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Abstract. The algorithm implemented as FORTRAN 77 program TIME6T
which calculates, with controlled accuracy, the wave-packet evolution of the one-
dimensional time-dependent Schrödinger equation on a finite time interval is pre-
sented. Symmetric implicit operator-difference multi-layer schemes based on de-
composition of the evolution operator up to the sixth-order of accuracy with re-
spect to the time step are utilized. This decomposition is obtained via the explicit
truncated Magnus expansion and Padé approximations. The additional gauge
transformations which provide the symmetry properties needed for discretization,
within the framework of the high-order finite-element method, of the evolutionary
boundary problem on a finite spatial interval with the first and/or second type
boundary conditions are applied. Solution of time-dependent Schrödinger equa-
tion for the Pöschl-Teller two-center problem is used to illustrate an efficiency
of the proposed schemes by comparing the computational error and execution
time with those obtained by conventional symmetric splitting exponential opera-
tor techniques using the Padé approximations and fast Fourier transform method.
The program is applied to the benchmark calculations of the exactly solvable
model of a one-dimensional time-dependent oscillator.
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.1 Introduction

Solutions of the time-dependent Schrödinger equation (TSDE) with a required accu-
racy are needed for the control problems of the finite-dimensional quantum systems
[1] and molecular processes [2], the decay problem in nuclear physics [3], the ioniza-
tion problems of atomic and molecular physics in pulse fields [4, 5, 6, 7, 8], impact
electron-atom and electron-molecule ionization [9, 10] and others. For solving the
TDSE in a finite-dimensional spatial domain [11, 12], it is common to seek a wave-
packet solution expanded over an appropriate angular basis and then apply a certain
discrete numerical scheme to the resulting system of the ordinary second-order dif-
ferential hyperradial equations [13, 14] (e.g., finite-difference [15, 16, 17, 18], spline
[19, 20] or finite-element [21, 22] method).

There are two main requirements for numerical methods that are used in practice
for numerical solution of the Cauchy problem for multidimentional time-independent
Schrödinger equation. More specifically, such methods should be stable and guar-
antee a high accuracy of discretization in the time-dependent and spacial variables.
In that respect, splitting methods have important advantages, namely, unitarity
of the evolution operator preserves the norm of a wave packet and guarantees
preservation of probability and unconditional stability of the method [23]. This
approach has been used in Refs. [24, 25, 26] to construct nonsymmetric evolution-
ary schemes on the basis of the Magnus expansion of unitary evolution operator
using the unitary [M/M ] Padé approximation up to the sixth-order of accuracy
in the time-dependent variable. This method has been successfully applied to
one-dimensional and three-dimensional time-independent Schrödinger equation, for
example [3, 6, 16]. Nevertheless, this scheme when used for numerical solution of
time-independent Schrödinger equation leads to systems of algebraic equations with
nonsymmetric complex matrices of large dimensions which complicates achievement
of a given accuracy of the required approximate solution.

Hence the construction of more economical and stable symmetric schemes is an
important and challenging problem [27, 28, 29, 30]. For its solution one could use
an approximation of a wave packet in angular variables by the Kantorovich method
and finite element method (FEM) in the radial variable [31, 32]. Efficiency of such
combination for the described class of problems has been proven in [21, 22, 33, 34,
35].

In paper [13], a more efficient approach has been developed for construction
of operator-difference schemes with symmetric operators on a basis of the explicit
Magnus expansion, i.e., expansion of logarithm of evolution operator into Taylor
series over a step of time-dependent variable on a uniform mesh [36, 37]. In this ap-
proach, coefficients of evolution operator expansion are calculated in explicit form
from a system of recurrence relations. Using partial splitting of evolution opera-
tor with the help of gauge transformation dependent on the operators, multi-layer
operator-difference schemes with symmetric operators up to the fourth-order of ac-
curacy in step of time-dependent variable have been constructed for Hamiltonian
of a general type, as well as scheme up to the sixth-order of accuracy under the
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condition of equality to zero of a commutator of the first and second partial deriva-
tives of the Hamiltonian in time-dependent variable. This circumstance allows us
to use this approach for solving a wide range of evolutionary boundary problems
with a required accuracy.

The main advantage of the Magnus proposal is that very often the truncated
series still share important qualitative properties with the exact solution at variance
with other conventional methods of perturbation theory. For instance, in classical
mechanics the symplectic character of the time evolution is preserved at every order
of approximation. Similarly, the unitary character of the time evolution operator
in quantum mechanics is also preserved [38].

Another advantage of the symmetric operator-difference schemes considered is
that the number of exponential operators is considerably less than in similar conven-
tional symmetric split-operator schemes (without commuting operators and with
commuting operators) with the same accuracy [39, 40, 41, 42, 43, 44, 45, 46]. For
example, the sixth-order symmetric split-operator scheme [44, 45, 46] with a min-
imal number of exponential operators has fifteen exponential operators including
eight exponential operators with Laplacian, while the scheme considered has only
three exponential operators. In the framework of the unitary [M/M ] Padé ap-
proximation, the sixth-order scheme considered contains only five layers, but the
symmetric split-operator scheme has 24 layers! Therefore for the high-order sym-
metric split-operator schemes one usually uses the fast Fourier transform techniques
for the exponential of the Laplacian on only uniform mesh in the spatial variable.

However, there are sets of evolutionary boundary problems in complex domains
and effective potentials with practical applications for solving of which one can
use the nonuniform mesh too, e.g., [47]. From this point of view the FEM and
variational methods will play a fundamental role in elucidating dynamical aspects of
both basic quantum mechanics and quantum devices. The FEM is especially useful
in this respect due to its adaptability and flexibility in using the nonuniform meshes
[48]. The application of the FEM in designing and modeling a new generation of
quantum devices will define the field of quantum wave function engineering [49].

The main purpose of this paper is to present the algorithm for solving one-
dimensional TDSE using the second-, fourth- and sixth-order approximations in
the time-dependent variable and achieving the desired level of accuracy for a suf-
ficiently smooth solution in spatial variable approximated on a nonuniform finite
interval by means of the high-order FEM. This work presents the next step in
creating a set of programs for numerical solutions of the initial-boundary problem
for multi-dimensional equations of the Schrödinger type with a required accuracy
started in [24, 25]. It is based on our set of programs which implement both the
Kantorovich method and FEM [21, 22, 34, 35]. In this paper we present the al-
gorithm implemented as the FORTRAN 77 program TIME6T for calculating an
approximate solution of the TDSE with controllable high accuracy and analysis of
its efficacy in comparison with conventional calculation schemes based on symmet-
ric splitting exponential operator techniques using the Padé approximations and
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fast Fourier transform method.
The paper is organized as follows. In Section 2 we give a brief overview of the

problem. In section 3 the general formulation and the high-order operator-difference
multi-layer calculation schemes in time variable are presented. An efficiency of
computational schemes and comparison with conventional ones are presented in
Section 4. Test deck is discussed in Section 5.

.2 Statement of the problem

Consider the Cauchy problem for the time-dependent Schrödinger equation on time
interval t ∈ [t0, T ]

ı
∂ψ(x, t)

∂t
= H(x, t)ψ(x, t), ψ(x, t0) = ψ0(x), (1)

H(x, t) = −1
2

∂2

∂x2
+ f(x, t).

We require the solution ψ(x, t) to be continuous, have the general first derivatives
that are square integrable and belonging to the Sobolev space W1

2 ([xmin, xmax] ⊗
[t0, T ]). Also we suppose that function f(x, t) is of sufficiently high smoothness
in spatial variable x, which has continuous partial derivatives up to the 2M-order
(M = 1, 2, 3 is the order of approximation) in time variable t.

The first and second type boundary conditions and normalization condition in
spatial variable x on finite interval [xmin, xmax] have the form

∂ψ(x, t)

∂x

∣

∣

∣

∣

x=xmin

= 0, or ψ(xmin, t) = 0, (2)

∂ψ(x, t)

∂x

∣

∣

∣

∣

x=xmax

= 0, or ψ(xmax, t) = 0, (3)

‖ψ(x, t)‖2 =
∫ xmax

xmin

|ψ(x, t)|2dx = 1, t ∈ [t0, T ]. (4)

.3 High-order operator-difference multi-layer calculation

schemes in time variable

Eq. (1) can be rewritten in terms of unitary evolution operator U(t, t0) carrying
the initial state ψ0(x) to the solution ψ(x, t):

ı
∂U(t, t0)

∂t
= H(x, t)U(t, t0), U(t, t) = 1, (5)

which is considered on the uniform grid Ωτ [t0, T ] = {t0, tk+1 = tk + τ, tK = T} with
time step τ on the time interval [t0, T ]. Unitary operator U(tk+1, tk) carrying the
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solution ψ(x, tk) at t = tk (k = 0, . . . , K − 1) to the ψ(x, tk+1) at t = tk+1 can be
expressed in the form [13, 24, 25]

ψ(x, tk+1) = U(tk+1, tk)ψ(x, tk), U(tk+1, tk) = exp (−ıτAk) , (6)

Here the effective time-independent Hamiltonian is related to the original one
H(x, t) by the Magnus expansion [36, 37],

Ak =
1

τ

∫ tk+1

tk

dt1H(x, t1) +
ı

2τ

∫ tk+1

tk

dt1

∫ t1

tk

dt2[H(x, t2), H(x, t1)] + . . . ,(7)

where [ , ] is the operator commutator.
To solve the Cauchy problem (1)–(4) numerically at each step by transforming

ψ(x, tk) into ψ(x, tk+1), we use the the explicit truncated Magnus expansion (7) of
the evolution operator U(tk+1, tk) up to order O(τ 2M+1)

U(tk+1, tk) = exp
(

−ıτA(M)
k

)

+O(τ 2M+1). (8)

Now, we would like to express the truncation A
(M)
k in terms of H(x, t) and its time

partial derivatives. Substituting the Taylor expansion of H(x, t) in the vicinity of
tc = tk + τ/2

H(x, t) =
2M−1
∑

j=0

(t− tc)j
j!

∂jtH(x, tc) +O
(

τ 2M
)

(9)

into the integrals, one can derive an analytical expression of the operators A
(1)
k ,

A
(2)
k , . . . , A

(M)
k by means of the symbolic algorithm GATEO (Generation of Ap-

proximations of the Time-Evolution Operator) [28]. To show the complexity of
calculations, we present the first three approximations of the exponential (8) for

the final effective Hamiltonians A
(M)
k in the form A

(M)
k = Â

(M)
k + ıĂ

(M)
k

Â
(1)
k = H,

Ă
(1)
k = 0,

Â
(2)
k = Â

(1)
k +

τ 2

24

..
H, (10)

Ă
(2)
k = Ă

(1)
k +

τ 2

12
[H,
.
H ],

Â
(3)
k = Â

(2)
k +

τ 4

1920

....
H − τ 4

720
[H, [H,

..
H ]]− τ 4

240
[
.
H, [

.
H,H ]],

Ă
(3)
k = Ă

(2)
k −

τ 4

480
[
...
H ,H ] +

τ 4

480
[
..
H,
.
H ] +

τ 4

720
[H, [H, [H,

.
H]]],

where H ≡ H(x, tc),
.
H≡ ∂tH(x, t)|t=tc

, . . .
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Table 1: The real and imaginary parts of the coefficients α
(M)
ζ , ζ = 1, . . . ,M ,

M = 1, 2, 3.

M ζ Reα
(M)
ζ Imα

(M)
ζ

1 1 +0 −1
2 1 −1/

√
3 ≈ −0.577350269189625 −1

2 2 +1/
√
3 ≈ +0.577350269189625 −1

3 1 −0.814799554248922 −0.854056730651663
3 2 +0.0 −1.291886538696673
3 3 +0.814799554248922 −0.854056730651663

After the application of the known generalized [M/M ] Padé approximation [50]
to the exponential operator (8), the scheme (6) yields to the following implicit
operator-difference [13, 24, 25]

ψ0
k = ψ(x, tk),
(

I +
τα

(M)
ζ A

(M)
k

2M

)

ψ
ζ/M
k =

(

I +
τα

(M)
ζ A

(M)
k

2M

)

ψ
(ζ−1)/M
k , ζ = 1, . . . ,M, (11)

ψ(x, tk+1) = ψ1
k,

where I is the unit operator. The coefficients, α
(M)
ζ (ζ = 1, . . . ,M), stand for the

roots of the polynomial equation 1F1(−M,−2M, 2Mı/α) = 0, where 1F1(a, b, x) is
the confluent hypergeometric function and the overline indicates the complex con-
jugate. Table 1 lists the values of the coefficients α

(M)
ζ for M = 1, 2, 3.

Note, that this approach preserves the unitarity of the approximate evolution
operator, since the truncated A

(M)
k is always self-adjoint. Imα

(M)
ζ 6= 0 yields that

all the functions ψ
ζ/M
k have an equal norm, ‖ψ0

k‖ = ‖ψ
1/M
k ‖ = · · · = ‖ψ1

k‖.
The scheme (11) has two disadvantages. Firstly, this scheme contains the non-

symmetric operator Ă
(M)
k atM ≥ 2. Secondly, this scheme contains the third-order

differential operator by the spatial variable for implementation at M = 3, and
requires more difficult and long calculations.

To generate the schemes with a symmetric operator Ã
(M)
k (also free of the dif-

ferential operator by the spatial variable with third-order at M = 3), we apply a

gauge transformation ψ̃ = exp
(

ıS
(M)
k

)

ψ, that yields a new operator

Ã
(M)
k = exp

(

ıS
(M)
k

)

A
(M)
k exp

(

−ıS(M)
k

)

. (12)

The unknown symmetric operator S
(M)
k is found from the additional condition [13]:

exp
(

ıS
(M)
k

)

Ă
(M)
k exp

(

−ıS(M)
k

)

= O(τ 2M), (13)
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in accordance with the well-known formula

exp(A)B exp(−A) =
∑

j=0

1

j!

{

Aj , B
}

, (14)

with {A0, B} = B and {Aj+1, B} = [A, {Aj, B}]. We seek for S
(M)
k in the form of

a power series with respect to τ

S
(M)
k =

2M−1
∑

j=0

τ jS(j). (15)

Substituting the expansion of S
(M)
k into condition (13) and equating the terms with

the same powers of τ in (14), we obtain a set of algebraic (or operator) recurrence
relations for evaluating the unknown operator coefficients S(j) with the initial con-
dition S(0) = 0. The first three approximations of the operators (12) and (15) have
the form

Ã
(M)
k = − ∂

∂x
f
(M)
1 (x, tc)

∂

∂x
+ f

(M)
2 (x, tc),

S
(M)
k = − ∂

∂x
g
(M)
1 (x, tc)

∂

∂x
+ g

(M)
2 (x, tc). (16)

The functions f
(M)
1 (x, tc), f

(M)
2 (x, tc) and g

(M)
1 (x, tc), g

(M)
2 (x, tc) are defined as fol-

lows

f
(1)
1 (x, tc) = f

(2)
1 (x, tc) =

1

2
, f

(3)
1 (x, tc) =

1

2
+

τ 4

720

∂2
..
f

∂x2
,

f
(1)
2 (x, tc) = f(x, tc), f

(2)
2 (x, tc) = f(x, tc) +

τ 2

24

..
f ,

f
(3)
2 (x, tc) = f(x, tc) +

τ 2

24

..
f +

τ 4

1920

....
f +

τ 4

1440

(

∂
.
f

∂x

)2

− τ 4

720

∂
..
f

∂x

∂f

∂x
− τ 4

2880

∂4
..
f

∂x4
, (17)

g
(1)
1 (x, tc) = g

(2)
1 (x, tc) = 0, g

(3)
1 (x, tc) = −

τ 4

720

∂2

∂x2

.
f,

g
(1)
2 (x, tc) = 0, g

(2)
2 (x, tc) =

τ 2

12

.
f,

g
(3)
2 (x, tc) =

τ 2

12

.
f +

τ 4

480

...
f +

τ 4

720

∂
.
f

∂x

∂f

∂x
+

τ 4

2880

∂4
.
f

∂x4
,

where f ≡ f(x, tc),
.
f≡ ∂tf(x, t)|t=tc

, . . . and tc = tk + τ/2.
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As the result, we obtain the following symmetric implicit operator-difference
scheme:

ψ̃0
k = exp

(

ıS
(M)
k

)

ψ(x, tk),
(

I +
τα

(M)
ζ Ã

(M)
k

2M

)

ψ̃
ζ/M
k =

(

I +
τα

(M)
ζ Ã

(M)
k

2M

)

ψ̃
(ζ−1)/M
k , ζ = 1, . . . ,M, (18)

ψ(x, tk+1) = exp
(

−ıS(M)
k

)

ψ̃1
k.

Note that, in the case of M = 1, this scheme corresponds to well-known Crank-
Nicolson scheme [51]. One can see, that for M = 3, operator S

(M)
k in a general

case contains the second-order differential operator ∂2/∂x2. Hence in this case

we use again the generalized [L/L] Padé approximations for exp
(

±ıS(M)
k

)

. This

approximation has the order of O(τ 4L+2), while 4L+2 ≥ 2M , so that we can choose
L = 1 at M = 3. In this case we lead to the following implicit operator-difference
scheme [13]:

ψ0
k = ψ(x, tk),
(

I −
α(1)
η S

(3)
k

2

)

ψ1
k =

(

I − α
(1)
1 S

(3)
k

2

)

ψ0
k,

ψ̃0
k = ψ1

k,
(

I +
τα

(M)
ζ A

(M)
k

2M

)

ψ̃
ζ/M
k =

(

I +
τα

(M)
ζ A

(M)
k

2M

)

ψ̃
(ζ−1)/M
k , ζ = 1, . . . ,M, (19)

ψ0
k = ψ̃1

k,
(

I +
α
(1)
1 S

(3)
k

2

)

ψ1
k =

(

I +
α
(1)
1 S

(3)
k

2

)

ψ0
k,

ψ(x, tk+1) = ψ1
k.

Let us present operator H(t) ≡ H(x, t) as

H(t) = H0 + g(t), (20)

where H0 is positively defined linear self-adjoint operator that is time-indepen-
dent and satisfying condition ‖ψ‖ ≤ ‖H0ψ‖, and g(t) is a function with bounded
derivatives in time-dependent variable up to the order 2M :

∥

∥

∥

∥

∂m

∂tm
g(t)

∥

∥

∥

∥

≤ c1, 0 ≤ m ≤ 2M. (21)

Suppose further that on each time-dependent interval ti ∈ [tk, tk+1], i = 1, . . . , s +
1 ≤ 2M the following estimates are valid at 0 ≤ m ≤ 2M :

∥

∥

∥

∥

(adH(ts+1)) · · · (adH(t2))
∂mg(t1)

∂tm
ψ

∥

∥

∥

∥

≤ c2‖Hs/2
0 ψ‖, (22)

τ‖H1/2
0 ‖ < c3, τ < 2Mµ||A(M)

k (t)||−1. (23)
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Here ψ belongs to Sobolev space Ws
2([xmin, xmax] ⊗ [t0, T ]); constants c1, c2, c3 do

not depend on time-dependent step τ , and µ ≈ 0.28 is a root of transcendental
equation µ exp(µ+ 1) = 1.

Theorem. [13] Suppose that τA
(M)
k , the explicit Magnus expansion of linear

self-adjoint operator H(t) = H0 + g(t) of order O(τ 2M+1), M = 1, 2, 3, at the
moment of time tc = tk+τ/2 on uniform grid Ωτ [t0, T ] = {t0, tk+1 = tk+τ, tK = T},
satisfies conditions (21), (22), (23) at fixed time-dependent step τ . Then errors
of numerical solutions ψ(tk+1) ≡ ψ(x, tk+1) at the moment of time t = tk+1 for
symmetric operator-difference multi-layer schemes (18) and (19) are bounded with
estimate

ǫM = ‖ψext(tk+1)− ψ(tk+1)‖ ≤ Cτ 2M (tk+1 − t0)‖H2M+1
0 ψ0‖, (24)

where ψext(tk+1) is the exact solution of evolutionary equation and C is some con-
stant independent on τ and M .

Proof is straightforward following the schemes of proof in accordance with
[26, 52].

From estimate (24) it follows that the symmetric operator-difference multi-layer
schemes with step τ = τM < 1 at M = 1, 2, 3 have almost the same errors ǫM , if
the following conditions are fulfilled

τ1 = τ 33 , τ2 =
√

τ 33 . (25)

In each transition from ψ(tk) to ψ(tk+1) we get the 1, 2, 5-layered schemes at M =
1, 2, 3, i.e., atM = 2, 3 calculation times on the same grids are about 2 and 5 times
longer than at M = 1, respectively. Nevertheless, according to (25) in order to
reach the same accuracy when selecting time-dependent steps for a scheme with
M = 1, 2 the total computation time is 1/(5τ 23 ) and 2/(5

√
τ3) times longer than at

M = 3, respectively. For example, if τ3 = 0.01, then the total computation time
using schemes M = 1 and M = 2 is 2000 and 4 times longer than using scheme
with M = 3, respectively. This result following from the theorem is confirmed by
numerical experiments performed in [3, 13] and in the test calculations of Section
5 of the present paper.

.4 Efficiency of the computational schemes and comparison

with conventional ones

Let us consider the TDSE (1)–(4) on the finite time interval t ∈ [t0, T ] for the two-
center problem with Pöschl-Teller potentials [8] similar to an ionization problem
[7]. We choose a special case of a resting well, A0 < 0, and a barrier, A1 > 0 (or a
well A1 < 0), that moved with velocity v with respect to the resting well:

ı
∂ψ(x, t)

∂t
= H(x, t)ψ(x, t),

H(x, t) = −1
2

∂2

∂x2
+

A0

cosh2(x)
+

A1

cosh2(x− x0(t))
, (26)
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Figure 1: a) Eigenenergies En(t) of the instant Hamiltonian in dependence of the time as

a parameter t. b) The bound state probabilities p1(t), p2(t) and the ionization probability

pc(t) vs the time t. Here v = 1/2, x0(t0) = vt0 = −15, t0 = −30.

where H(x, t) is an instant Hamiltonian and x0(t) = vt is an position of the center
of moving barrier. For numerical calculation with required accuracy the initial
boundary problem in a spatial axis is reduced to a sufficiently large finite interval
x ∈ (xmin, xmax), with boundary and normalization conditions

ψ(xmin, t) = 0, ψ(xmax, t) = 0, ‖ψ(x, t)‖2 =
∫ xmax

xmin

|ψ(x, t)|2dx = 1. (27)

We consider an example of the evolution of the wave packet in the time-interval
t ∈ [t0, T ], induced by the moving barrier (A1 = 15/8) with velocity v, with respect
to the resting well (A0 = −15/8) supporting two bound states n0 = 2 with energies
E1(t = t0) ∼= EW

1 = −9/8 = −1.125 and E2(t = t0) ∼= EW
2 = −1/8 = −0.125. At

v > 0 we choose the initial time t0 and the final time T from the following values
of initial x0(t0) = vt0 = −15 and final x0(T ) = vT = 15 positions of the center
of moving barrier to preserve with required accuracy the discrete spectrum states
supported by the resting well in both the initial time t0 and the final time T . So, we
start from the initial state that corresponds with required accuracy to the ground
state supported by the resting well

ψ(x, t0) ∼= ψW
1 (x) = N1(cosh x)

−(
√
1−8A0−1)/2. (28)

Note that in the case A1 + A0 = 0 at t = 0 the potential of the problem (26) is
equal to zero on the whole axis and the instant Hamiltonian H(x, t) at t = 0 has
pure continuous spectrum that provide full ionization of the considered quantum
system and capture to the discrete spectrum states during further evolution.

Calculations were performed on the spatial variable interval x ∈ (−512, 512)
that is sufficient to avoid reflection from its boundaries on considered time interval
t ∈ [t0, T ]. The wave functions ψn(x; t) of discrete spectrum En < 0, and ψν

E(x; t) ≡
ψ
←
→
E (x; t) of continuous spectrum E ≥ 0 of the instant Hamiltonian H(x, t) from (26)
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Figure 2: a) Real (solid line), image (dashed line) parts of the wave function and b)

the distribution of ionization probability pE(t) vs the time t for fixed value of velocity

v = 1/2 and initial position of the moving barrier x0(t0) = vt0 = −15, t0 = −30.

dependent on t as a parameter are calculated in spatial interval x ∈ (xmin, xmax)
with the corresponding homogeneous third-type boundary conditions by modified
[33] version of KANTBP program [34] using appropriate asymptotes of solutions.
The subscript ν equals to → or ← that corresponds to the positive or negative
directions of the final momentum q = ±

√
2E, respectively. After attaching the

asymptotes on whole axis x ∈ (−∞,+∞) these functions satisfy the conventional
orthogonality and completeness relations

∫ +∞

−∞
dx(ψν′

E (x; t))
∗ψν

E′(x; t) = (2π)δ(E −E ′)δνν′ , (29)

∫ +∞

−∞
dx(ψν

E(x; t))
∗ψn(x; t) = 0, (30)

n0
∑

n=1

ψn(x; t)ψn(x
′; t) +

∑

ν=→
←

∫ +∞

0

dE(ψν
E(x; t))

∗ψν
E(x

′; t) = δ(x− x′). (31)

Dependence of eigenenergies En < 0 of the instant Hamiltonian on time pa-
rameter t is shown in Fig. 1a. One can see that in a vicinity of time value t = 0
the Hamiltonian has only one eigenvalue E1 < 0 and at time t = 0 it has only
continuous spectrum.
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Figure 3: The probabilities p1(T ), p2(T ) of ground and first excited states, and ionization

probability pc(T ) vs velocity v for time T = 15/v and initial time t0 = −15/v when the

position of the center of barrier is equal x0(T ) = 15 and x0(t0) = −15, correspondingly.

The probabilities pn(t) and pc(t) of transition to the bound and continuum
states and its distribution pE(t) vs energy E ≥ 0 of continuum spectrum in the
above capture and ionization processes are calculated by formulas

pn(t) = |tn0(t)|2, tn(t) =

∫ xmax

xmin

dx(ψn(x, t))
∗ψ(x, t) (32)

pE(t) =
|t→E (t)|2 + |t←E (t)|2

2π
, t

→
←
E (t) =

∫ xmax

xmin

dx(ψ
→
←
E (x, t))∗ψ(x, t), (33)

and as follows from (31), at Emax ≫ 1 they satisfy, with required accuracy, the
condition

n0
∑

n=1

pn(t) + pc(t) = 1, pc(t) =

∫ Emax

0

pE(t)dE. (34)

As it is mentioned above, at time moment t = 0 the effective potential is equal
zero, and eigenfunctions of the instant Hamiltonian correspond to continuous spec-
trum wave functions. After that the effective potential becomes again nonzero and
processes of captures to the exited and ground states may occur which is shown
by evolution of probabilities pE(t) and pc(t) in Figs. 1b and 2. In Fig. 2 it is
shown that at t ≥ 1 the maxima of energy distribution pE∼1 ∼ 0.5 correspond to
the forward and backward ionization waves with similar frequencies moved to left
and right. The maxima of pc(t) at t ∼ 4 on Fig. 1b correspond to the maxima of
pE∼0.01 ∼ 1 at frame t = 4 on Fig. 2b and coincide with ionization and capture
processes. With increasing velocity the probability densities of the excited states
at large velocity tend to zero (see Fig. 3). The wave function and the distribution
of ionization probability pE(t) for some values of velocity are shown in Fig. 4. As
it is seen from Fig. 4 with increasing v the forward ionization waves dominate and
their energy increase.
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Figure 4: a) Real (solid line), image (dashed line) parts of the wave function and b)

the distribution of ionization probability pE(T ) by energy E for fixed values of velocity

v = 0.1, 0.5, 1, 2 for values of parameters given in Fig. 3.

The reason why we have chosen this problem is related to the fact that it has
suitable properties to demonstrate the efficiency of different computational unitary
schemes mentioned in introduction during an evolution of initial state in strongly
reformatted effective barrier potential that leads to excitation, ionization of the
states and capture to the states considered above.

In framework for the symmetric split-step exponential methods we have used
the following approximations of the unitary evolution operator [46]:

U(tk+1, tk) ≡ U(tk + τ, tk) = S2M+1(tk+1, tk) +O(τ 2M+1), (35)

where M = 1, 2, 3 and the symmetric unitary operators S3, S5 and S7 have the
forms

S3(tk+1, tk) = exp

(

ı
tk+1 − tk

2

1

2

∂2

∂x2

)

exp

(

−ı
∫ tk+1

tk

f(x, s)ds

)

× exp

(

ı
tk+1 − tk

2

1

2

∂2

∂x2

)

, (36)

S5(tk+1, tk) =
3
∏

j=1

S3(aj , aj+1), S7(tk+1, tk) =
7
∏

j=1

S3(bj , bj+1),
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Table 2: Comparison of the discrepancy functions Er(t = 20, 1) for the approxima-

tions of the order O(τ 3), O(τ 5) and O(τ 7) with the time step τ = τ 33 , τ =
√

τ 33 and

τ = τ3 = 0.0625, respectively.

O(τ 3) O(τ 5) O(τ 7)

Er(t, 1) CPU,s Er(t, 1) CPU,s Er(t, 1) CPU,s

Magnus 0.2521(-6) 3841 0.2296(-7) 105 0.1262(-8) 69

SSOS+Padé 0.6765(-7) 4355 0.3210(-6) 327 0.2246(-6) 208

SSOS+FFT 0.2776(-3) 1475 0.3104(-6) 62 0.2225(-6) 33

depending on the set of parameters

a1 = tk, a2 = a1 + ωτ, a3 = a2 + (1− 2ω)τ, a4 = tk+1,

b1 = tk, b2 = b1 + ω3τ, b3 = b2 + ω2τ, b4 = b3 + ω1τ, (37)

b5 = b4 + ω0τ, b6 = b5 + ω1τ, b7 = b6 + ω2τ, b8 = tk+1,

ω0 = 1− 2(ω1 + ω2 + ω3),

with the following numerical values given with the double precision accuracy:

ω = 1

2− 3
√
2
, ω1 = −1.177679984178871, (38)

ω2 = 0.235573213359358, ω3 = 0.784513610477557.

The unitary operator S3 has three exponential operators including two expo-
nential operators with Laplacian, S5 has seven exponential operators including four
exponential operators with Laplacian, S7 has fifteen exponential operators includ-
ing eight exponential operators with Laplacian. According to [44, 45], the unitary
operators S3, S5 and S7 have a minimal number of exponential operators for the
indicated leading errors. We have considered two different expansions of the expo-
nential of the Laplacian.

For the first one, we have used generalized [M/M ] Padé approximation [50]
(denoted here by SSOT+Padé). In this case the second-order scheme has two
layers, the fourth-order scheme has eight layers, and the sixth-order scheme has
24 layers. For the second one, we have used the straightforward and inverse fast
Fourier transform (FFT) techniques for the exponential of the Laplacian, using a
uniform mesh (the number of grids is a power of 2) for the spatial variable (denoted
here by SSOT+FFT).

Calculation by all three schemes were performed on the spatial variable inter-
val x ∈ (−512, 512) that was sufficient to avoid reflection from its boundaries on
considered time interval t ∈ [−20, 20]. For the schemes with the Padè approxima-
tion, we have used the nonuniform finite-element grid Ω̂x[xmin, xmax] = {xmin =
−512, (256),−128, (512),−32, (512), 32, (512), 128, (256), xmax = 512}, where the
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Table 3: The same results Table 2, but only for Magnus schemes with the time step

τ = τ3 = 0.125.

O(τ 3) O(τ 5) O(τ 7)

Er(t, 1) CPU,s Er(t, 1) CPU,s Er(t, 1) CPU,s

Magnus 0.1613(-4) 456 0.1450(-5) 37 0.3635(-6) 34

number in the brackets denotes the number of finite-element in the intervals. Be-
tween each two nodes we have applied the Lagrange interpolation polynomials up
to the order p = 8. For FFT, the uniform spatial grid Ω̂x[xmin, xmax] = {xmin =
−512, (2048), xmax = 512} is used.

In Table 2 we present the discrepancy functions of the numerical wave packet as
a function of the computation time in CPU seconds for various orders of accuracy in
the time increments. The Table shows that the fourth- and sixth-order SSOS+Padé
and SSOS+FFT schemes give similar errors, nevertheless the SSOS+Padé schemes
requires much more CPU time. The fourth- and sixth-order Magnus schemes give
the best results, but require about twice CPU time than SSOT+FFT. We observed
that error of the second-order SSOS+Padé scheme is smaller than of the second-
order Magnus scheme. Also the second-order SSOS+FFT scheme gives the low
accuracy, because a norm of the wave packet at the moment t = 20 equals 0.999
(i.e., correct only up to 3 digits after the decimal point). Note that both calcula-
tion schemes with Padé approximations saved the norm of the wave packet during
calculation process with the accuracy that is not less than 10−13.

In Table 3 we show the same results for Magnus schemes with doubled time
step. In this case the discrepancy function of the sixth-order Magnus scheme has
the same order as SSOS+Padé and SSOS+FFT schemes, and calculation CPU
times are similar to the SSOS+FFT’s ones. Analysis of these results show that
Magnus’s scheme with optimal choice of nonuniform mesh has the efficiency com-
parable with SSOT+FFT, and much more efficient than SSOT+Padé. Presented
results clearly show that calculation CPU times needed to obtain a solution with
the same accuracy are essentially lower for all sixth-order schemes than for the
corresponding lower-order schemes.

.5 Test calculations

The TDSE from (1)–(4) for a one-dimensional harmonic oscillator with an explicit
time-dependent frequency ω(t) on the finite time interval t ∈ [0, T ] has the form [1]

ı
∂ψ(x, t)

∂t
=

(

−1
2

∂2

∂x2
+
ω2(t)x2

2

)

ψ(x, t). (39)
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dashed and solid curves) for the approximations of order 2M = 2, 4, 6 with the time step
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Time-dependent frequency ω(t) and initial wave packet ψ0(x) are chosen following
[13, 24]

ω2(t) = 4− 3 exp(−t), ψ0(x) =
4

√

1

π
exp

(

−1
2
(x−

√
2)2
)

. (40)

For M = 3, functions f
(M)
1 (x, t), f

(M)
2 (x, t) and g

(M)
1 (x, t), g

(M)
2 (x, t) are defined

as follows

f
(3)
1 (x, t) =

1

2
− τ 4

240
exp(−t),

f
(3)
2 (x, t) =

4− 3 exp(−t)
2

x2 − τ 2

16
exp(−t)x2

− τ 4

3840
exp(−t) (24 exp(−t)− 61)x2, (41)

g
(3)
1 (x, t) = − τ 4

240
exp(−t),

g
(3)
2 (x, t) =

τ 2

8
exp(−t)x2 − τ 4

960
exp(−t) (12 exp(−t)− 19)x2.

For M = 1 terms with orders τ 2 and τ 4 should be neglectied while at M = 2 only
terms of order τ 4.

To analyze the convergence on a sequence of three doubly-condenced time grids,
we define the auxiliary time dependent discrepancy functions

Er2(t, j) =

∫ xmax

xmin

|ψ(x, tk)− ψτj (x, tk)|2dx, j = 1, 2, 3, (42)

and the Runge coefficient

β(t) = log2

∣

∣

∣

∣

Er(t, 1)−Er(t, 2)
Er(t, 2)−Er(t, 3)

∣

∣

∣

∣

, (43)



Time-Dependent Schrödinger Equation 49

where ψτj (x, t) are the numerical solutions with the time step τj = τ/2j−1. For the
function ψ(x, t) one can use the numerical solution with the time step τ4 = τ/8.
Hence, we obtain the numerical estimates for the convergence order of the numerical
scheme (19), that strongly correspond to theoretical ones β(t) ≡ βM(t) ≈ 2M .

For performing an accuracy control over the numerical solution in step τ , the
Runge coefficient (43) is calculated on four doubly condensed grids using the addi-
tional subroutine RUNGE.

To approximate the solution ψ(x, t) in the variable x, we make use of the finite-
element grid Ω̂x[xmin, xmax] = {xmin = −11, (220), xmax = 11} and the time step
τ = 0.009765625, where the number in the brackets denotes the number of fi-
nite elements for the intervals. Between each two nodes we apply the Lagrange
interpolation polynomials up to the order of p = 8. Fig. 5 displays the behav-
ior of discrepancy functions Er(t; j), j = 1, 2, 3 (dash-dotted, dashed and solid
curves, respectively) and convergence rate βM(t) for the approximations of the
order 2M = 2, 4, 6 with the time step τ = 0.009765625. To demonstrate high
efficiency of sixth-order scheme, we have used the quadruple precision version of
TIME6T fortran code.

The double precision version of TIME6T fortran code with the above test cal-
culations as well as with benchmark calculations [14] of the Cauchy problem for
the multidimensional time-dependent Schrödinger equation is available for user in
JINRLIB [53].

The considered examples clearly demonstrate the advantages of the new method
and its efficiency. The proposed technique and software will be asked-for and will
find applications in solving wave-packed problems in physics of atomic, molecular
and quantum-dimensional systems as well as in quantum calculations.
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