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.1 Introduction

The adiabatic approximation is an efficient tool for studying the dynamics of
few-body quantum systems in physics of molecules, atoms, and atomic nuclei.
The approximate separation of fast xf and slow xs variables in the Hamilto-
nian H(xf ,xs) = Hf(xf ;xs) + Hs(xs), describing fast and slow subsystems with
separated discrete energy spectra, and, correspondingly, in the expansion of the
eigenfunction 〈xf ,xs|nk〉 in the basis functions 〈xf |n′k+1,xs〉 of the Hamiltonian
Hf(xf ;xs), depending on xs as a parameter, i.e., the diagonal adiabatic approxi-
mation

〈xf ,xs|nk〉 =
∑

n′
k+1

〈xf |n′k+1,xs〉〈xs, n′k+1|nk〉 ≈ 〈xf |n′k+1,xs〉〈xs, n′k+1|nk〉, (1)

was used, e.g., in the theory of electronic, vibrational and rotational spectra of
molecules [1], in the dynamic theory of crystal lattice [2], in the method of generator
coordinated for the cluster model of light nuclei [3].

Taking the nondiagonal terms into account with estimation of the expansion con-
vergence rate (1) beyond any perturbation theory [2] corresponds to the reduction
of the boundary-value problem to a set of coupled ordinary differential equations
(ODE) of the second order in the Kantorovich method [4] that uses averaging of
the problem over the set of eigenfunctions, depending on one of the independent
variables as a parameter. In contrast to the diagonal (or adiabatic) approximation,
this approach allows calculations with controllable precision [5, 6, 7, 8, 9], e.g.,
in the models of semiconductor quantum dots [10], or helium-like atoms and ions
[11, 12, 13].

In the multidimensional case it is possible to apply the procedure of step-
by-step averaging with sequential elimination of ordered independent variables
(x = {xf ,xs} = {xN ≻ xN−1 ≻ ... ≻ x1}T ∈ X = XN ∪ ... ∪X1 in the subspace
of the configuration space X ⊂ RN)[14, 15], implemented, e.g., in the multistep
adiabatic approximation for the model of coupled oscillators with ordered charac-
teristic frequencies ωf > ωs, [16]. Note, that the step-by-step averaging procedure
is close to the Marchuk’s method of coordinate-wise splitting, however, it can be
implemented using not only the projection methods of the Galerkin type, but also
the multiparametric generalization of the Kantorovich method.

In spite of the complexity of its structure and implementation, the multiparamet-
ric Kantorovich method may offer an opportunity of more efficient exploitation of
computer facilities, e.g., using MPI technology. The method is also expected to in-
crease the precision of calculation of the parametric basis functions and the matrix
elements of the ODE variable coefficients, expressed as integrals of basis functions
and their derivatives with respect to parameters; it can also raise the convergence
rate for the expansion of the desired solution [11, 12, 13].

The above motivation has determined the aim of this work: to present a gen-
eral formulation of the multiparametric Kantorovich method (MPKM) and the
symbolic-numeric algorithm for solving multidimensional boundary-value problems,
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to analyze the efficiency of computational schemes and programs by the example
of benchmark calculation of the ground and excited states of the nonrelativistic
model of helium atom, and to discuss the physical results, obtained by symbolic-
numerical analysis of low-dimensional model quantum systems using the proposed
method and the elaborated software package.

The paper is organized as follows. Section 2 is devoted to the formulation of the
MPKM theory and algorithm. In Section 3 the scheme of solving the boundary-
value problem by means of the Kantorovich method (KM) is given. In Section
4 the analysis and the efficiency estimations for the benchmark calculations are
presented. In Conclusion we briefly summarize the results obtained by the analysis
of low-dimensional model quantum systems and discuss future implementation and
possible applications of the method.

.2 MPKM algorithm

Let us present the symbolic-numeric algorithm for multistep reduction of adia-
batic equations, corresponding to multiparametric generalization of Kantorovich
method, i.e., the reduction of a multidimensional boundary-value problem to ordi-
nary differential equations, the solutions ψn1(x) ∈ L2(X), X ⊂ RN of which obey
the appropriate boundary conditions [5]

Ĥψn1(x)− 2En1ψn1(x) = 0. (2)

Here the Hamiltonian Ĥ =
∑N

i=1 ĤN+1−i of a quantum system, depending on the
ordered variables x = {xN ≻ xN−1 ≻ ... ≻ x1}T ∈ X ⊂ RN , is represented by a
sum of parametric Hamiltonians Ĥi ≡ Ĥi(xi; xi−1, ..., x1) of subsystems that depend
upon the independent variable xi and the set of parameters xi−1, ..., x1, the solutions
satisfying the orthogonality and completeness conditions

〈n′1|n1〉 =
∫

X

dxN ...dx1ψ
†

n′
1
(x)ψn1(x) = δn′

1n1
, (3)

where δij is the Kronecker symbol.

For solving the problem (2), (3) we propose a multistep generalization of the
standard adiabatic expansion or Kantorovich reduction (1) in the following form:

ψn1(x) = ψ(1)
n1
(xN , ..., x1) =

∑

n′′
2

ψ
(2)
n′′
2
(xN , ..., x2; x1)χ

(1)
n′′
2n1

(x1) (4)

=
∑

n′
3n

′
2

ψ
(3)
n′
3
(xN , ..., x3; x2, x1)χ

(2)
n′
3n

′
2
(x2; x1)χ

(1)
n′
2n1

(x1)

=
∑

n′
N
...n′

2

ψ
(N)
n′
N

(xN ; xN−1, ..., x1)...χ
(k)
n′
k+1n

′
k

(xk; xk−1, ..., x1)...χ
(2)
n′
3n

′
2
(x2; x1)χ

(1)
n′
2n1

(x1),
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where ψ
(k)
nk (xN , ..., xk; xk−1, ..., x1) are solutions of auxiliary boundary-value problem

with the Hamiltonians Ĥ(k) ≡ Ĥ(k)(xN , ..., xk; xk−1, ..., x1)

Ĥ(k)ψ(k)
nk
− ε(k)nk

ψ(k)
nk

= 0, Ĥ(k) =

N
∑

i=N+1−k

ĤN+1−i,

〈n′k|nk〉 =
∫

XN∪...∪XN+1−k

dxN ...dxN+1−kψ
(k)
n′
k

†
ψ(k)
nk

= δn′
k
nk
; (5)

are determined by the recurrence relations

ψ
(2)
n′′
2
(xN , ..., x2; x1) =

∑

n′
3

ψ
(3)
n′
3
(xN , ..., x3; x2, x1)χ

(2)
n′
3n2

(x2; x1),

ψ(k)
nk

(xN , ..., xk; xk−1, ..., x1) =

=
∑

n′
k+1

ψ
(k+1)
n′
k+1

(xN , ..., xk+1; xk, ..., x1)χ
(k)
n′
k+1nk

(xk; xk−1, ..., x1).

Here required parametric solutions with respect to one of the independent variables
〈n′k+1|nk〉 ≡ χ

(k)
n′
k+1nk

(xk; xk−1, ..., x1) are determined by integrals of products of so-

lutions of auxiliary boundary-value problems:

〈n′k+1|nk〉 =
∫

XN∪...∪Xk+1

dxN ...dxk+1ψ
(k+1)
n′
k+1

†
ψ

(k)
nk
. Optimization of the convergence

rate of the MPKM is possible for the appropriate ordering of the characteristic
frequencies of the subsystems ωN > ωN−1 > ... > ω1, where ωk ≃ max |ε(k)nk+1−ε

(k)
nk |,

with separated discrete spectra.
Below we present a symbolic MPKM algorithm for generating the boundary-

value problem, implementing the multiparametric Kantorovich method (4) in the
solution of the boundary-value problem (2) using the computer algebra system
Maple. The examples of application of the typical versions of the algorithm are
presented below.
The MPKM algorithm

Input:
H =

∑N
i=1HN+1−i – the primary Hamiltonian depending on the ordered variables

x = {xN ≻ xN−1 ≻ ... ≻ x1}T , presented as a sum of parametric Hamiltonians
Hi ≡ Hi(xi; xi−1, ..., x1), each depending on a single independent variable xi and a
set of parameters xi−1, ..., x1;
Hψn1 − 2En1ψn1 = 0,
〈n′1|n1〉 =

∫

X
dxN ...dx1ψ

†

n′
1
(x)ψn1(x) = δn′

1n1
is the primary eigenvalue problem

ψn1 ≡ |n1〉 ↔ 〈x|n1〉 ≡ ψn1(x) and 2En1 = εn1 .

Output:
Eq(k), k = 1, ..., N , – the set of auxiliary parametric problems for calculating

ψ
(k)
nk ≡ ψ

(k)
nk (xN , ..., xk; xk−1, ..., x1) and ε

(k)
nk ≡ ε

(k)
nk (xk−1...x1), where ψn1 = ψ

(1)
n1 and

2En1 = ε
(1)
n1 – the desired solutions of the primary eigenvalue problem.
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Local:
ψ

(k)
nk
≡ ψ

(k)
nk

(xN , ..., xk; xk−1, ..., x1) and εnk
≡ ε

(k)
nk
≡ ε

(k)
nk
(xk−1...x1) – the solutions

of the auxiliary eigenvalue problem:
(
∑N

i=N+1−kHN+1−i)ψ
(k)
nk − ε(k)nk ψ

(k)
nk = 0,

〈n′k|nk〉 =
∫

XN∪...∪XN+1−k

dxN ...dxN+1−kψ
(k)
n′
k

†
ψ

(k)
nk = δn′

k
nk
;

〈n′k+1|nk〉 ≡ χ
(k)
n′
k+1nk

(xk; xk−1, ..., x1) – the auxiliary parametric solutions, defined

by the relations:

〈n′k+1|nk〉 =
∫

XN∪...∪Xk+1

dxN ...dxk+1ψ
(k+1)

n′
k+1

†
ψ

(k)
nk
,

〈nk+1|
[

Hk, n
′
k+1〉

]

= 〈nk+1|Hkn
′
k+1〉−〈nk+1|n′k+1〉Hk, the square brackets [, ] denote

a commutator.

1: Eq(N):={HnN
|nN〉 − εnN

|nN〉 = 0, 〈ψ(N)†
nN |ψ(N)

n′
N
〉 = δnNn

′
N
}

2: Eq(N) →{|nN〉, εnN
}

3: for k := N − 1 : 1 step − 1
4: Eq(k):={(Hk + ε

(k+1)
nk+1 − ε(k)nk )〈nk+1|nk〉

+
∑

n′
k+1
〈nk+1|

[

Hk, n
′
k+1〉

]

〈n′k+1|nk〉=0}.
5: Eq(k) →{〈n′k+1|nk〉, ε

(k)
nk
}

6: |nk〉 :=
∑

n′
k+1
|n′k+1〉〈n′k+1|nk〉

7: end for

8: ψn1 = |n1〉, 2En1 = ε
(1)
n1

Note, the expansion (1) is applied N − 1 times from fastest xN to lowest x1
independent variables of set x = {xN ≻ xN−1 ≻ ... ≻ x1}T and involved in Step 6.

.3 Kantorovich scheme for boundary-value problems

In a number of cases few-body quantum-mechanical problems can be reduced to
the solution of boundary-value problems for the multidimensional time-independent
Schrödinger equation [17, 18, 19, 20, 21, 22, 23, 24, 25]:

Ĥ(z,Ω)Ψ(z,Ω) = EΨ(z,Ω), Ĥ(z,Ω) = Ĥ1 +
1

f3(z)
Ĥ(2), (6)

Ĥ1 = −
1

f1(z)

∂

∂z
f2(z)

∂

∂z
, Ĥ(2) =

(

−Λ̂2
Ω + f3(z)U(z,Ω)

)

.

Here Λ̂2
Ω is a self-adjoint differential operator of the elliptic type with partial deriva-

tives in the finite domain X̂ ⊂ Rd−1, Ω = {Ωj}d−1j=1 ∈ X̂ is the set of independent

variables, z ∈ (z1, z2) ∈ B ⊂ R1 is an independent variable, X = B ⊗ X̂ ⊂ Rd is
a finite domain of the coordinate space Rd; E is a spectral parameter, correspond-
ing to the energy of the quantum system. The functions f1(z) > 0, f2(z) > 0,
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f3(z) > 0, ∂zf2(z), U(z,Ω) and ∂rU(r,Ω) are assumed to be continuous and
bounded for all (r,Ω) ∈ X . It is also assumed that the self-adjoint operator
Ĥ(2)(Ω; z) = −Λ̂2

Ω + f3(z)U(z,Ω) has only a discrete real-valued spectrum ε(z).
The solution Ψ(z,Ω) ∈ L2(X) of the equation (6) obeys the boundary conditions
of the third kind:

µl
∂Ψ(zl,Ω)

∂z
− λlΨ(z,Ω) = 0, Ω ∈ ∂X̂ ∪ X̂, l = 1, 2;

a
∂Ψ(z,Ω)

∂n
− b(z)Ψ(z,Ω) = 0, Ω ∈ ∂X̂, z ∈ [z1, z2], (7)

where µ1, λ1, µ2, a are real constants; λ2 ≡ λ2(z2) is a real function, depending on
z2; µ

2
l + λ2l 6= 0; the functions b(z), ∂zb(z) are continuous and bounded; n is a unit

vector normal to the boundary ∂X̂ of the domain X̂ .
In the Kantorovich method (KM) the solution Ψ(z,Ω) is sought for in the form

of an expansion in the single-parameter set of basis functions {ψj(Ω; z)}jmax

j=1 ∈ Fz ∼
L2(X̂):

Ψ(z,Ω) =
∑jmax

j=1
ψ

(2)
j (Ω; z)χ

(1)
jio
(z). (8)

In the expansion (8) the vector function χ
(1)
io (z) = (χ

(1)
1io(z), . . . , χ

(1)
jmaxio(z))

T is the

one we seek for. The basis functions ψ
(2)
j (Ω; z) are solutions of the parametric

eigenvalue problem

Ĥ(2)(Ω; z)ψ
(2)
j (Ω; z) = ε

(2)
j (z)ψ

(2)
j (Ω; z), (9)

a
∂ψ

(2)
j (Ω; z)

∂n
− b(z)ψ(2)

j (Ω; z) = 0, Ω ∈ ∂X̂, z ∈ [z1, z2].

They form an orthonormal basis in the set of variables Ω ∈ X̂ for each value
z ∈ (z1, z2) ∈ B:

∫

X̂

ψ
(2)
i (Ω; z)ψ

(2)
j (Ω; z)dΩ = δij. (10)

Here ε
(2)
1 (z) < · · · < ε

(2)
jmax

(z) < · · · ∈ ε(2)(z) is the desired set of real eigenvalues
arranged in the ascending order.

By the projection (8)–(10) the problem (6), (7) is reduced to the bound-state
problem (with respect to E,χ(1)(z)) or to the multichannel scattering problem
(with respect to {λ2,io}No

io=1, {χio(z)}No

io=1, the value of E being fixed) for the system
of jmax ordinary differential equations (ODE):

(Ĥ1(z) + Ŵ(1))χ(1)(z) = Eχ(1)(z), z ∈ (z1, z2) (11)

with the boundary conditions of the third kind at the ends of the interval z ∈ Ω̄z =
(z1, z2) :

µl

(

I
d

dz
−Q(1)(z)

)

χ(1)(z)− λlχ(1)(z) = 0, z = zl, l = 1, 2 (12)
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where I is the unit matrix, Ĥ(z) and Ŵ(1) are the self-adjoint matrix operators:

Ĥ1(z) = −
1

f1(z)
I
d

dz
f2(z)

d

dz

Ŵ(1) = V(z) +
f2(z)

f1(z)
Q(1)(z)

d

dz
+

1

f1(z)

d f2(z)Q
(1)(z)

dz
. (13)

The eigenfunction χ(1)(z) of the bound-state problem (11)–(13) is normalized:

‖χ(1)(z)‖0 = 1, ‖χ(1)(z)‖20 =
∫ z2

z1

f1(z)χ
(1)(z)Tχ(1)(z)dz. (14)

For the multichannel scattering problem (11)–(13) on whole axis z ∈ (−∞,+∞)
the number of open channels No = max j ≤ jmax is determined by the condition
E ≥ limz±→±∞ Vjj(z±), if limz±→±∞ f2(z±)/f1(z±) = const, and the normalization

of the bounded solution Φ(1)(z) = {χ(1)
io
(z)}No

io=1 by the condition at z+ → +∞ and
z− → −∞ we use
(

Φ→(z+) Φ←(z+)
Φ→(z−) Φ←(z−)

)

=

(

0 X(−)(z+)
X(+)(z−) 0

)

+

(

0 X(+)(z+)
X(−)(z−) 0

)

S, (15)

where X(±)(z) are asymptotic rectangle-matrix solutions of dimension jmax × No

derived in [24] and S is the symmetric and unitary scattering matrix

S =

(

R→ T←
T→ R←

)

(16)

which is composed of the reflection R→, R← and transmission T→, T← amplitude
matrices of dimension No×No, subscripts → and ← denote the initial direction of
the particle motion along the z axis [7, 24].

For the multichannel scattering problem (11)–(13) on semiaxis z ∈ (0,+∞),
instead of (15) one has

Φ(1)(z+) = Φ(1)
reg(z+) +Φ

(1)
irr (z+)K, (17)

where K is the desired scattering matrix having the dimension No × No, Φ
(1)
reg(z)

and Φ
(1)
irr (z) are the asymptotic expressions of dimension jmax ×No for regular and

irregular solutions of Eq. (11), derived in Ref. [17, 18].
In Eqs. (13) the variable elements of the matrices V(z) and Q(1)(z) having the

dimension jmax×jmax are expresses in terms of the solutions of the problem (9) and
their derivatives with respect to the parameter:

Vij(z)=Vji(z)=
ε
(2)
i (z) + ε

(2)
j (z)

2f3(z)
δij +

f2(z)

f1(z)
H

(1)
ij (z),

H
(1)
ij (z)=H

(1)
ji (z)=

∫

X̂

∂ψ
(2)
i (Ω; z)

∂z

∂ψ
(2)
j (Ω; z)

∂z
dΩ, (18)

Q
(1)
ij (z)=−Q

(1)
ji (z)=−

∫

X̂

ψ
(2)
i (Ω; z)

∂ψ
(2)
j (Ω; z)

∂z
dΩ.
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Differentiation with respect to the parameter of the problem (9), (10) leads to
the inhomogeneous boundary-value problem with respect to the desired parameter
derivative ∂zψj(Ω; z) ∈ Fr ∼ L2(X̂):

(

Ĥ(2)(Ω; z)− ε(2)j (z)
) ∂ψ

(2)
j (Ω; z)

∂z
=

(

∂ε
(2)
j (z)

∂z
− ∂Ĥ(2)(Ω; z)

∂z

)

ψ
(2)
j (Ω; z),(19)

a
∂2ψ

(2)
j (Ω; z)

∂n∂z
− b(z)

∂ψ
(2)
j (Ω; z)

∂z
=
∂b(z)

∂z
ψ

(2)
j (Ω; r), Ω ∈ ∂X̂, z ∈ [z1, z2],

∫

X̂

ψ
(2)
j (Ω; z)

∂ψ
(2)
j (Ω; z)

∂z
dΩ = 0.

The implementation of MK requires efficient calculation schemes for solving the
following problems.
1. Calculation of a finite set of eigenvalues and eigenfunctions of the parametric
boundary-value problem (9), (10).
2. Calculation of the first derivative of eigenfunctions with respect to the parame-
ter from the inhomogeneous boundary-value problem (19).
3. Calculation of the elements of matrices Q(1)(z) and V(z) using the formulae
(18).
4. Solution of the bound-state problem for the set of ODE (11)–(14).
5. Solution of the multichannel scattering problem for the set of ODE (11)–(13),
(17).

For solving the problems 1–5 numerically the efficient variation-projection com-
putational schemes and economic algorithms [25, 26] were developed basing on the
R-matrix theory, asymptotic methods and the finite element method (FEM). The
problem-oriented software packages KANTBP [5, 6, 7], POTHMF [27], ODPEVP
[8], and POTHEA [28] were elaborated.

The software package KANTBP is intended for numerical solution of the prob-
lems 4 and 5. The constructed numerical scheme provides the known estimates of
the following errors of the numerical solution on the nonuniform mesh Ωpzh [z1, z2]:

∣

∣Ej − Eh
j

∣

∣ ≤ c1h
2p,
∥

∥

∥
χ

(1)
j (z) − χh(1)j

∥

∥

∥

0
≤ c2h

p+1, (20)

where Ej and χ
(1)
j (z) ∈ H2 are the desired eigenvalues and the corresponding

eigenfunctions of the bound-state problem; Eh
j and χ

h(1)
j ∈ H1 are the correspond-

ing numerical solutions; h is the maximal pitch of the finite-element mesh Ωpzh [z1, z2];
p is the order of approximation; c1 and c2 are positive constants independent of h
and p. Similar estimates are valid also for the numerical solution of the multichan-
nel scattering problem, where λhj are the eigenvalues of the reaction matrix and

χ
h(1)
j are the corresponding eigenfunctions.
The software package ODPEVP within the problems 1–3 is intended for

numerical solution of the single-parameter Sturm-Liouville problem in the finite
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interval x ∈ Ω̄x = (x1, x2):

Ĥ(2)(x; z)ψ
(2)
j (x; z) = ǫ

(2)
j (z)ψ

(2)
j (x; z)

Ĥ(2)(x; z) = − 1

g1(x)

d

dx
g2(x)

d

dx
+ f3(z)U(z, x). (21)

Here z ∈ Ωz = [z1, z2] is a real parameter, ǫj(z) are the eigenvalues, depending
on the parameter z. The functions g1(x) > 0, g2(x) > 0, dxg2(x), U(z, x), and
∂zU(z, x) are assumed to be continuous and bounded at all x ∈ Ω̄x and z ∈ Ωz .

The parametric eigenfunctions ψ
(2)
j (x; z) obey the boundary conditions of the third

kind at the boundary points of the interval x ∈ Ω̄x:

alg2(x)
dψ

(2)
j (x; z)

dx
+ bl(z)ψ

(2)
j (x; z) = 0, x = xl, l = 1, 2, (22)

and satisfy the normalization condition

‖ψj(x; z)‖0 = 1, ‖v(x)‖20 =
∫ x2

x1

g1(x)v(x)
2dx. (23)

Here a1 ≥ 0, a2 ≥ 0 are real constants, the functions b1(z) ≤ 0, b2(z) ≥ 0, ∂zb1(z)
and ∂zb2(z) are continuous and bounded at z ∈ Ωz , a

2
l + b2l (z) 6= 0.

An economic algorithm providing the prescribed accuracy was proposed for
the calculating the set of jmax eigenvalues ǫ

(2)
j (z), eigenfunctions ψ

(2)
i (x; z), their

derivatives
∂ǫ

(2)
j (z)

∂z
,
∂ψ

(2)
i (x;z)

∂z
with respect to the parameter z, and the integrals

H
(1)
ij (z) =

∫ x2

x1

g1(x)
∂ψ

(2)
i (x; z)

∂z

∂ψ
(2)
j (x; z)

∂z
dx, (24)

Q
(1)
ij (z) = −

∫ x2

x1

g1(x)ψ
(2)
i (x; z)

∂ψ
(2)
j (x; z)

∂z
dx.

In the FEM for the numerical solution ǫ
h(2)
j and ψ

h(2)
j the following estimates of

the errors are proved:

∣

∣

∣
ǫ
(2)
j (x)− ǫh(2)j

∣

∣

∣
≤ c1h

2p,
∥

∥

∥
ψ

(2)
j (x; z)−ψh(2)

j

∥

∥

∥

0
≤ c2h

p+1, (25)

where ǫ
(2)
j (z) and ψ

(2)
j (x; z) ∈ H2 are the precise solutions; ǫ

h(1)
j and ψ

h(2)
j ∈ H1

are the corresponding numerical solutions; h is the maximal pitch of the finite-
element mesh Ωpxh [xmin, xmax]; p is the order of approximation; c1 and c2 are positive
constants independent of h and p.

It is proved that the following estimate takes place [26]:
Theorem. For a given value of the parameter z the errors of approximation

for the first derivatives of eigenvalues, eigenfunctions of the boundary-value problem
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(21), (22), and the integrals (24) with respect to the parameter are bounded by the
following inequalities:

∣

∣

∣

∣

∣

∂ǫ
(2)
j (z)

∂z
−
∂ǫ

h(2)
j

∂z

∣

∣

∣

∣

∣

≤ c3h
2p,

∥

∥

∥

∥

∥

∂ψ
(2)
j (x; z)

∂z
−
∂ψ

h(2)
j

∂z

∥

∥

∥

∥

∥

0

≤ c4h
p+1, (26)

∣

∣

∣
Q

(1)
ij (z)−Q

h(1)
ij

∣

∣

∣
≤ c5h

2p,
∣

∣

∣
H

(1)
ij (z)−Hh(1)

ij

∣

∣

∣
≤ c6h

2p,

where ∂zǫ
(2)
j (z) and ∂zψ

(2)
j (x; z) ∈ H2, Q

(1)
ij (z) and H

(1)
ij (z) are the exact functions;

∂zǫ
h(2)
j and ∂zψ

h(2)
j ∈ H1, Q

h(1)
ij and H

h(1)
ij are the corresponding numerical values;

c3, c4, c5 and c6 are positive constants independent of h and p.
Within the framework of the problems 1–3 the program POTHEA is intended

for the numerical solution of the the parametric 2D BVP for a self-adjoint second-
order elliptic differential equation with respect to x = {x2 = y ≻ x1 = x}T ∈ X ⊂
R2 in the two-dimensional domain Ω = [xmin, xmax]× [ymin, ymax]

(

Ĥ(2)(x, y; z)− ε(2)i (z)
)

ψ
(2)
i (x, y; z) = 0, (27)

Ĥ(2)(x, y; z) = Ĥ2(y; z) +
1

g3(y)
Ĥ(3)(x; y, z),

Ĥ2(y; z) = −
1

g1(y)

∂

∂y
g2(y)

∂

∂y

Ĥ(3)(x; y, z) = − 1

g4(x)

∂

∂x
g5(x)

∂

∂x
+ f3(z)g3(y)U(x, y; z)

with the Dirichlet and/or Neumann boundary conditions

lim
y→yt

f2(y)∂yψ
(2)
i (x, y; z) = 0 or ψ

(2)
i (x, yt; z) = 0, x ∈ (xmin, xmax), (28)

lim
x→xt

f5(x)∂xψ
(2)
i (x, y; z) = 0 or ψ

(2)
i (xt, y; z) = 0, y ∈ [ymin, ymax],

where t = min,max and ∂y ≡ ∂
∂y
. Here z ∈ [zmin, zmax] is a parameter, the functions

g1(y) > 0, g2(y) > 0, g3(y) > 0, g4(x) > 0, g5(x) > 0, and ∂yg2(y), ∂xg5(x),
U(x, y; z), ∂zU(x, y; z) are continuous in (x, y) ∈ Ω/∂Ω. It is also assumed that the
parametric boundary-value problem (27), (28) has only a discrete spectrum.

The program executes the following steps.
In Step 1 with the required accuracy of the order similar to (25) the pro-

gram calculates a set of jmax smallest eigenvalues ε
(2)
1 (z) < ε

(2)
2 (z) < . . . ε

(2)
N (z),

and ε
(2)
1 (z)α(z), and the corresponding eigenfunctions {ψ(2)

j (x, y; z)}Nj=1 ∈ Fz ∼
L2(Ωx,y), satisfying the orthogonality and normalization conditions

∫ ymax

ymin

dy g1(y)

∫ xmax

xmin

dx g4(x)ψ
(2)
i (x, y; z)ψ

(2)
j (x, y; z) = δij , (29)

where α(z) > −∞ is the lower bound of the smallest eigenvalue of ε
(2)
1 (z).
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In Step 2 the program computes a set of partial derivatives of the eigenval-
ues ∂ε

(2)
j (z)/∂z and eigenfunctions ∂ψ

(2)
j (x, y; z)/∂z with the accuracy of the same

order as achieved for the eigenvalues and eigenfunctions of the BVP (27)–(29),
respectively.

In Step 3 the program computes the matrix elements defined by the integrals

H
(1)
ij (z) = H

(1)
ji (z) =

ymax
∫

ymin

dy g1(y)

xmax
∫

xmin

dx g4(x)∂zψ
(2)
i (x, y; z)∂zψ

(2)
j (x, y; z), (30)

Q
(1)
ij (z) = −Q

(1)
ji (z) = −

ymax
∫

ymin

dy g1(y)

xmax
∫

xmin

dx g4(x)ψ
(2)
i (x, y; z)∂zψ

(2)
j (x, y; z).

with the accuracy of the same order as achieved for the corresponding eigenvalues
ε(z) of the BVP (27)–(29) similar to (26).

Reduction of the parametric 2D BVP to parametric 1D BVPs

Step 1.1. The partial wave function ψ
(2)
i (x, y; z) is expanded over the orthonor-

mal basis {ψ(3)
j (x)}jmax

j=1 (jmax →∞) in the conventional (C) form

ψ
(2)
i (x, y; z) =

jmax
∑

j=1

ψ
(3)
j (x)χ

(2)
ji (y; z), (31)

or {ψ(3)
j (x; y, z)}jmax

j=1 (jmax →∞) in the Kantorovich (K) form

ψ
(2)
i (x, y; z) =

jmax
∑

j=1

ψ
(3)
j (x; y, z)χ

(2)
ji (y; z). (32)

In Eq. (31) the vector functions χ
(2)
i (y; z) = (χ1i(y; z), . . . , χjmaxi(y; z))

T are un-
known.

Step 1.1.1. If solution is sought in the C form then the functions ψ
(3)
j (x) are

determined as solutions of the following eigenvalue problem:

(

− 1

g4(x)

d

dx
g5(x)

d

dx
+ U0(x)

)

ψ
(3)
j (x) = ε

(3)
j ψ

(3)
j (x), (33)

with the Dirichlet and/or Neumann type boundary conditions

lim
x→xt

g5(x)
dψ

(3)
j (x)

dx
= 0 or ψ

(3)
j (xt) = 0, (34)

where t = min,max and U0(x) is a known function and

∫ xmax

xmin

dx g4(x)ψ
(3)
i (x)ψ

(3)
j (x) = δij . (35)
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Step 1.1.2. If solution is sought in the K form then the functions ψ
(3)
j (x; y, z)

are determined as solutions of the following eigenvalue problem:

Ĥ3(x; y, z)ψ
(3)
j (x; y, z) = ε

(3)
j (y, z)ψ

(3)
j (x; y, z),

Ĥ3(x; y, z) =

(

− 1

g4(x)

d

dx
g5(x)

d

dx
+ f3(z)g3(y)U(x; y, z)

)

(36)

with the Dirichlet and/or Neumann type boundary conditions

lim
x→xt

g5(x)
dψ

(3)
j (x; y, z)

dx
= 0 or ψ

(3)
j (xt; y, z) = 0, (37)

where t = min,max and U(x, y; z) is a known function of the original problem (27)
and orthonormalization conditions

∫ xmax

xmin

dx g4(x)ψ
(3)
i (x; y, z)ψ

(3)
j (x; y, z) = δij . (38)

Note, that these problems can be numerically solved with the given accuracy by
means of the ODPEVP program [8].

Step 1.1.3. If solution is sought in the K form then taking a derivative of the
boundary problem (36)–(38) with respect to parameter • = y or • = z, we get

that ∂yψ
(3)
i (x; y, z) or ∂zψ

(3)
i (x; y, z) can be obtained as a solution of the following

parametric inhomogeneous BVPs:

(

Ĥ3(x; y, z)− ε(3)i (y, z)
) ∂ψ

(3)
i (y; z)

∂• =

= −
[

∂

∂•
(

f3(z)g3(y)U(x; y, z)− ε(3)i (y, z)
)

]

ψ(i)(x; y, z), (39)

with the Dirichlet and/or Neumann type boundary conditions

lim
y→yt

g5(x)
∂[

∂ψ
(3)
i (x;y,z)

∂x
]

∂• = 0 or
∂ψ

(3)
i (x; y, z)

∂• = 0, (40)

where t = min,max and ∂• ≡ ∂
∂•
. The parametric BVP (39), (40) has a unique

solution if and only if the conditions are fulfilled
∫ xmax

xmin

dyg4(x)ψ
(3)
i (x; y, z)

∂ψ
(3)
i (x; y, z)

∂• = 0, (41)

∂ε
(3)
i (y, z)

∂• =

∫ xmax

xmin

dy g4(x)ψ
(3)
i (x; y, z)

∂U(x; y, z)

∂• ψ
(3)
i (x; y, z). (42)

and matrix elements H
(2)
ij (y, z, ∂•) and Q

(2)
ij (y, z, ∂•) defined by integrals

H
(2)
ij (y, z, ∂•) = H

(2)
ji (y, z, ∂•) =

∫ xmax

xmin

dx g4(x)
∂ψ

(3)
i (x; y, z)

∂•
∂ψ

(3)
j (x; y, z)

∂• ,(43)

Q
(2)
ij (y, z, ∂•) = −Q

(2)
ji (y, z, ∂•) = −

∫ xmax

xmin

dx g4(x)ψ
(3)
i (x; y, z)

∂ψ
(3)
j (x; y, z)

∂• .
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Note, these problems are numerically solved with a given accuracy by means of the
ODPEVP program [8].

Step 1.2. After minimizing the Rayleigh-Ritz variational functional and using
the expansion (31), the parametric BVP (27)–(29) is reduced to a finite set of jmax

ODEs (in C or K forms)

(

Ĥ(2)(y; z)− ε(2)i (z) I
)

χ
(2)
i (y; z) = 0, (44)

Ĥ(2)(y; z) = − 1

g1(y)
I
∂

∂y
g2(y)

∂

∂y
+W(2)(y; z)

lim
y→yt

g2(y)
∂χ

(2)
i (y; z)

∂y
= 0 or χ

(2)
i (yt; z) = 0, (45)

Iij = δij =

∫ ymax

ymin

dy g1(y)
(

χ
(2)
i (y; z)

)T

χ
(2)
j (y; z), (46)

Here in the C form, I and W(2)(y; z) are symmetric matrices of the dimension
jmax × jmax

W
(2)
ij (y; z) =

ε
(3)
i + ε

(3)
j

2g3(y)
δij + f3(z)V

c(y; z)− f3(z)
V d

g3(y)
,

V c(y; z) =

xmax
∫

xmin

dx g4(x)ψ
(3)
i (x)U(x, y; z)ψ

(3)
j (x) (47)

V d =

xmax
∫

xmin

dx g4(x)ψ
(3)
i (x)U0(x)ψ

(3)
j (x)

while in the K form W(2)(y, z) ≡W(2)(y, z, ∂y) is a self-adjoint matrix differential
operator of the dimension jmax × jmax

W
(2)
ij (y, z, ∂y) =

ε
(3)
i (y, z) + ε

(3)
j (y, z)

2g3(y)
δij +

g2(y)

g1(y)
H

(2)
ij (y, z, ∂y) (48)

+
1

g1(y)

(

∂

∂y
[g2(y)Q

(2)
ij (y, z, ∂y)]

)

+
g2(y)

g1(y)
Q

(2)
ij (y, z, ∂y))

∂

∂y
,

with H
(2)
ij (y, z, ∂y) and Q

(2)
ij (y, z, ∂y) defined by formula (43) were calculated on step

1.1.3. with a given accuracy by means of the ODPEVP program [8].
Step 2. Taking a derivative of the boundary problem (44)–(46) with respect to

parameter z, we get that ∂zχ
(2)
i (y; z) can be obtained as a solution of the following

parametric inhomogeneous BVP:

(

Ĥ(2)(y; z)− ε(2)i (z) I
) ∂χ

(2)
i (y; z)

∂z
= −

[

∂

∂z

(

W(2)(y; z)− ε(2)i (z) I
)

]

χ
(2)
i (y; z),(49)
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with the Dirichlet and/or Neumann type boundary conditions

lim
y→yt

g2(y)
∂[

∂χ(2)
i (y;z)

∂z
]

∂y
= 0 or

∂χ
(2)
i (yt; z)

∂z
= 0, (50)

where t = min,max and ∂y ≡ ∂
∂y
. The parametric BVP (49), (50) has a unique

solution if and only if the following conditions are satisfied

∫ ymax

ymin

dyg1(y)
(

χ
(2)
i (y; r)

)T ∂χ
(2)
i (y; z)

∂z
= 0, (51)

∂ε
(2)
i (z)

∂z
=

∫ ymax

ymin

dy g1(y)
(

χ
(2)
i (y; z)

)T ∂W(2)(y; z)

∂z
χ

(2)
i (y; z). (52)

Step 3. The required matrix elements (30) are represented by the integrals in
the C form

H
(1)
ij (z) = H

(1)
ji (z) =

∫ ymax

ymin

dy g1(y)

(

∂χ
(2)
i (y; z)

∂z

)T
∂χ

(2)
j (y; z)

∂z
, (53)

Q
(1)
ij (z) = −Q

(1)
ji (z) = −

∫ ymax

ymin

dy g1(y)
(

χ
(2)
i (y; z)

)T ∂χ
(2)
j (y; z)

∂z
,

and by the integrals in the K form

H
(1)
ij (z) = H

(1)
ji (z) =

ymax
∫

ymin

dy g1(y)(∂zχ
(2)
i (y; z))T∂zχ

(2)
j (y; z)

+

ymax
∫

ymin

dy g1(y)(∂zχ
(2)
i (y; z))TQ(2)(y; z, ∂z)χ

(2)
j (y; z)

−
ymax
∫

ymin

dy g1(y)(χ
(2)
i (y; z))TQ(2)(y; z, ∂z)(∂zχ

(2)
j (y; z))

+

ymax
∫

ymin

dy g1(y)(χ
(2)
i (y; z))T )H(2)(y; z, ∂z)χ

(2)
j (y; z),

Q
(1)
ij (z) = −Q

(1)
ji (z) =

ymax
∫

ymin

dy g1(y)χ
(2)
i (y; z))TQ(2)(y; z, ∂z)χ

(2)
j (y; z)

−
ymax
∫

ymin

dy g1(y)χ
(2)
i (y; z))T∂zχ

(2)
j (y; z), (54)



68 A.A. Gusev et al

where H(2)(y; z, ∂z) = {H(2)
i′j′(y; z, ∂z)} and Q(2)(y; z, ∂z) = {Q(2)

i′j′(y; z, ∂z)} defined
by formula (43) were calculated on step 1.1.3. with a given accuracy by means of
the ODPEVP program [8].

The calculated eigenvalues ε
(1)
i (z) and matrix elements H

(1)
ij (z), Q

(1)
ij (z) can be

used for solving bound-state and multichannel scattering problems for a system
of coupled ODEs with respect to the variable z with the help of the KANTBP
program [5, 6, 7].

3.1 Continuity conditions for the eigenfunction ψ
(2)
i (x, y; z)

Since the problems (27)–(29) and (44)–(46) are homogeneous, it is necessary to use
an additional condition to support the continuity of the vector functions χ(1)(y; z)
and the matrix elements (53) with respect to the parameter z on the interval Ωz =
[zmin, zmax]. We have used the following additional procedure.

1. At the first point z = z1 ∈ Ωz the value y = y0 is found, for which the
eigenfunction ψ

(2)
i (x0, y0; z1) reaches the absolute maximum, and the sign of

the eigenfunction ψ
(2)
i (x0, y0; z1) is fixed. Here x0 ∈ [xmin, xmax] is a fixed point

and at least one of the functions ψ
(2)
j (x0) in the expansion (31) is nonzero.

2. At the next points z ∈ Ωz the value of eigenfunction ψ
(2)
i (x0, y0; z) is calculated

and its sign is compared with the the previous one. If they are different, the
sign of ψ

(2)
i (x0, y0; z) is changed and the new value y = y0 is found, for which

the eigenfunction ψ
(2)
i (x0, y0; z1) reaches the absolute maximum; the sign of

the value of eigenfunction ψ
(2)
i (x0, y0; z) is fixed again.

If the mesh Ωz is sufficiently dense, the above algorithm works well. Alterna-
tively, one can check the continuity of the coefficients χ

(2)
ji (y; z) of the expansion

(31) or (32).

.4 Benchmark calculations

The efficiency of the above algorithms and programs was demonstrated by the
numerical analysis of the parametric 2D BVP solutions, including the evaluation
of matrix elements, applied to reduce the 3D BVP describing a helium atom to
1D BVPs for the system of ODEs using the Kantorovich method [13]. The bound-
state problem with the steady-state Schrödinger equation for a helium atom with
zero total angular momentum in the body-fixed hyperspherical coordinates x ≡
θ ∈ [0, π], y ≡ α ∈ [0, π], z ≡ R ∈ [0,+∞) or x = {x3 = θ ≻ x2 = α ≻ x1 =
R}T ∈ X ⊂ R3 can be formulated as a BVP for the following 3D-elliptic equation
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in atomic units [13]:

(

− 1

R5

∂

∂R
R5 ∂

∂R
+

4

R2
(H(θ, α;R) + V (θ, α;R)) + 2E

)

Ψ(θ, α, R) = 0,(55)

H(θ, α;R) = − 1

sin2(α)

(

∂

∂α
sin2(α)

∂

∂α
+

1

sin(θ)

∂

∂θ
sin(θ)

∂

∂θ

)

,

V (θ, α;R) =
R

2

(

− 2

sin(α/2)
− 2

cos(α/2)
+

1
√

1− sin(α) cos(θ)

)

.

The total wave function Ψ(θ, α, R) satisfies the following boundary conditions:

lim
R→0

R5∂Ψ(θ, α, R)

∂R
= 0, lim

R→∞
R5Ψ(θ, α, R) = 0,

lim
α→0,π

sin2(α)
∂Ψ(θ, α, R)

∂α
= 0, lim

θ→0,π
sin(θ)

∂Ψ(θ, α, R)

∂θ
= 0, (56)

and is normalized by the condition

∫ ∞

0

dRR5

∫ π

0

dα sin2(α)

∫ π

0

dθ sin(θ)Ψ2(θ, α, R) = 1. (57)

As a benchmark let us consider the calculation of the energy for the ground and
the first exited states of a helium atom. The calculations were performed with the
given accuracy, and their convergence with respect to both the number of the basis
vector eigenfunctions and the number of their components was studied.

The 3D BVP for Eq. (55) with the boundary (56) and orthonormalization
(57) conditions is reduced to ODEs (11) using the Kantorovich expansion (8) of

the desired solutions over the basis functions ψ
(2)
i (θ, α;R) of the 2D BVP (27)–

(29). The latter are sought for in the form of expansion (31) over the basis ψ
(3)
i (θ)

defined as Legendre polynomials Pl(η = cos θ), i.e. U0(θ) = 0 in Eq. (33). It means
that in the 1D BVP for the resulting ODEs (44)–(46) the potential matrix elements
Wij(α;R) from (47) are defined with V d = 0.

Figure 1 shows the first four eigenfunctions ψ
(2)
j (θ, α;R) at θ = π and their first

derivatives as functions of the hyperradius R and the variable α.
The potential curves 4R−2(ε

(2)
i (R) + 1), the radial diagonal and nondiagonal

matrix elements H
(1)
ij (R), and the radial matrix elements Q

(1)
ij (R) versus R are

plotted in Fig. 2. As seen from Figs. 1 and 2, our algorithm providing the con-
tinuity condition for the eigenfunctions ψ

(2)
i (θ, α;R) works well. The peaks of the

matrix elements correspond to the avoided crossings of the potential curves. The
classification of potential curves at small and large values of R using the sets of adi-
abatic quantum numbers (correlation diagram), as well as the asymptotic behavior
of matrix elements, is described in Refs. [11, 29].

Numerical calculations demonstrate strict correspondence with theoretical esti-
mates for the eigenvalues, eigenfunctions and their derivatives with respect to the
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Figure 1: Eigenfunctions ψ
(2)
j (θ, α;R) at θ = π (left) and their first derivatives (right)

versus the hyperradius R (a.u.) and the variable α (rad.). Top: j = 1. Bottom: j = 4.

parameter. In particular, we calculated the Runge coefficients

βl = log2

∣

∣

∣

∣

∣

σhl − σ
h/2
l

σ
h/2
l − σh/4l

∣

∣

∣

∣

∣

, l = 1÷ 6. (58)

using the absolute errors calculated on four twice-condensed grids for the eigenval-
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Figure 2: The potential curves 4R−2(εi(R)+1) (top-left), the radial diagonal (top-right)
and nondiagonal (bottom-left) matrix elements Hij(R), and the radial matrix elements
Qij(R) (bottom-right) versus the hyperradius R

ues, their derivatives, and the matrix elements H
(1)
ij (R) and Q

(1)
ij (R):

σh1 = |εh/8(2)j (R)− εh(2)j (R)|, σh3 = ‖χh/8(2)j (α;R)− χh(2)j (α;R)‖0, (59)
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0

,

σh5 = |Hh/8(1)
1j (R)−Hh(1)

1j (R)|, σh6 = |Qh/8(1)
1j (R)−Qh(1)

1j (R)|.

Using Eq. (58) we estimated numerically the convergence order of the proposed
numerical schemes, the corresponding theoretical estimates being βl = p+ 1, if l =
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Table 1: Convergence of the potential curves 2R−2(ε
(2)
43 (R) + 1), 2R−2(ε

(2)
45 (R) + 1)

as a function of the maximal number of Legendre polynomials jmax and the number
of finite elements Nel of the order p = 4 at R = 7.65

jmax Nel 2R−2(ε
(2)
43 (R) + 1) 2R−2(ε

(2)
45 (R) + 1)

28 6 4.439 005 647 8840 4.879 922 636 3814
28 12 4.438 991 442 6147 4.878 939 387 2213
28 18 4.438 991 281 3574 4.878 936 678 0110
28 24 4.438 991 270 2793 4.878 936 575 2142
28 30 4.438 991 268 8569 4.878 936 565 5674
28 36 4.438 991 268 5908 4.878 936 564 0653
40 36 4.438 814 541 3791 4.878 929 789 5129
50 36 4.438 775 794 7833 4.878 928 117 4560
60 36 4.438 759 636 3135 4.878 927 388 1689
70 36 4.438 751 689 2542 4.878 927 020 3953
80 36 4.438 747 322 9410 4.878 926 815 1861
100 36 4.438 743 080 9327 4.878 926 613 2176
120 36 4.438 741 240 5373 4.878 926 524 5981

Table 2: Convergence of the matrix elements Q
(1)
4345(R), H

(1)
4345(R), H

(1)
4545(R) at R =

7.65, similar to Table 1

jmax Nel Q
(1)
4345(R), 10

−3 H
(1)
4345(R), 10

−4 H
(1)
4545(R), 10

−3

28 6 7.163 551 693 508 1.313 245 172 874 1.034 074 714 010
28 12 7.192 416 552 701 1.313 393 326 976 1.037 535 372 894
28 18 7.192 470 461 759 1.313 394 061 373 1.037 544 063 945
28 24 7.192 471 802 131 1.313 393 807 683 1.037 544 380 393
28 30 7.192 471 876 618 1.313 393 761 626 1.037 544 409 101
28 36 7.192 471 882 307 1.313 393 751 746 1.037 544 413 457
40 36 7.164 925 249 674 1.304 767 510 954 1.036 946 196 503
50 36 7.158 600 336 853 1.302 825 852 351 1.036 806 107 806
60 36 7.155 920 393 086 1.302 012 009 221 1.036 746 299 243
70 36 7.154 591 453 293 1.301 611 523 137 1.036 716 518 763
80 36 7.153 857 856 101 1.301 391 714 358 1.036 700 039 417
100 36 7.153 142 578 776 1.301 178 645 274 1.036 683 940 956
120 36 7.152 831 407 895 1.301 086 493 836 1.036 676 926 529

3, 4, and βl = 2p otherwise. Within the chosen approximation order p = 4 we got
the numerical estimate 7.5÷7.8 of the Runge coefficients βl for the eigenvalues, their
derivatives, and the matrix elements, and 4.6÷ 4.8 for the eigenfunctions and their
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Table 3: The disk storage usage (DSU, KB) and the CPU time (min:sec) scale with
the number jmax of equations, the number n = Nel and order p of the finite-elements
and the number N of eigensolutions, number of iterations NITEM, and minimal di-
mensions MTOT and MITOT of working arrays TOT and ITOT, respectively, and
CPU time per iteration (TCPU) (sec) at the convergence tolerance on eigenvalues
RTOL = 10−12 and the lower bound of lowest eigenvalue SHIFT=-1.1.

jmax n = Nel p N MTOT MITOT CPU DSU NITEM TCPU
12 6 4 6 33914 1300 <0:01 912 45 <0.01
12 6 4 12 33914 1306 <0:01 3304 52 <0.01
12 6 8 6 108242 2476 0:10 4884 43 0.23
28 6 4 6 182874 2980 0:22 4644 45 0.49
28 6 4 12 182874 2986 0:26 4816 52 0.50
28 6 8 6 585330 5692 1:32 8232 43 2.14
12 36 4 6 162548 7570 0:24 4528 47 0.51
28 36 4 6 768708 17410 2:49 9440 47 3.60
28 36 4 12 826122 17416 3:23 10720 52 3.90

derivatives. These results correspond to the theoretical error estimates at the fixed
number jmax of the equations. The calculations using Eqs. (59) were performed
with the specified accuracy of ∼ 10−12 by means of the POTHEA program with
the relative error tolerance ǫ1 = 4 · 10−16 for the calculated eigenvalues. We used
the computer 2 x Xeon 3.2 GHz, 4 GB RAM, Intel Fortran 77, and the data type
real*8 that provides 16 significant digits. The running time in this example was 2
seconds for jmax = 12, N = 6 and 1000 seconds for jmax = 50, N = 50.

The convergence of several matrix elements with respect to the number of the
Legendre polynomials jmax = 12, 28, 40, 50, 60, 70, 80, 100, 120 and the number of
finite elements Nel = 6, 12, 18, 24, 30, 36 of the grid Ωα = {0(Nel)π/2} at p = 4

is shown in Tables 1–2. The potential curves 2R−2(ε
(2)
j (R) + 1) and the matrix

elements H
(1)
ij (R) converge monotonically from above with the growth of Nel and

jmax. The absolute values of the matrix elements Q
(1)
ij (R) converge monotonically

from above with increasing jmax and from below with increasing Nel.
As seen from Tables 1–2, the convergence of eigenvalues and matrix elements

depending on the number of Legendre polynomials Pj−1(η = cos θ) is proportional
to j−3. This fact is explained by the properties of the symmetric potential jmax ×
jmax matrices W(2)(α;R) from Eq. (47):

=

∫ 1

−1

dη
Pi−1(η)Pj−1(η)
√

1− sin(α)η
, η = cos θ. (60)

Because of the symmetry of the matrix elementsWij(α;R) with respect to α = π/2,
the problem (60) should be restricted to α ∈ [0, π/2] with the following boundary
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Table 4: Convergence of the ground state energy (in a.u.) for helium atom de-
pending on the number N of basis functions and the number jmax of the Legendre
polynomials
N jmax = 12 [13] jmax = 12 jmax = 21 jmax = 28
1 −2.887 911 68 −2.895 539 19 −2.895 551 19 −2.895 552 76
2 −2.891 379 91 −2.898 631 57 −2.898 643 21 −2.898 644 74
6 −2.903 004 48 −2.903 644 06 −2.903 655 96 −2.903 657 52
10 −2.903 636 13 −2.903 702 86 −2.903 714 79 −2.903 716 36
15 −2.903 705 49 −2.903 708 67 −2.903 720 60 −2.903 722 16
21 −2.903 722 64 −2.903 722 99
28 −2.903 722 66
N jmax = 35 jmax = 40 jmax = 45 jmax = 50
1 −2.895 553 32 −2.895 553 52 −2.895 553 63 −2.895 553 71
2 −2.898 645 28 −2.898 645 47 −2.898 645 58 −2.898 645 66
6 −2.903 658 08 −2.903 658 27 −2.903 658 39 −2.903 658 46
10 −2.903 716 91 −2.903 717 10 −2.903 717 22 −2.903 717 30
15 −2.903 722 72 −2.903 722 91 −2.903 723 03 −2.903 723 10
21 −2.903 723 54 −2.903 723 74 −2.903 723 85 −2.903 723 93
28 −2.903 723 55 −2.903 723 74 −2.903 723 85 −2.903 723 93
35 −2.903 723 91 −2.903 724 03 −2.903 724 10
40 −2.903 724 03 −2.903 724 10
45 −2.903 724 15

[12] −2.903 722 99
[31] −2.903 724 37

conditions for the ground and the first exited states:

lim
α→0,π/2

sin2(α)
∂χ(2)(α;R)

∂α
= 0. (61)

The 1D weakly singular integral (60) is usually calculated analytically using Clebsch-
Gordan coefficients [30, 12]. This approach suffers from significant numerical errors
at large i and j that arise from calculating the factorials of large numbers (the
factorials of up to 4jmax − 3 are required). After the change of variable in Eq. (60)

η(ζ ;α) =
tan(α/2)

2
(1− ζ2) + ζ, ζ ∈ [−1, 1], α ∈ [0, π/2], (62)

we arrive at the nonsingular integral

W rep
ij (α) =W rep

ij (π − α) = 1

cos(α/2)

∫ 1

−1

dζPi−1(η(ζ ;α))Pj−1(η(ζ ;α)). (63)

This 1D integral was calculated using the 96-order Gauss–Legendre quadrature,
which yields the double-precision accuracy ≤ 10−14 at i, j ≤ 50. Indeed, as follows
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Table 5: Convergence of the first exited state energy (in a.u.), similar to Table 4
N jmax = 21 jmax = 28 jmax = 35
1 −2.139 935 59 −2.139 935 68 −2.139 935 71
2 −2.141 664 27 −2.141 664 32 −2.141 664 34
6 −2.145 700 08 −2.145 700 17 −2.145 700 20
10 −2.145 914 95 −2.145 915 04 −2.145 915 07
15 −2.145 957 21 −2.145 957 30 −2.145 957 34
21 −2.145 968 71 −2.145 968 74
28 −2.145 970 24
N jmax = 40 jmax = 45 jmax = 50
1 −2.139 935 72 −2.139 935 72 −2.139 935 73
2 −2.141 664 35 −2.141 664 35 −2.141 664 36
6 −2.145 700 21 −2.145 700 21 −2.145 700 22
10 −2.145 915 09 −2.145 915 09 −2.145 915 10
15 −2.145 957 35 −2.145 957 36 −2.145 957 36
21 −2.145 968 76 −2.145 968 76 −2.145 968 77
28 −2.145 970 26 −2.145 970 26 −2.145 970 27
35 −2.145 972 10 −2.145 972 10 −2.145 972 11
40 −2.145 972 62 −2.145 972 63
45 −2.145 973 22

[12] −2.145 956 97
[32] −2.145 974 04

from the estimates for the matrix elements W rep
i≪j(α) ∼ 1/

√
j (in particular, for the

integral (60) at i = 1),

W rep
1j (α) = 2 exp(−(j − 1/2)arch(sin−1 α))/(

√

2j − 1
√
sinα),

and ε
(3)
j−1 = (j− 1)j ∼ j2, which yields an estimate for the correction of eigenvalues

δε ∼ j−3 in the second-order perturbation theory. This means that the accuracy of
the calculations ∼ 10−12 will be achieved with jmax being at least ∼ 1500 .

Table 3 shows the disk storage usage (DSU) and the CPU time at different
values of the number of equations jmax, the number n = Nel and the order p of
finite elements, and the number N of eigensolutions. The minimal dimensions
MTOT and MITOT of the working arrays TOT and ITOT used in the test run of
calculations of matrix potentials are also presented. The relative error tolerance was
ǫ2 = 10−12. The calculations were performed using Intel Core i5 CPU 3.33 GHz, 4
GB RAM, Windows 7. The execution time is seen to be proportional to the number
of calculated solutions and quadratically dependent on the number of equations, or
the number of nodal points L + 1 = np + 1, while the disk storage usage is slowly
dependent on the number of calculated solutions and quadratically dependent on
the number of equations (nodal points). This follows from exploiting the banded
structure of the system of (Nel · p + 1) · jmax linear algebraic equations with the
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maximum band half-width (p + 1) · jmax; the number of arithmetic operations of
the appropriate SSPACE subroutine is specified in Ref. [33].

In the benchmark calculations the grids in R and α have been chosen as ΩR =
{0(200)10(200)30} and Ωα = {0(150)π/2}. Enclosed in parentheses are the num-
bers of finite elements of the order p = 4 in each interval. The set of matrix
elements including the eigenfunction with the number N = 50 were calculated with
the accuracy 10−8 using the number of finite elements Nel = 150 at ǫ2 = 10−12.
The banded system of (150 × 4 + 1)× 50 = 30050 linear algebraic equations with
the mean bandwidth (4 + 1) × 50 = 250 was stably solved with the relative error
tolerance ǫ2 = 10−12 at each value of the hyperradius R belonging to the set of
Gaussian nodes of the grid ΩR.

The convergence of energy values for helium atom in the ground and the first
exited states depending on the number N of radial equations and the number jmax

of the Legendre polynomials is demonstrated in Tables 4 and 5. The energy eigen-
values converge monotonically from above, achieving the values E1 = −2.903 724 15
a.u. and E2 = −2.145 973 22 a.u. at N = 45, jmax = 50. At jmax ∼ N the obtained
results agree within the accuracy of 10−6 with the variational estimates [31, 32] and
have higher accuracy than the earlier calculations [13, 12]. With the appropriate
asymptotic behavior of the matrix elements and solutions taken into account [12],
a similar accuracy can be achieved in higher excited states of the helium atom, to
which the variational calculations were not applied.

.5 Results and prospects

The software packages KANTBP, ODPEVP, and POTHEA allow the prescribed-
accuracy solution of the boundary-value problem for a 2D or 3D elliptic-type equa-
tion within the framework of Kantorovich method with discretization of the se-
quence of boundary-value problems. The software package POTHMF is intended
for numerical solution of the problems 1–3 with angular oblate spheroidal functions.

The efficiency of the developed methods, algorithms, and software packages
KANTBP [5, 6, 7], POTHMF [27], ODPEVP [8] and POTHEA [28] is confirmed by
the results of numerical testing of theoretically derived estimates for the boundary-
value solution errors and by the results of simulation of the following physical
processes in few-body quantum systems.

Numerical studies of the resonance photoionization and laser-stimulated recom-
bination of a hydrogen atom in a uniform magnetic field were carried out. The
effects of resonance transmission and total reflection of oppositely charged particles
in a uniform magnetic field were predicted for the first time [17, 19].

For the model of axial channelling of similarly charged particles in the effective
confining oscillator potential of a crystal the numerical study was carried out. The
simulations revealed a non-monotonic dependence of the nuclear reaction rate en-
hancement coefficient K(E) upon the collision energy E due to the newly discovered
resonance effects in the transmission and reflection of channelled ions [20, 21].
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Sybmolic-numeric modeling was carried out for the tunneling of a cluster through
repulsive potential barriers in s-wave approximation. The cluster model consists of
a pair of particles or ions, or several identical particles, coupled by pair short-range
potentials of the oscillator type. The study revealed non-monotonic dependence of
the reflection and transmission coefficients upon the collision energy, as well as the
particle number and symmetry type of the cluster state. It was shown that the
resonance transmission of the cluster through the barriers, i.e., the quantum trans-
parency effect, accompanied with characteristic increase of the probability density
in the vicinity of local minima of the potential energy with respect to the transverse
variables, is a manifestation of metastable states of the cluster arising due to its
interaction with barriers [22, 23, 24].

The above symbolic-numeric technique was also applied to the analysis of spec-
tral and optical properties of electronic and impurity states of axially-symmetric
models of semiconductor quantum wells, quantum wires and quantum dots. These
states were calculated in the effective mass approximation in the presence of exter-
nal fields, including quantum-dimensional Zeeman and Stark effects [10, 18].

The calculation of parametric eigenvalues, eigenfunctions, and matrix elements
of the BVPs for Eqs. (44) and (39) using POTHEA [9, 8] can be applied to the nu-
merical solution with the required accuracy of bound-state and scattering problems
with 3D Schrödinger-type equations, including those with long-range Coulomb-
type potentials. With the help of KANTBP [5, 6, 7] they can be applied to various
three-dimensional elliptic equations in partial derivatives. The generalization of
the algorithm over a system of parametric coupled 2D BVPs in the framework
of the projection method and FEM, which can be applied to solving multidimen-
sional boundary-value problems with Schrödinger-type equations, will be presented
in forthcoming papers.

Presently in progress is the final version POTHEA 2.0 for solving the problem
with respect to unknowns, which implies the calculation of improved parametric
basis functions in K form (44)–(46) and (48)–(52) using the algorithm MPKM of
Section 2.

A generalization of the multiparametric Kantorovich method implying the re-
duction to 2N − 1 multiparametric eigenvalue problems for a set of ∼ 10− 50 ordi-
nary second-order differential equations that can be solved with respect to N − 1,
N − 2, ..., 1, 0 independent parameters using MPI and/or GRID technology is also
planned.
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