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sponding wave functions in a coupled-channel approximation of the adiabatic ap-
proach is presented. In this approach, a multidimensional Schrödinger equation
is reduced to a system of the coupled second-order ordinary differential equa-
tions (SOODEs) on a finite interval with the homogeneous boundary conditions
of the third type at the left- and right-boundary points for continuous spectrum
problem, or a set of first, second and third type boundary conditions for discrete
spectrum problem. The resulting system of these equations containing the poten-
tial matrix elements and first-derivative coupling terms is solved using high-order
accuracy approximations of the finite element method. Efficiency of the schemes
proposed is demonstrated on an example of solution of quantum transmittance
two-dimensional problem for a pair of coupled ions connected by the harmonic
oscillator interaction through the repulsive Coulomb-like barriers. As a test desk,
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.1 Introduction

In the adiabatic approach [1] or the Kantorovich method [2], a multidimensional
Schrödinger equation for quantum reflection [3], tunneling of a diatomic molecule
incident upon a potential barrier [4, 5], fission model of collision of heavy ions
[6], tunneling of a composite system thought barriers [7, 8, 9], the photoionization
and decay of a hydrogen atom in magnetic field [10, 11, 12, 13, 14] is reduced
by separating the longitudinal coordinate, labeled as z ∈ (−∞,+∞), from the
transversal variables to a system of the second-order ordinary differential equations
containing the potential matrix elements and first derivative coupling terms.

The purpose of this paper is to present a description the KANTBP 3.0 program
[15] based on the use of the finite element method of high-order accuracy approxima-
tions [16, 17] for calculating reflection and transmission matrices and wave functions
for such systems of coupled differential equations on finite intervals of the variable
z ∈ [zmin, zmax] with homogeneous boundary conditions of the third-type at the
left- and right-boundary points following from the above scattering problems. The
third-type boundary conditions are formulated for the continuous problems under
consideration by using known asymptotes for a set of linear independent asymptotic
regular and irregular solutions in the open channels and a set of linear independent
regular asymptotic solutions in the closed channels, respectively.

As a benchmark calculations the program is applied to the computation of the
penetration coefficient for 2D-model of the pair charged particles connected by the
harmonic oscillator interaction throughout symmetric or nonsymmetric as well as
the Coulomb-like barriers [8].

As a test desk, the program is applied to the calculation of the reflection and
transmission matrices and corresponding wave functions of the boundary-value
problem for a set of N coupled-channel ordinary second order differential equations
which follows from the above two-dimensional problem.

The paper is organized as follows. In Section 2 we give a brief overview of the
problem. Description of the program KANTBP 3.0 is given in Section 3. Bench-
mark calculations are given in Section 4. Test desk is discussed in Section 5.

.2 Statement of the problem

In the Kantorovich approach [2, 16], the multidimensional Schrödinger equation is
reduced to a finite set of N ordinary second-order differential equations on the finite

interval [zmin, zmax] for the partial solution χ
(j)(z) =

(

χ
(j)
1 (z), . . . , χ

(j)
N (z)

)T

(L− 2E I)χ(j)(z) ≡
(

−I 1

zd−1
d

dz
zd−1

d

dz
+V(z)

+Q(z)
d

dz
+

1

zd−1
d zd−1Q(z)

dz
− 2E I

)

χ
(j)(z) = 0. (1)
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Here I, V(z) and Q(z) are the unit, symmetric and antisymmetric N×N matrices,
respectively. We assume that d = 1, andV(z) andQ(z) matrices have the following
asymptotic behaviour at large z = z± → ±∞

Vij(z±) =

(

ǫj +
2Z±j
z±

)

δij +
∑

l=2

v
(l,±)
ij

zl±
, Qij(z±) =

∑

l=1

q
(l,±)
ij

zl±
, (2)

where ǫ1 ≤ . . . ≤ ǫN are the threshold values, and δij is the Kronecker symbol.
In the present work, scattering problem is solved using the homogeneous third-

type boundary conditions at z = zmin ≪ 0 and z = zmax ≫ 0:

dΦ(z)

dz

∣

∣

∣

∣

z=zmin

= R(zmin)Φ(zmin),
dΦ(z)

dz

∣

∣

∣

∣

z=zmax

= R(zmax)Φ(zmax), (3)

where R(z) is a unknown N × N matrix-function, Φ(z) = {χ(j)(z)}No

j=1 is the
required N × No matrix-solution and No is the number of open channels, No =
max2E≥ǫj j ≤ N . From this we obtain the quadratic functional at d = 1 (similar to
Eq. (23) in [16] and Eq. (5) in [17])

Ξ(Φ, E, zmin, zmax) ≡
∫ zmax

zmin

Φ†(z) (L− 2E I)Φ(z)dz = Π(Φ, E, zmin, zmax)

−Φ†(zmax)G(zmax)Φ(zmax) +Φ†(zmin)G(zmin)Φ(zmin), (4)

where Π(Φ, E, zmin, zmax) is the symmetric functional

Π(Φ, E, zmin, zmax) =

∫ zmax

zmin

[

dΦ†(z)

dz

dΦ(z)

dz
+Φ†(z)V(z)Φ(z) (5)

+Φ†(z)Q(z)
dΦ(z)

dz
− dΦ(z)†

dz
Q(z)Φ(z)− 2EΦ†(z)Φ(z)

]

dz,

and G(z) = R(z)−Q(z) is the N ×N matrix-function which should be symmetric
according to the conventual R-matrix theory [18]. Here the symbol † denotes the
transjugate of a matrix.

2.1 The physical scattering asymptotic forms of solutions in longi-

tudinal coordinates and scattering matrix

Matrix-solution Φv(z) = Φ(z) describing the incidence of the particle and its
scattering, which has the asymptotic form “incident wave + outgoing waves”
(see Figure 1a), is

Φv(z → ±∞) =















{

X(+)(z)Tv, z > 0,
X(+)(z) +X(−)(z)Rv, z < 0,

v =→,
{

X(−)(z) +X(+)(z)Rv, z > 0,
X(−)(z)Tv, z < 0,

v =←,
(6)
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Figure 1: Schematic diagrams of the continuous spectrum waves having the asymp-

totic form: (a) “incident wave + outgoing waves”, (b) “incident waves + ingoing

wave”.

where Rv and Tv are the reflection and transmission No×No matrices, v =→ and
v =← denote the initial direction of the particle motion along the z axis. Here the
leading term of the asymptotic rectangle-matrix functions X(±)(z) has the form [8]

X
(±)
ij (z)→ p

−1/2
j exp

(

±ı
(

pjz −
Zj

pj
ln(2pj |z|)

))

δij , (7)

pj =
√

2E − ǫj i = 1, . . . , N, j = 1, . . . , No,

where Zj = Z+
j at z > 0 and Zj = Z−j at z < 0. The matrix-solution Φv(z, E) is

normalized by
∫ ∞

−∞

Φ
†
v′(z, E

′)Φv(z, E)dz = 2πδ(E ′ −E)δv′vIoo, (8)

where Ioo is the unit No ×No matrix.
Let us rewrite Eq. (6) in the matrix form at z+ → +∞ and z− → −∞ as

(

Φ→(z+) Φ←(z+)
Φ→(z−) Φ←(z−)

)

=

(

0 X(−)(z+)
X(+)(z−) 0

)

+

(

0 X(+)(z+)
X(−)(z−) 0

)

S, (9)

where the scattering matrix S is composed of the reflection and transmission ma-
trices

S =

(

R→ T←
T→ R←

)

. (10)

In addition, it should be noted that functions X(±)(z) satisfy relations

Wr(Q(z);X(∓)(z),X(±)(z)) = ±2ıIoo, Wr(Q(z);X(±)(z),X(±)(z)) = 0, (11)

where Wr(•; a(z),b(z)) is a generalized Wronskian with a long derivative defined
as

Wr(•; a(z),b(z)) = aT (z)

(

db(z)

dz
− •b(z)

)

−
(

da(z)

dz
− •a(z)

)T

b(z). (12)
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This Wronskian will be used to estimate a desirable accuracy of the asymptotic
expansions (7) and (17). Here the symbol T denotes the transpose of a matrix.

Let us show that the scattering matrix (10) is symmetric and unitary. Using
Eqs. (6) and (11), we have following relations

Wr(Q(z);Φ∗→(z),Φ→(z)) =

{

+2ıT†→T→, z > 0,
+2ı(Ioo −R†→R→), z < 0,

Wr(Q(z);Φ∗←(z),Φ←(z)) =

{

−2ıT†←T←, z < 0,
−2ı(Ioo −R†←R←), z > 0,

Wr(Q(z);Φ∗→(z),Φ←(z)) =

{

+2ıT†→R←, z > 0,
−2ıR†→T←, z < 0,

Wr(Q(z);Φ∗←(z),Φ→(z)) =

{

+2ıR†←T→, z > 0,
−2ıT†←R→, z < 0,

(13)

Wr(Q(z);Φ→(z),Φ←(z)) =

{

−2ıTT
→, z > 0,

−2ıT←, z < 0,

Wr(Q(z);Φ→(z),Φ→(z)) =

{

+0, z > 0,
+2ı(RT

→ −R→), z < 0,

Wr(Q(z);Φ←(z),Φ←(z)) =

{

−2ı(RT
← −R←), z > 0,

+0, z < 0,

where the asterisk denotes the conjugate of a matrix. From here, we obtain the
following properties of the reflection and transmission matrices:

T†→T→ +R†→R→ = Ioo = T†←T← +R†←R←,

T†→R← +R†→T← = 0 = R†←T→ +T†←R→, (14)

TT
→ = T←, RT

→ = R→, RT
← = R←.

This means that the scattering matrix (10) is symmetric and unitary.

Also matrix-solution Φ̂v(z) = Φ(z) describing the incidence of the particle and
its scattering, which has the inverse asymptotic form “incident waves + ingoing
wave” (see Figure 1b), is

Φ̂v(z → ±∞) =















{

X(+)(z) +X(−)(z)R̂†v, z > 0,

X(+)(z)T̂†v, z < 0,
v =→,

{

X(−)(z)T̂†v, z > 0,

X(−)(z) +X(+)(z)R̂†v, z < 0,
v =← .

(15)

Note, that an equality Φ̂
∗
→

←(z) = Φ←→(z) should be fulfilled from which we obtain

R̂→ = R←, R̂← = R→, T̂v = Tv. Therefore we consider below only matrix-solution
Φv(z).
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2.2 Calculation of matrices G(zmin) at v =← and G(zmax) at v =→
Suppose that a set of linear independent regular solutions Φreg

v (z)={χ(j)
reg(z)}Nj=1 for

a problem under consideration is known at z < 0, v =← and at z > 0, v =→, i.e.,

Φreg
← (z) = X̃(−)(z), z < 0, v =←, and Φreg

→ (z) = X̃(+)(z), z > 0, v =→,
X̃

(∓)
ij (z) = X

(∓)
ij (z), i = 1, . . . , N, j = 1, . . . , No. (16)

In the case of some channels are closed, we use additional linear independent regular
asymptotic functions:

X̃
(−)
ij (z)→ q

−1/2
j exp

(

+

(

qjz +
Zj

qj
ln(2qj |z|)

))

δij , z < 0, v =←,

X̃
(+)
ij (z)→ q

−1/2
j exp

(

−
(

qjz +
Zj

qj
ln(2qj|z|)

))

δij, z > 0, v =→, (17)

qj =
√

ǫj − 2E, i = 1, . . . , N, j = No + 1, . . . , N.

Then as shown in [17], the G(z) matrix at z = zmin < 0, v =← and at z =
zmax > 0, v =→ can be found via the known set of linear independent regular
solutions Φreg

v (z):

G(z) = R(z)−Q(z) =
dΦreg

v (z)

dz
(Φreg

v (z))−1 −Q(z) ≡ (R(z) +RT (z))/2. (18)

2.3 Calculation of matrix-solution Φv(z)

After using the high-order accuracy approximations of the finite element method
[16, 17, 19], the solution of a multichannel scattering problem at a fixed value of
energy E in open channels is reduced to a solution of the following algebraic problem
with respect to matrix-solution Φh ≡ ((χ(1))h, . . . , (χ(No))h)

GpΦh ≡ (Ap − 2EBp)Φh = (Mp
max −M

p
min)Φ

h, (19)

dΦh(z)

dz
= (G(z) +Q(z))Φh(z), z = zmin, z = zmax, (20)

where Ap and Bp are the symmetric (LN) × (LN) matrices, L is the number of
the nodes of the finite element grid on interval [zmin, zmax], M

p
max and M

p
min are

matrices with zero elements except the right-lower and left-upper N ×N matrices
equal to G(zmax) and G(zmin), respectively.

First, we consider the numerical algorithm for the calculation of matrix-solution
Φh = Φh

←. In this case Eq. (19) can be rewritten in the following form

(Gp+M
p
min)

(

Φa
←

Φb
←

)

≡
(

Gaa
← Gab

←

Gba
← Gbb

←

)(

Φa
←

Φb
←

)

=

(

0 0

0 G(zmax)

)(

Φa
←

Φb
←

)

,(21)

where Φa
← and Φb

← ≡ Φ←(zmax) are the matrix-solutions of dimension (LN −N)×
No and N ×No, respectively. From here, we obtain explicit expressions

Φa
← = −(Gaa

←)−1Gab
←Φ

b
←, G(zmax) = Gbb

← −Gba
←(G

aa
←)−1Gab

←. (22)
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From Eqs. (20) and (22) we can obtain the relation between Φb
← and its derivative

dΦb
←

dz
= R(zmax)Φ

b
←, R(zmax) = G(zmax) +Q(zmax). (23)

Note, that matrix G(zmax) is determined via the inverse of submatrix Gaa
← cal-

culation of which requires substantial computer resources. For evaluating Eq. (23)
without such calculation of the inverse of submatrixGaa

← , let’s consider the following
auxiliary system of algebraic equations

(

Gaa
← Gab

←

Gba
← Gbb

←

)(

Fa
←

Fb
←

)

=

(

0
I

)

. (24)

As the determinant of the matrix Gp +M
p
min is nonzero, the above equation has a

unique solution

Fa
← = −(Gaa

←)−1Gab
←F

b
←, Fb

← =
(

Gbb
← −Gba

←(G
aa
←)
−1Gab

←

)−1
. (25)

Taking this into account, the required R(zmax) matrix is equal to

R(zmax) =
(

Fb
←

)−1
+Q(zmax). (26)

Using Eqs. (23) and (6), we obtain the following matrix equation for the reflection
R← matrix:

Y(+)
← (zmax)R← = −Y(−)

← (zmax), Y(±)
← (z) =

dX(±)(z)

dz
−R(z)X(±)(z). (27)

Then the required solution Φh
← is calculated by formulae (6), (22) and (25)

Φb
← = X(−)(zmax) +X(+)(zmax)R←, Φa

← = Fa
←

(

Fb
←

)−1
Φb
←. (28)

The transmission T← matrix is determined from the matrix equation

X(−)(zmin)T← = Φh
←(zmin).

Note that, when some channels are closed, the Y(±)
← (z) and X(−)(z) are rectangular

N × No matrices. Therefore, using the pseudoinverse matrices of Y(+)
← (z) and

X(−)(z), we obtain the following formulae:

R← = −
(

(

Y(+)
← (zmax)

)T
Y(+)
← (zmax)

)−1
(

Y(+)
← (zmax)

)T
Y(−)
← (zmax), (29)

T← =
(

(

X(−)(zmin)
)T

X(−)(zmin)
)−1

(

X(−)(zmin)
)T

Φh
←(zmin).

Now we will describe briefly a calculational scheme for matrix-solution Φh=Φh
→.

The required R(zmin) matrix is equal to

R(zmin) = (Fa
→)
−1 +Q(zmin), (30)
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and required solution Φh
→ is calculated as

Φb
→ = Fb

→ (Fa
→)
−1

Φa
→, Φa

→ = X(+)(zmin) +X(−)(zmin)R→. (31)

Here Φa
→ ≡ Φ→(zmin) and Φb

→ are the matrix-solutions of dimension N × No and
(LN−N)×No. F

a
→ and Fb

→ are the matrices of dimension N×N and (LN−N)×N
which are the solutions of the auxiliary system of algebraic equations

(Gp −Mp
max)

(

Fa
→

Fb
→

)

≡
(

Gaa
→ Gab

→

Gba
→ Gbb

→

)(

Fa
→

Fb
→

)

= −
(

I

0

)

. (32)

Finally, we obtain the following matrix equations for the reflection R→ and trans-
mission T→ matrices:

Y(−)
→ (zmin)R→ = −Y(+)

→ (zmin), Y(±)
→ (z) =

dX(±)(z)

dz
−R(z)X(±)(z), (33)

X(+)(zmax)T→ = Φh
→(zmax).

The reflection R→ and transmission T→ matrices are evaluated using the pseudoin-
verse matrices of Y(−)

→ (zmin) and X(+)(zmax):

R→ = −
(

(

Y(−)
→ (zmin)

)T
Y(−)
→ (zmin)

)−1
(

Y(−)
→ (zmin)

)T
Y(+)
→ (zmin), (34)

T→ =
(

(

X(+)(zmax)
)T

X(+)(zmax)
)−1

(

X(+)(zmax)
)T

Φh
→(zmax).

2.4 Asymptotic forms of regular and irregular solutions in the lon-

gitudinal coordinates

We calculate the asymptotic solution to a set of N coupled ordinary differential
equations (ODE) at large values of independent variable |z| ≫ 1

(

− 1

zd−1
d

dz
zd−1

d

dz
+ Vii(z)− 2E

)

χii′(z) (35)

= −
N
∑

j=1,j 6=i

(

Vij(z) +Qij(z)
d

dz
+

1

zd−1
d

dz
zd−1Qij(z)

)

χji′(z).

Here d ≥ 1 is the dimension of configuration space of a general scattering problem
[17]. For the considered case, we put d = 1 and calculate asymptotic solution on
two intervals −∞ < z ≤ zmin and zmax ≤ z < +∞. We assume that coefficients of
Eqs. (35) can be represented in the general asymptotic form as

Vij(z) =

(

ǫ
(0)
j +

ǫ
(1)
j

z

)

δij +
kmax+1
∑

l=2

V
(l)
ij

zl
, Qij(z) =

kmax+1
∑

l=1

Q
(l)
ij

zl
. (36)

Note that in general case coefficients ǫ
(1)
j , V

(l)
ij and Q

(l)
ij are different for z > 0

and z < 0. Below we will consider only case of z > 0.
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Step 1. We construct the solution of Eqs. (35) in the form:

χji′(z) = φji′(z)Ri′(z) + ψji′(z)
dRi′(z)

dz
, (37)

where φji′(z) and ψji′(z) are unknown functions, Ri′(z) is a known function. We
choose Ri′(z) as solutions of the auxiliary problem treated like etalon equation
(

Z
(k<1)
i′ = Z

(k>k′max)
i′ = 0

)

:



− 1

zd−1
d

dz
zd−1

d

dz
+

k′max
∑

k=1

Z
(k)
i′

zk
− p2i′



Ri′(z) = 0. (38)

Remark 1. If Z
(k≥3)
i′ = 0 then solutions to the last equation are presented via

the hypergeometric functions, exponential, trigonometric, Bessel, Coulomb func-
tions, etc. For example, if the leading terms of the asymptotic solutions are given
by formula

Ri′(z) =
1

√

pi′zd−1
exp

(

±ı
(

pi′z −
Zi′

pi′
ln(2pi′|z|)

))

, (39)

the coefficients of potential in the etalon equation (38) have the form:

Z
(1)
i′ = 2Zi′, Z

(2)
i′ = −(d− 3)(d− 1)

4
± ıZi′

pi′
− Z2

i′

p2i′
. (40)

Step 2. At this step we compute the coefficients φji′(z) and ψji′(z) of the
expansion (37) in the form of series over inverse powers of z:

φji′(z) =

kmax
∑

k′=0

φ
(k′)
ji′

zk′
, ψji′(z) =

kmax
∑

k′=0

ψ
(k′)
ji′

zk′
. (41)

After substitution of Eq. (37), (41) into (35) with the use of Eq. (38) and equating

the coefficients at z−k
′

Ri′(z) and z
−k′ dRi′ (z)

dz
, we arrive to a set of recurrent relations

at k′ ≤ kmax:

(

ǫ
(0)
i − 2E + p2i′

)

φ
(k′)
ii′ +

(

ǫ
(1)
i − Z

(1)
i′

)

φ
(k′−1)
ii′ − 2p2i′(k

′ − 1)ψ
(k′−1)
ii′ = −f (k′)

ii′ , (42)
(

ǫ
(0)
i − 2E + p2i′

)

ψ
(k′)
ii′ + 2(k′ − 1)φ

(k′−1)
ii′ +

(

ǫ
(1)
i − Z

(1)
i′

)

ψ
(k′−1)
ii′ = −g(k

′)
ii′ ,
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where the right hand sides f
(k′)
ii′ and g

(k′)
ii′ are defined by relations

f
(k′)
ii′ = −(k′ − 2)(k′ − d)φ(k′−2)

ii′ +

k′
∑

k=2

(

V
(k)
ii − Z

(k)
i′

)

φ
(k′−k)
ii′

+

k′
∑

k=1

(

Z
(k)
i′ (2k′ − 2− k)ψ(k′−k−1)

ii′ +

N
∑

j=1,j 6=i

(

k′
∑

k′′=1

2Q
(k)
ij Z

(k′′)
i′ ψ

(k′−k−k′′)
ji′

−2p2i′Q
(k)
ij ψ

(k′−k)
ji′ +Q

(k)
ij (−2k′ + k + d+ 1)φ

(k′−k−1)
ji′ + V

(k)
ij φ

(k′−k)
ji′

))

; (43)

g
(k′)
ii′ = −(k′ − 1)(k′ − 3 + d)ψ

(k′−2)
ii′ +

k′
∑

k=2

(

V
(k)
ii − Z

(k)
i′

)

ψ
(k′−k)
ii′

+
N
∑

j=1,j 6=i

k′
∑

k=1

(

2Q
(k)
ij φ

(k′−k)
ji′ −Q(k)

ij (2k′ + d− 3− k)ψ(k′−k−1)
ji′ + V

(k)
ij ψ

(k′−k)
ji′

)

with initial conditions p2i′ = 2E − ǫ(0)i′ , φ
(0)
ii′ = δii′ , ψ

(0)
ii′ = 0, at i′ = io span over the

open channels io = 1, . . . , No and pi′ = ıqi′ , qi′ > 0, q2i′ = ǫ
(0)
i′ − 2E at i′ = ic span

over the closed channels ic = No + 1, . . . , N that followed from (7) and (17). Also
from Eq. (42) at k′ = 1 and i = i′,

(

ǫ
(1)
i′ − Z

(1)
i′

)

φ
(0)
i′i′ = 0,

(

ǫ
(1)
i′ − Z

(1)
i′

)

ψ
(0)
i′i′ = 0, (44)

we obtain condition Z
(1)
i′ = ǫ

(1)
i′ .

Step 3. Here we perform calculation of the coefficients φ
(k′)
ii′ and ψ

(k′)
ii′ by a step–

by–step procedure of solving Eqs. (42) for 2E 6= ǫ
(0)
i′ , i 6= i′ and k′ = 1, . . . , kmax:

φ
(k′)
ii′ =

[

ǫ
(0)
i − ǫ

(0)
i′

]−1 [

−f (k′)
ii′ −

(

ǫ
(1)
i − Z

(1)
i′

)

φ
(k′−1)
ii′ + 2p2i′(k

′ − 1)ψ
(k′−1)
ii′

]

,

ψ
(k′)
ii′ =

[

ǫ
(0)
i − ǫ

(0)
i′

]−1 [

−g(k
′)

ii′ − 2(k′ − 1)φ
(k′−1)
ii′ −

(

ǫ
(1)
i − Z

(1)
i′

)

ψ
(k′−1)
ii′

]

, (45)

and for 2E 6= ǫ
(0)
i′ , i = i′ and k′ = 2, . . . , kmax:

φ
(k′−1)
i′i′ = − [2(k′ − 1)]

−1
g
(k′)
i′i′ , (46)

ψ
(k′−1)
i′i′ =

[

2(k′ − 1)
(

2E − ǫ(0)i′

)]−1

f
(k′)
i′i′ .

Algorithm described above has been implemented in the MAPLE and FOR-
TRAN (see description of SLAS program in section 3.2). Resulting output pro-

vided evaluation of the χji′(z) and
χji′ (z)

dz
. This algorithm has been examined with

the results from [20].
Remark 2. The choice of appropriate values zmin and zmax for the constructed

expansions of the linearly independent solutions for pio > 0 is controlled by the
fulfillment of the Wronskian condition (11), (12)

Wr(Q(z);χ∗(z),χ(z)) = ±2ıIoo (47)

up to the prescribed precision εWr.
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Figure 2: Flow diagram of the new version of the KANTBP 3.0 program.
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.3 Description of the program

Figure 2 presents a flow diagram for the program. The KANTBP 3.0 program
is called from the main routine (supplied by a user) which sets dimensions of the
arrays and is responsible for the input data. The KANTBP 3.0 program needs
no installation. The description of all subroutines can be found in comments in
the program source code. Also users can find instructions on how to compile the
KANTBP 3.0 in the README file.

The calling sequence for the subroutine KANTBP is:

CALL KANTBP(TITLE,IPTYPE,ISC,NROOT,MDIM,IDIM,NPOL,RTOL,NITEM,

1 SHIFT,IPRINT,IPRSTP,NMESH,RMESH,NDIR,NDIL,NMDIL,

2 THRSHL,IBOUND,FNOUT,IOUT,POTEN,IOUP,FMATR,IOUM,

3 EVWFN,IOUF,TOT,ITOT,ZTOT,MTOT,MITOT,MZTOT)

In the present code each array declarator is written in terms of the symbolic
names of constants. These constants are defined in the following PARAMETER
statement in the main routine:

PARAMETER (MTOT=10000,MITOT=30000,
MZTOT=90000,NMESH=7,MDIM=4)
Here

• MTOT is the dimension of the working DOUBLE PRECISION array TOT,
The last address ILAST of array TOT is calculated and then compared with
the given value of MTOT. If ILAST > MTOT the message about an error is
printed and the execution of the program is aborted. In the last case, in order
to carry out the required calculation it is necessary to increase the dimension
MTOT of array TOT to the quantity ILAST taken from the message.

• MITOT is the dimension of the working INTEGER array ITOT. The last
address ILAST of array ITOT is calculated and then compared with the
given value of MITOT. If ILAST > MITOT the message about an error is
printed and the execution of the program is aborted. In the last case, in order
to carry out the required calculation it is necessary to increase the dimension
MITOT of array ITOT to the quantity ILAST taken from the message.

• MZTOT is the dimension of the DOUBLE COMPLEX working array ZTOT,
The last address ILAST of array ZTOT is calculated and then compared with
the given value of MZTOT. If ILAST > MZTOT the message about an error
is printed and the execution of the program is aborted. In the last case,
in order to carry out the required calculation it is necessary to increase the
dimension MZTOT of array ZTOT to the quantity ILAST taken from the
message.

• NMESH is the dimension of the DOUBLE PRECISION array RMESH con-
taining the information about the subdivision of the longitudinal interval
[zmin, zmax] on subintervals and number of elements on each one of them.
NMESH is always odd and ≥ 3.
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• MDIM is the dimension of the DOUBLE PRECISION array THRSHL and
INTEGER array NDIL containing information about a set of threshold values
and numbers of coupled differential equations, respectively.

In order to change the dimensions of the code, all one has to do is to modify the
single PARAMETER statement defined above in the main program unit.

We have added a new flag ISC for performing the calculation of the reflection
and transmission matrices:

• = 1 – calculation of the reflection and transmission matrices is carried out
only with direction v =←;
= 2 – calculation of the reflection and transmission matrices is carried out
only with direction v =→;
= 3 – calculation of the reflection and transmission matrices is carried out
with both directions v =← and v =→. Also the properties (2.4) of the
reflection and transmission matrices are verified.

The meaning of the all arguments except above are presented in [16].

New output data

The results of the calculation of the reflection and transmission matrices and
corresponding wave functions are written using unformatted segmented records into
file EVWFN, according to the following operator:

WRITE(IOUF) NDIM,NN,NOPEN,NGRID,((RR(I,J),I=1,NOPEN),J=1,NOPEN),

1 ((TT(I,J),I=1,NOPEN),J=1,NOPEN),

1 (XGRID(I),I=1,NGRID),((R(I,J),I=1,NN),J=1,NOPEN)

In the above, parameters presented in the WRITE statement have the following
meaning:

• NDIM is the number of coupled equations,

• NGRID is the number of finite-element grid points,

• NN = NGRID × NDIM,

• NOPEN is the number of open channels,

• Arrays RR and TT contain the reflection and transmission matrices values
calculated,

• Array XGRID contains the values of the finite-element grid points,

• Array R contains NOPEN eigenfunctions each per NN elements in length
stored (see the scheme in [16]).

New user-supplied subroutines
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• ASYMSL is the name of the new user-supplied subroutine for the scatter-
ing problem, Φ←(z), which calculates the regular X(−)(z), irregular X(+)(z)
asymptotic rectangle-solutions and their derivatives at z = zmax, and regular
X(−)(z) asymptotic square-solution and its derivative at z = zmin. It should
be written as follows:

SUBROUTINE ASYMSL(ZMIN,ZMAX,NDIM,NOPEN,QR,SHIFT,THRSHL,

1 PREGL,DREGL,PREGR,PIRRR,DREGR,DIRRR,IOUT)

C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

C . .

C . P R O G R A M .

C . TO CALCULATE THE REGULAR, IRREGULAR .

C . ASYMPTOTIC MATRIX SOLUTIONS PREGR, PIRRR .

C . AND THEIR DERIVATIVES DREGR, DIRRR AT ZMAX, .

C . THE REGULAR MATRIX SOLOTION PREGL AND ITS .

C . DERIVATIVE DREGL AT ZMIN .

C . .

C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

IMPLICIT REAL*8 (A-H,O-Z)

DIMENSION QR(NOPEN),THRSHL(NDIM)

COMPLEX*16 PREGL(NDIM,NDIM),DREGL(NDIM,NDIM),

1 PREGR(NDIM,NOPEN),PIRRR(NDIM,NOPEN),

1 DREGR(NDIM,NOPEN),DIRRR(NDIM,NOPEN)

RETURN

END

• ASYMSR is the name of the new user-supplied subroutine for the scatter-
ing problem, Φ→(z), which calculates the regular X(+)(z), irregular X(−)(z)
asymptotic rectangle-solutions and their derivatives at z = zmin, and regular
X(+)(z) asymptotic square-solution and its derivative at z = zmax. It should
be written as follows:

SUBROUTINE ASYMSR(ZMIN,ZMAX,NDIM,NOPEN,QR,SHIFT,THRSHL,

1 PREGR,DREGR,PREGL,PIRRL,DREGL,DIRRL,IOUT)

C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

C . .

C . P R O G R A M .

C . TO CALCULATE THE REGULAR, IRREGULAR .

C . ASYMPTOTIC MATRIX SOLUTIONS PREGL, PIRRL .

C . AND THEIR DERIVATIVES DREGL, DIRRL AT ZMIN, .

C . THE REGULAR MATRIX SOLOTION PREGR AND ITS .

C . DERIVATIVE DREGR AT ZMAX .

C . .
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C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

IMPLICIT REAL*8 (A-H,O-Z)

DIMENSION QR(NOPEN),THRSHL(NDIM)

COMPLEX*16 PREGR(NDIM,NDIM),DREGR(NDIM,NDIM),

1 PREGL(NDIM,NOPEN),PIRRL(NDIM,NOPEN),

1 DREGL(NDIM,NOPEN),DIRRL(NDIM,NOPEN)

RETURN

END

Here arrays QR and THRSHL contain a set of momentum and threshold values,
respectively; SHIFT contains the given double energy spectrum value; NDIM is the
number of coupled equations; NOPEN is the number of open channels; IOUT is
number of the output logical device for printing out the results of the calculation.
To set the third-type boundary conditions at both points zmin < 0 and zmax > 0,
flags IBOUND and IDIM always should be 8 and 1. Here IBOUND is parameter
defining the type of boundary conditions, and IDIM is dimension of the envelope
space [16].

3.1 Description of new subprogram units

The function of each new subroutine is briefly described below. Additional details
may be found in COMMENT cards within the program.

• Subroutine ADDVEK assembles the element into the corresponding global
complex vector using a compact storage form. This is modified version of
subroutine ADDVEC [16] for complex arithmetics.

• Subroutine ASSMBC controls the calculation of element complex stiffness
matrix and assembles them into the corresponding global complex matrix.
This is modified version of subroutine ASSMBL [16] for complex arithmetics.

• Subroutine CHECRT controls the properties (2.4) of calculated reflectionR←,
R→ and transmission T←, T→ matrices.

• Subroutine CHECKN prints error messages when input data are incorrect
and stops the execution of program KANTBP.

• Subroutine DECOMC calculates LDLT factorization of matrix. This fac-
torization is used in subroutine REDBAC to reduce and back-substitute the
iteration vectors. They are modified versions of subroutines DECOMP and
REDBAK [19] for complex arithmetics.

• Subroutine GAUSSC calculates linear equation solution by the Gauss-Jordan
matrix inversion method. This is a modified version of subroutine GAUSSJ
[21] for complex arithmetics.
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• Subroutine HQPOTN calculates potential matrix elements of coupling in the
Gaussian nodes of the finite-element mesh. This is a modified version of sub-
routine HQPOT [16] which calculates potential matrix elements of coupling
in the z = zmin.

• Subroutine SCSOLC calculates the reflection and transmission matrices and
corresponding wave functions, and writes them into file EVWFN, if necessary.

Note, that the function of the other subroutines has been described in [16, 17].

3.2 Description of the auxiliary SLAS program

The calling sequence for the subroutine SLAS is:

CALL SLAS(XS,SHIFT,THRSHL,IDIM,NDIM,NOPEN,NMAX,KMAX,

1 MAXZ,ZPREGR,ZDREGR,FXSAS,ZAS0)

where arguments have the following type and meaning:

Input data

XS REAL*8 value of zmin or zmax.
SHIFT REAL*8 the given double energy spectrum.

THRSHL REAL*8 array THRSHL of dimension NDIM containing
values of the thresholds ǫ

(0)
i .

IDIM INTEGER dimension of the envelope space.
NDIM INTEGER number of coupled differential equations.
NOPEN INTEGER number of open channels.

NMAX INTEGER number of required linear independent solutions
and always NMAX ≤ NDIM.

KMAX INTEGER maximal order of asymptotic expansions of ma-
trix elements V(z) and Q(z) at large |z|.

MAXZ INTEGER value of k′max in etalon equation (38).

ZPREGR COMPLEX*16 array ZPREGR of dimension NDIM × NMAX.
In input ZPREGR(I,I) contains value of reg-
ular/irregular solution of I-th etalon equation
(38), while on output ZPREGR contains
asymptotic regular/irregular matrix-solution of
Eq. (35).

ZDREGR COMPLEX*16 array ZDREGR of dimension NDIM × NMAX.
On input ZDREGR(I,I) contains first deriva-
tive of regular/irregular solution of I-th etalon
equation (38), while on output ZDREGR
contains first derivative of asymptotic regu-
lar/irregular matrix-solution of Eq. (35).
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FXSAS LOGICAL*8 if FXSAS = .TRUE. then calculates only recom-
mended value of boundary points. In othercase
calculates ZPREGR and ZDREGR.

• ZAS0 is the name of the external user-supplied subroutine for evaluating
coefficients Z

(k)
i of the etalon equation (38), and should be written as follows:

SUBROUTINE ZAS0(ZAS,MAXZ,SHIFT,THRSHL,NDIM,NOPEN,ABSB)

C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

C . .

C . P R O G R A M .

C . TO CALCULATE THE COEFFICIENTS OF ETALON .

C . EQUATION .

C . .

C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

IMPLICIT REAL*8 (A-H,O-Z)

COMPLEX*16 ZAS(NDIM,MAXZ)

RETURN

END

• VQAS0 is the name of the new user-supplied subroutine for the evaluate the
coefficients V

(l)
ij (2 ≤ l ≤ kmax) and Q

(l)
ij (1 ≤ l ≤ kmax) of the asymptotic

expansion (36) of matrix element V(z) and Q(z) at large |z|, and should be
written as follows:

SUBROUTINE VQAS0(VAS,QAS,KMAX,NDIM,ABSB)

C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

C . .

C . P R O G R A M .

C . TO CALCULATE THE COEFFICIENTS OF THE ASYMPTOTIC .

C . MATRIX ELEMENTS V(z) and Q(z) WITH ORDER KMAX .

C . AT LARGE |z| .

C . .

C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

IMPLICIT REAL*8 (A-H,O-Z)

DIMENSION VAS(NDIM,NDIM,2:KMAX),QAS(NDIM,NDIM,KMAX)

RETURN

END

Here as followed from (44), on output ZAS(I,1) should be equal ǫ
(1)
I , and on

input the parameter ABSB = sign(XS).
Subroutine SLAS in program KANTBP, is called as needed via subroutines

ASYMSL and ASYMSR.
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.4 Benchmark calculation of penetration coefficient

Wave function Ψ̃(x̃, ỹ) of two particles (or ions) labeled by i = 1, 2 connected with
oscillator potential penetration through repulsive (Coulomb) barriers Ũ(x̃i) in the
center-mass-system satisfies the two-dimensional Schrödinger equation [8]:

(

− ~
2

2M

∂2

∂ỹ2
− ~

2

2µ

∂2

∂x̃2
+
µ

2
ω̃2x̃2 + Ũ1(x̃1) + Ũ2(x̃2)− Ẽ

)

Ψ̃(x̃, ỹ) = 0, (48)

where ω̃ is the oscillator frequency, Ẽ is the energy, x̃1 = ỹ + s1x̃, x̃2 = ỹ − s3x̃ are
variables in the laboratory system of coordinates. The parameters s1 =

m2

M
, s3 =

m1

M

are defined via masses of particles m1 and m2, and their total M = m1 +m2 and
reduced µ = m1m2

M
masses.

Using the transformation of variables

x = x−1oscx̃, y =

√

M

µ
x−1oscỹ, (49)

with the oscillator units of length xosc =
√

~

µω̃
, the corresponding Eq. (48) leads to

the following dimensionless equation

(

− ∂2

∂y2
− ∂2

∂x2
+ x2 + V (x, y)− E

)

Ψ(x, y) = 0, (50)

where E ≡ 2E = Ẽ
Eosc

and V (x, y) are the dimensionless energy and barrier potential

in units of energy Eosc =
~ω̃
2

V (x, y) = U1(x1) + U2(x2) ≡
1

Eosc

(

Ũ1 (x̃1) + Ũ2 (x̃2)
)

. (51)

where x1 = s2y + s1x and x2 = s2y − s3x with s2 =
√

µ
M
.

Model A. We choose barrier potentials Ui(xi) with effective charges Ẑi > 0 in
the form of the repulsive truncated Coulomb potential cut off on small 0 < x̄min < 1
and large x̄max > 1 distances from xi = 0 as [7]

Ui(xi) =











2Ẑi

x̄min

− 2Ẑi

x̄max
, |xi| ≤ x̄min,

2Ẑi

|xi|
− 2Ẑi

x̄max
, x̄min < |xi| ≤ x̄max,

0, |xi| > x̄max.

(52)

Model B. We define the Coulomb-like potentials Ui(xi) that depend on the in-
teger parameter s ≥ 2 and truncation parameter x̄min > 0 [8]:

Ui(xi) =
2Ẑi

s
√

|xi|s + x̄smin

. (53)
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The asymptotic boundary conditions for the solution Ψ(y, x) = {Ψio(y, x)}No

io=1

with direction v =→ can be written in the obvious form

Ψio(y → −∞, x)→ B
(0)
io

(x)
exp

(

ı
(

pioy − sign(y)Z12

pio
ln(2pio |y|)

))

√
pio

+

No
∑

j=1

B
(0)
j (x)

exp
(

−ı
(

pjy − sign(y)Z12

pj
ln(2pj|y|)

))

√
pj

Rjio ,

Ψio(y → +∞, x)→
No
∑

j=1

B
(0)
j (x)

exp
(

ı
(

pjy − sign(y)Z12

pj
ln(2pj|y|)

))

√
pj

Tjio , (54)

Ψio(y, x→ ±∞)→ 0 .

Here No is the number of open channels at fixed energy 2E = p2+ ε
(0)
io
> 0; Z12 = 0

for model A and Z12 = (Ẑ1 + Ẑ2)/s2 for model B; Rjio and Tjio are unknown

reflection and transmission amplitudes; B
(0)
j (x) are the basis functions of oscillator

corresponding to energy ε
(0)
j = 2j − 1 at j ≥ 1

(

− ∂2

∂x2
+ x2 − ε(0)j

)

B
(0)
j (x) = 0,

∫ +∞

−∞

B
(0)
i (x)B

(0)
j (x)dx = δij. (55)

4.1 Kantorovich expansion

We construct a desired solution of the boundary-value problem (BVP) (50), (54)
in the form of Kantorovich expansion:

Ψi′(x, y) =

N
∑

j=1

Bj(x; y)χji′(y). (56)

The basis functions Bj(x; y) in the fast variable x and the potential curves εj(y)
that depend continuously on slow variable y as a parameter are chosen as solutions
of the BVPs for the equation on grid Ωx{xmin(y), xmax(y)}

(

− d2

dx2
+ x2 + V (x, y)− εj(y)

)

Bj(x; y) = 0, (57)

which are subject to the boundary, normalization and orthogonality conditions

Bj(xmin(y); y) = Bj(xmax(y); y) = 0,
xmax(y)
∫

xmin(y)

Bi(x; y)Bj(x; y)dx = δij . (58)
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By substituting (56) into (50), (54) and by taking average over (58), we obtain
the BVP for a set of N coupled ODEs that describes the slow subsystem for the

partial solutions χ(j)(y) =
(

χ
(j)
1 (y), . . . , χ

(j)
N (y)

)T

:

(

−I d
2

dy2
+V(y) +Q(y)

d

dy
+
dQ(y)

dy
− 2E I

)

χ
(j)(y) = 0. (59)

Here I is the unit N ×N matrix, V(y) and Q(y) are the effective potential N ×N
matrices:

Vij(y) = εj(y)δij +

xmax(y)
∫

xmin(y)

∂Bi(x; y)

∂y

∂Bj(x; y)

∂y
dx, (60)

Qij(y) = −
xmax(y)
∫

xmin(y)

Bi(x; y)
∂Bj(x; y)

∂y
dx.

The eigenvalue problem (57), (58) was solved by the ODPEVP program [22] for
y ∈ [ymin, ymax] good separated eigenvalues |εi(y)− εi−1(y)| > ǫ > 0 where ǫ ∼ 0.05
for the double precision arithmetic. This condition is valid for accepted values of
parameters of considered models. In the case of non-good separated eigenvalues,
i.e. if 0 < |εi(y∗)− εi−1(y∗)| ≤ ǫ, one should generate a more dense grid in vicinity
vy = |y−y∗| < ǫ∗ of avoided crossing points y∗ and/or use multi-precision arithmetic.
For long-range potentials one should construct appropriate asymptotic expansion
for eigenvalues and corresponding eigenfunctions y ∈ (−∞,+∞)\[ymin, ymax] to
build up asymptotic effective potentials with leading terms

Vij(y) =

(

ε
(0)
j + sign(y)

2Z12

y

)

δij +

kmax
∑

k=3

V
(k,±)
ij

yk
+O(y−kmax−1),

Qij(y) =

kmax
∑

k=3

Q
(k,±)
ij

yk
+O(y−kmax−1), (61)

where the sign “+” is for y > 0 and “−” is for y < 0.
For given number N of Eq. (59), the values xmin and xmax of grid Ωx{xmin, xmax}

were chosen in the region |x| > x0 =
√
2N − 1, where the Hermite polynomial

[24] (or basis function Bj(x; y) in a general case) has no zeros. These values are
computed with prescribed precision eps > 0 from the condition

exp

(

−
∫ x

x0

dx
√

x2 − x20
)

≤ eps, (62)

which in the given case leads to inequality

exp

(

−x
√

x2 − x20/2
)(

x+
√

x2 − x20
)x2

0
/2

x
−x2

0
/2

0 ≤ eps. (63)
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To find an approximate solution, at the first step we choose initial approximation
xmax = x0, after which it is increased with step 1 until condition (63) is satisfied.
Values ymin < xmin and ymax > xmax were chosen from the condition that potential
(53) is negligible on the interval xmin < x < xmax.

The matching points ymatch
1 and ymatch

2 of the numerical (60) and asymptotic
(61) effective potential were calculated as follows:

ymatch
1 = min

(

yQ− , y
V
−

)

, ymatch
2 = max

(

yQ+ , y
V
+

)

, (64)

yQ± = ± kmax

√

|Q(kmax,±)
NN−1 |
eps

, yV± = ± kmax

√

|V (kmax,±)
NN |
eps

,

since |Q(kmax,±)
ij | < |Q(kmax,±)

NN−1 |, |V
(kmax,±)
ij | < |V (kmax,±)

NN |. The values ymin and ymax

were satisfied by inequalities ymin < ymatch
1 < xmin and ymax > ymatch

2 > xmax that
should be calculated from conditions

ymin = min



ymatch
1 ,min

j,io



− kmax

√

|φ(kmax,−)
jio |
eps



 ,min
j,io



− kmax

√

|ψ(kmax,−)
jio |
eps







 ,

ymax = max



ymatch
2 ,max

j,io





kmax

√

|φ(kmax,+)
jio

|
eps



 ,max
j,io





kmax

√

|ψ(kmax,+)
jio

|
eps







 .(65)

For the calculation of asymptotic solutions of model B, we have used etalon
equation (38) at d = 1, k′max = 1 and Z

(1)
i′ = 2sign(y)Z12, which corresponds to

known solutions in the open channels

R±io(pio , y) = p
−1/2
io

{

(G0(pio ,+y)± ıF0(pio ,+y)) exp(∓ıδio)/2, y > 0,
(G0(pio ,−y)∓ ıF0(pio,−y)) exp(±ıδio)/2, y < 0,

(66)

and in the closed channels

Ric(qic , y) = q
−1/2
ic

t exp(−t/2)U(1 + Z12/qic , 2, t), t = 2qic|y|. (67)

Here F0(pio , y) and G0(pio , y) are the regular and irregular continuum zero order
Coulomb functions calculated by subroutine RCWFNN [20] which is a modified
version of the subroutine RCWFN [23] for the DOUBLE PRECISION accuracy,
σio = arg Γ (1 + ıZ12/pio) is the Coulomb phase shift [24], and U(a, b, c) is the
confluent hypergeometric function of second kind calculated by subroutine CHGU
[25]. Note that, for the numerical calculation we have neglected the exponentially
small factor exp(−t/2) in Ric(qic , y) and its first derivative, since this factor is

canceled during evaluation of R(y) matrix in Eq. (18). The coefficients V
(k,±)
ij ,

V
(k,±)
ij , φ

(k,±)
ji and ψ

(k,±)
ji have been implemented in MAPLE and FORTRAN up to

order kmax = 11 using an algorithm described in [8] and Section 2.4.
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Figure 3: The total probabilities T ≡ |T|211 of penetration vs energy E = 2E

through truncated Coulomb (52) (upper panel) and Coulomb-like (53) (lower panel)

potential barriers.

Below we have used values of parameters: m1 = m2 = 1, x̄min = 0.1, Ẑ1 =
Ẑ2 = 0.5 and Ẑ1 = Ẑ2 = 1. Also x̄max = 5 for model A, and s = 8 for model
B. In the considered examples we used grids Ωx{xmin, xmax} = {−10(768)10} and
Ωy{ymin, ymax} = {−125(200) − 25(100) − 6(200)6(100)25(200)125} with the La-
grange elements of the order p = 4 between the nodes. In the above, the number
of grid elements for grids Ωx and Ωy is shown in the parentheses. At the boundary
points ymin and ymax the absolute accuracy εWr of calculated Wronskian (12) was
less then 10−11.

The total probabilities T ≡ |T|211 =
∑No

j=1 |T1j |2 of penetration through trun-
cated Coulomb (52) and Coulomb-like (53) potential barriers of models A and B
are shown in Figure 3. These pictures illustrate the important peculiarity that a
more realistic nontruncated Coulomb-like barrier, being more wide than truncated
one, leads to a set of the probability maximums having a bigger half-width. It can
be used for verification of the models of type A and B and quantum transparency
effect. Positions of peaks of transmission coefficient demonstrated the quantum
transparency effect correspond to the real part of energies of metastable states
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Figure 4: The profiles of the absolute values of the wave function |Ψ←(x, z)| of the
model B at m1 = m2 = 1, x̄min = 0.1, s = 8 and Z1 = Z2 = 0.5. Left panel: the

resonance transmission at 2E = 8.1403 and |T|211 = 0.9259. Right panel: the total

reflection at 2E = 9.4748 and |T|211 = 0.0161.

imbedded in continuum while the half width corresponds to imaginary part. The
profiles of wave functions corresponding to the resonance transmission and total
reflection are shown in Figure 4. One can see that in resonance transmission case
the probability density have a maximum in a vicinity of barrier due to metastable
states imbedded into continuum while in the case of total reflection in a vicinity of
barrier it is suppressed.

.5 Test desk

We consider the BVP (50) with parameters m1 = 1, m2 = 3, x̄min = 0.1, Z1 = Z2 =
0.1, s = 8 and N = 4. The corresponding BVP (1)–(3) and the matrix elements
V(z), Q(z) have been solved on grid Ωx{xmin, xmax} = {−xmin(64)xmax} with ac-
curacy 10−10. Boundary points xmax = −xmin ≈ 8.8 were defined by the inequality
(63). All calculation details of this problem were written into file ODPEVP.LPR.

The following values of numerical parameters and characters have been used in

the test run via the supplied input file SQRTBT.INP:

&PARAS TITLE=’ REFLECTION AND TRANSMISSION MATRICES ’,

IPTYPE=1,ISC=3,IDIM=1,NPOL=4,

SHIFT= 4D0,IPRINT=1,IPRSTP=120,

RMESH=-25D0,100D0,-6D0,100D0,6D0,100D0,25D0,

NDIR=1, NDIL=4, NMDIL=1,THRSHL= 1.D0,3D0,5D0,7D0,IBOUND=8,
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FNOUT=’KANTBP.LPR’,IOUT=7,POTEN=’ODPEVP.PTN’,IOUP=10,

FMATR=’KANTBP.MAT’,IOUM=11,EVWFN=’KANTBP.WFN’,IOUF=0

&END

.TEST RUN OUTPUT
PROBLEM: REFLECTION AND TRANSMISSION MATRICES

********

C O N T R O L I N F O R M A T I O N

------------------------------------

NUMBER OF DIFFERENTIAL EQUATIONS. . . . . (MDIM ) = 4

NUMBER OF FINITE ELEMENTS . . . . . . . . (NELEM ) = 300

NUMBER OF GRID POINTS . . . . . . . . . . (NGRID ) = 1201

ORDER OF SHAPE FUNCTIONS. . . . . . . . . (NPOL ) = 4

ORDER OF GAUSS-LEGENDRE QUADRATURE. . . . (NGQ ) = 5

DIMENSION OF ENVELOPE SPACE . . . . . . . (IDIM ) = 1

BOUNDARY CONDITION CODE . . . . . . . . . (IBOUND) = 8

DOUBLE ENERGY SPECTRUM. . . . . . . . . . (SHIFT ) = 4.00000

SUBDIVISION OF RHO-REGION ON THE FINITE-ELEMENT GROUPS:

******************************************************

NO OF NUMBER OF BEGIN OF LENGTH OF GRID END OF

GROUP ELEMENTS INTERVAL ELEMENT STEP INTERVAL

----- --------- -------- --------- -------- --------

1 100 -25.000 0.19000 0.04750 -6.000

2 100 -6.000 0.12000 0.03000 6.000

3 100 6.000 0.19000 0.04750 25.000

********************************************************************************

NDIM, MDIM= 4 4

T O T A L S Y S T E M D A T A

-------------------------------

TOTAL NUMBER OF ALGEBRAIC EQUATIONS. . . . (NN ) = 4804

TOTAL NUMBER OF MATRIX ELEMENTS. . . . . . (NWK) = 60010

MAXIMUM HALF BANDWIDTH . . . . . . . . . . (MK ) = 20

MEAN HALF BANDWIDTH . . . . . . . . . . (MMK) = 12

********************************************************************************

CALCULATION OF WAVE FUNCTION WITH DIRECTION <--

NUMBER OF OPEN CHANNELS. . . . . . . . . (NOPEN) = 2

VALUE OF I-TH MOMENTUM . . . . . . . . . (I,QR ) = 1 0.1732E+01

VALUE OF I-TH MOMENTUM . . . . . . . . . (I,QR ) = 2 0.1000E+01

I M P A R T O F W R O N S K I A N

--------------------------------------

-2.00000 -.179667E-08

-.179667E-08 -2.00000

R E P A R T O F RR M A T R I X

------------------------------------

-.194759 -.591176E-03

-.591176E-03 -.485403E-01

I M P A R T O F RR M A T R I X

------------------------------------

-.124681 0.172716

0.172716 0.931470

R E P A R T O F TT M A T R I X

------------------------------------

0.600459 -.317926E-01

0.317926E-01 -.276469

I M P A R T O F TT M A T R I X

------------------------------------
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-.729781 0.150167

-.150167 0.134574E-01

Z R E P A R T O F F U N C T I O N S

- --------------------------------------

-25.0000 0.6664D+00 -.1165D+00 0.1531D+00 -.1120D+00 0.7601D-06 0.8680D-05 0.2445D-07 0.4751D-06

-19.3000 -.7209D+00 0.1045D+00 0.1325D+00 0.8070D-01 -.5930D-05 0.2169D-04 -.4531D-06 0.1458D-05

-13.6000 0.6802D+00 -.7978D-01 0.4223D-01 0.2431D+00 -.2701D-04 0.3867D-04 -.2948D-05 0.3128D-05

-7.9000 -.5802D+00 0.5077D-01 -.8674D-01 0.2719D+00 -.4534D-03 0.2169D-03 -.6446D-04 -.1879D-04

-3.6000 0.1490D-01 -.5461D-01 -.3718D-01 -.2780D+00 -.9231D-02 0.2399D-02 -.1300D-02 -.2460D-03

0.0000 -.8416D+00 0.7861D-01 0.9335D-02 0.4446D+00 0.5112D-01 -.1732D-01 -.2248D-02 -.6851D-02

3.6000 -.4115D+00 -.6691D-01 0.8351D-01 0.1351D+01 -.4633D-02 0.2046D-01 -.2638D-04 -.7678D-04

7.9000 -.6232D+00 0.3071D-01 0.6435D-01 -.5763D+00 -.3348D-03 -.1124D-02 0.5789D-04 0.3906D-03

13.6000 0.5769D+00 -.6829D-01 -.8088D-01 -.1298D+01 -.3777D-04 -.5932D-04 0.3999D-05 0.9632D-05

19.3000 -.4592D+00 0.1030D+00 -.1646D+00 -.1211D+01 -.1728D-05 0.5374D-04 0.2039D-06 -.3182D-05

25.0000 0.2716D+00 -.1259D+00 -.1631D+00 -.5370D+00 0.1506D-05 0.4406D-04 -.6915D-07 -.2284D-05

Z I M P A R T O F F U N C T I O N S

- --------------------------------------

-25.0000 0.2735D+00 0.1055D-01 -.2391D-01 -.2560D+00 0.6563D-05 -.4645D-05 0.3403D-06 -.2162D-06

-19.3000 -.7902D-02 -.5291D-01 0.8108D-01 -.2684D+00 0.7047D-05 0.5197D-05 0.4906D-06 0.4708D-06

-13.6000 -.2428D+00 0.8603D-01 0.1506D+00 -.1425D+00 0.2784D-04 0.5248D-04 0.2187D-05 0.5597D-05

-7.9000 0.4353D+00 -.1061D+00 0.1328D+00 0.8857D-01 -.1206D-03 0.5087D-03 -.4282D-04 0.9200D-04

-3.6000 0.7372D+00 -.1083D+00 -.1518D+00 0.1221D+00 0.1107D-02 -.5540D-02 -.1591D-02 -.3790D-03

0.0000 0.5262D+00 -.1487D+00 -.1846D-01 0.6235D+00 -.3506D-01 -.4285D-03 -.5965D-02 -.9390D-02

3.6000 -.5284D+00 -.8130D-01 0.1780D+00 0.1380D+01 0.1289D-01 0.1935D-01 -.2316D-02 0.6339D-04

7.9000 0.3095D+00 -.1298D+00 -.1677D+00 -.5138D+00 0.3710D-03 -.1388D-02 -.1535D-04 0.4310D-03

13.6000 -.5507D+00 0.1129D+00 -.1559D+00 -.1335D+01 0.6059D-05 -.8405D-04 -.3894D-06 0.1222D-04

19.3000 0.7698D+00 -.8224D-01 -.5905D-01 -.1316D+01 0.1620D-04 0.4979D-04 -.1052D-05 -.2867D-05

25.0000 -.8982D+00 0.3837D-01 0.6149D-01 -.6546D+00 0.5103D-05 0.4498D-04 -.2851D-06 -.2320D-05

********************************************************************************

CALCULATION OF WAVE FUNCTION WITH DIRECTION -->

NUMBER OF OPEN CHANNELS. . . . . . . . . (NOPEN) = 2

VALUE OF I-TH MOMENTUM . . . . . . . . . (I,QR ) = 1 0.1732E+01

VALUE OF I-TH MOMENTUM . . . . . . . . . (I,QR ) = 2 0.1000E+01

I M P A R T O F W R O N S K I A N

--------------------------------------

2.00000 -.179667E-08

-.179667E-08 2.00000

R E P A R T O F RR M A T R I X

------------------------------------

-.194759 0.591176E-03

0.591176E-03 -.485403E-01

I M P A R T O F RR M A T R I X

------------------------------------

-.124681 -.172716

-.172716 0.931470

R E P A R T O F TT M A T R I X

------------------------------------

0.600459 0.317926E-01

-.317926E-01 -.276469

I M P A R T O F TT M A T R I X

------------------------------------

-.729781 -.150167

0.150167 0.134574E-01

Z R E P A R T O F F U N C T I O N S

- --------------------------------------

-25.0000 0.2716D+00 0.1259D+00 0.1631D+00 -.5370D+00 0.1506D-05 -.4406D-04 0.6915D-07 -.2284D-05

-19.3000 -.4592D+00 -.1030D+00 0.1646D+00 -.1211D+01 -.1728D-05 -.5374D-04 -.2039D-06 -.3182D-05

-13.6000 0.5769D+00 0.6829D-01 0.8088D-01 -.1298D+01 -.3777D-04 0.5932D-04 -.3999D-05 0.9632D-05

-7.9000 -.6232D+00 -.3071D-01 -.6435D-01 -.5763D+00 -.3348D-03 0.1124D-02 -.5789D-04 0.3906D-03

-3.6000 -.4115D+00 0.6691D-01 -.8351D-01 0.1351D+01 -.4633D-02 -.2046D-01 0.2638D-04 -.7678D-04

0.0000 -.8416D+00 -.7861D-01 -.9335D-02 0.4446D+00 0.5112D-01 0.1732D-01 0.2248D-02 -.6851D-02

3.6000 0.1490D-01 0.5461D-01 0.3718D-01 -.2780D+00 -.9231D-02 -.2399D-02 0.1300D-02 -.2460D-03

7.9000 -.5802D+00 -.5077D-01 0.8674D-01 0.2719D+00 -.4534D-03 -.2169D-03 0.6446D-04 -.1879D-04

13.6000 0.6802D+00 0.7978D-01 -.4223D-01 0.2431D+00 -.2701D-04 -.3867D-04 0.2948D-05 0.3128D-05

19.3000 -.7209D+00 -.1045D+00 -.1325D+00 0.8070D-01 -.5930D-05 -.2169D-04 0.4531D-06 0.1458D-05

25.0000 0.6664D+00 0.1165D+00 -.1531D+00 -.1120D+00 0.7601D-06 -.8680D-05 -.2445D-07 0.4751D-06

Z I M P A R T O F F U N C T I O N S

- --------------------------------------

-25.0000 -.8982D+00 -.3837D-01 -.6149D-01 -.6546D+00 0.5103D-05 -.4498D-04 0.2851D-06 -.2320D-05
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-19.3000 0.7698D+00 0.8224D-01 0.5905D-01 -.1316D+01 0.1620D-04 -.4979D-04 0.1052D-05 -.2867D-05

-13.6000 -.5507D+00 -.1129D+00 0.1559D+00 -.1335D+01 0.6059D-05 0.8405D-04 0.3894D-06 0.1222D-04

-7.9000 0.3095D+00 0.1298D+00 0.1677D+00 -.5138D+00 0.3710D-03 0.1388D-02 0.1535D-04 0.4310D-03

-3.6000 -.5284D+00 0.8130D-01 -.1780D+00 0.1380D+01 0.1289D-01 -.1935D-01 0.2316D-02 0.6339D-04

0.0000 0.5262D+00 0.1487D+00 0.1846D-01 0.6235D+00 -.3506D-01 0.4285D-03 0.5965D-02 -.9390D-02

3.6000 0.7372D+00 0.1083D+00 0.1518D+00 0.1221D+00 0.1107D-02 0.5540D-02 0.1591D-02 -.3790D-03

7.9000 0.4353D+00 0.1061D+00 -.1328D+00 0.8857D-01 -.1206D-03 -.5087D-03 0.4282D-04 0.9200D-04

13.6000 -.2428D+00 -.8603D-01 -.1506D+00 -.1425D+00 0.2784D-04 -.5248D-04 -.2187D-05 0.5597D-05

19.3000 -.7902D-02 0.5291D-01 -.8108D-01 -.2684D+00 0.7047D-05 -.5197D-05 -.4906D-06 0.4708D-06

25.0000 0.2735D+00 -.1055D-01 0.2391D-01 -.2560D+00 0.6563D-05 0.4645D-05 -.3403D-06 -.2162D-06

********************************************************************************

C H E C K P R O P E R T I E S

----------------------------------------

|RR_<-|^2 + |TT_<-|^2

-------------------------

1.00000 0.353866E-09

0.353866E-09 1.00000

M A X I M A L A B S O L U T E E R R O R =0.457613E-09

|RR_->|^2 + |TT_->|^2

-------------------------

1.00000 -.353867E-09

-.353867E-09 1.00000

M A X I M A L A B S O L U T E E R R O R =0.457614E-09

R E P A R T: TT_->^1 * RR_<- + RR_->^1 * TT_<-

----------------------------------------------------

0.179243E-09 0.475463E-09

-.475400E-09 0.169614E-09

I M P A R T: TT_->^1 * RR_<- + RR_->^1 * TT_<-

----------------------------------------------------

0.367987E-13 -.198433E-09

-.198434E-09 -.320299E-13

M A X I M A L A B S O L U T E E R R O R =0.515210E-09

R E P A R T: RR_<-^T - RR_<-

----------------------------------

0.00000 -.128480E-09

0.128480E-09 0.00000

I M P A R T: RR_<-^T - RR_<-

----------------------------------

0.00000 0.472197E-09

-.472197E-09 0.00000

M A X I M A L A B S O L U T E E R R O R =0.489364E-09

R E P A R T: RR_->^T - RR_->

----------------------------------

0.00000 0.128480E-09

-.128480E-09 0.00000

I M P A R T: RR_->^T - RR_->

----------------------------------

0.00000 -.472197E-09

0.472197E-09 0.00000

M A X I M A L A B S O L U T E E R R O R =0.489364E-09

R E P A R T: TT_->^T - TT_<-

----------------------------------

0.258571E-12 -.318056E-11

-.309714E-11 -.360267E-13

I M P A R T: TT_->^T - TT_<-

----------------------------------

0.251799E-12 0.511789E-09

0.511769E-09 -.207664E-13

M A X I M A L A B S O L U T E E R R O R =0.511799E-09

********************************************************************************
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