 10–150, x0 is the initial approxi-
mation, and l in parentheses denotes 10l

 = 1 + 2θn +  + n COC n COC

αn b f1(x), x0 = 3.1 f2(x), x0 = –1.3

(3.19) –1 2.30 (–1096) 3.00 (–1095) 4 8.000 9.59 (–377) 1.94 (–375) 3 8.000
0 4.17 (–878) 5.42 (–877) 4 8.000 1.24 (–418) 2.52 (–417) 3 8.000
1 2.74 (–690) 3.57 (–689) 4 8.000 3.97 (–344) 8.07 (–343) 3 7.999

(3.24) –1 1.31 (–617) 1.70 (–618) 4 7.000 2.85 (–229) 5.78 (–228) 3 7.000
0 8.73 (–515) 1.13 (–513) 4 7.000 8.36 (–278) 1.69 (–276) 3 6.999
1 1.08 (–412) 1.40 (–411) 4 7.000 1.52 (–231) 3.08 (–230) 3 6.999

(3.25) –1 1.41 (–368) 1.84 (–367) 4 6.000 1.11 (–152) 2.25 (–151) 3 6.000
0 3.64 (–301) 4.74 (–300) 4 6.000 1.55 (–185) 3.15 (–184) 3 6.000
1 2.99 (–232) 3.88 (–231) 4 6.000 1.11 (–152) 2.25 (–151) 3 6.000

(3.26) –1 6.33 (–208) 8.24 (–207) 4 5.000 6.76 (–469) 1.37 (–467) 4 5.000
0 1.18 (–171) 1.54 (–170) 4 5.000 7.43 (–591) 4.50 (–589) 4 5.000
1 5.19 (–626) 6.74 (–625) 5 5.000 6.76 (–469) 1.37 (–467) 4 5.000

f3 (x), x0 = 1.0 f4 (x), x0 = 2.0

(3.19) –1 3.84 (–164) 1.06 (–163) 3 8.000 1.18 (–1082) 4.40 (–1081) 4 8.000
0 9.85 (–165) 2.72 (–164) 3 8.000 1.03 (–889) 3.82 (–888) 4 8.000
1 7.22 (–159) 1.99 (–158) 3 8.000 2.32 (–718) 8.62 (–717) 4 8.000

(3.24) –1 2.17 (–964) 6.00 (–964) 4 7.000 2.79 (–615) 1.03 (–613) 4 7.000
0 3.90 (–971) 1.07 (–970) 4 7.000 1.90 (–523) 7.07 (–522) 4 7.000
1 2.95 (–941) 8.17 (–941) 4 7.000 9.03 (–431) 3.34 (–429) 4 7.000

(3.25) –1 3.77 (–457) 1.04 (–456) 4 6.000 1.22 (–364) 4.52 (–363) 4 6.000
0 1.19 (–459) 3.29 (–459) 4 6.000 1.47 (–304) 5.47 (–303) 4 6.000
1 4.27 (–437) 1.18 (–436) 4 6.000 4.64 (–242) 1.71 (–240) 4 6.000

(3.26) –1 1.07 (–287) 2.97 (–287) 4 5.000 6.03 (–205) 2.23 (–203) 4 5.000
0 1.52 (–289) 4.22 (–289) 4 5.000 3.51 (–172) 1.30 (–170) 4 5.000
1 1.98 (–273) 5.47 (–273) 4 5.000 2.72 (–653) 1.00 (–651) 5 5.000

f5 (x), x0 = 2.1 f6 (x), x0 = 2.4

(3.19) –1 4.68 (–293) 2.81 (–292) 3 8.000 2.21 (–426) 3.08 (–425) 3 8.000
0 1.01 (–278) 6.08 (–278) 3 7.999 7.10 (–427) 9.88 (–426) 3 8.000
1 5.66 (–238) 3.40 (–237) 3 7.999 4.05 (–382) 5.65 (–381) 3 7.999

(3.24) –1 8.10 (–185) 4.86 (–184) 3 7.000 4.91 (–274) 6.84 (–273) 3 7.000
0 5.35 (–186) 3.21 (–185) 3 6.999 4.91 (–285) 6.84 (–284) 3 6.999
1 5.20 (–162) 3.12 (–161) 3 6.999 5.05 (–259) 7.03 (–258) 3 6.999

(3.25) –1 3.67 (–742) 2.20 (–741) 4 6.000 6.23 (–183) 8.68 (–182) 3 6.000
0 3.23 (–737) 1.94 (–736) 4 6.000 1.69 (–187) 2.36 (–186) 3 5.999
1 2.27 (–624) 1.36 (–623) 4 5.999 1.05 (–166) 1.47 (–165) 3 5.999

(3.26) –1 6.32 (–396) 3.79 (–395) 4 5.000 6.26 (–569) 8.72 (–568) 4 5.000
0 1.09 (–395) 6.55 (–395) 4 5.000 1.25 (–586) 1.75 (–585) 4 5.000
1 1.55 (–325) 9.34 (–325) 4 5.000 3.02 (–510) 4.21 (–509) 4 5.000

τ� n βθ2
n γθ3

n −* nx x ( )nf x −* nx x ( )nf x
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5. CONCLUSIONS
Novel necessary and sufficient conditions for two-and three-point iterative methods to have the con-

vergence order p (2 ≤ p ≤ 8) are obtained.
Simple (including the optimal) sets of parameters of the iterative procedures are proposed that make it

possible to increase the order of convergence. These results are new in the theory of such iterative pro-
cesses. Probably, other iterative methods of types (2.1) and (3.15) can be proposed. But all of them will
differ only in the choice of the parameters that have the same asymptotic behavior. In this sense, Theo-
rems 1 and 3 answer the question of how the iterative methods (2.1) and (3.15) with the optimal conver-
gence order can be constructed. Only the question of their comparison from the viewpoint of the behavior
of convergence remains open.

An advantage of the proposed approach is that there is no need to obtain cumbersome equations for
the error: the order of convergence of methods (2.1) and (3.15) can be established using the sufficient tests
obtained in this paper.

The simplicity of choosing the parameters is another advantage over the other known methods
(see Tables 1 and 2).
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