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Abstract. We consider the calculation schemes in the framework of Kantorovich method that
consist in the reduction of a 3D elliptic boundary-value problem (BVP) to a set of second-order
ordinary differential equations (ODEs) using the parametric basis functions. These functions are
solution of the 2D parametric BVP. The coefficients in the ODEs are the parametric eigenvalues
and the potential matrix elements expressed by the integrals of the eigenfunctions multiplied by
their first derivatives with respect to the parameter. We calculate the parametric basis functions
numerically in the general case using the high-accuracy finite element method. The efficiency of
the proposed calculation schemes and algorithms is demonstrated by the example of the BVP
describing the bound states of helium atom.

1. Introduction
The adiabatic representation is widely applied for solving multichannel scattering and bound-
state problems for systems of a few quantum particles in molecular, atomic and nuclear
physics [1]. Such problems are described by elliptic boundary value problems (BVPs) in a
multidimensional domain of the configuration space, solved using the Kantorovich method[2],
i.e., the reduction to a set of self-adjoint ordinary differential equations (ODEs) using the basis
of surface functions of an auxiliary BVP depending on the independent variable of the ODEs
parametrically.

We propose new calculation schemes and algorithms for solving the parametric self-adjoint
elliptic BVP with the Dirichlet and/or Neumann type boundary conditions in a 2D finite domain,
using high-accuracy finite element method (FEM) with triangular Lagrange elements [3]. The
corresponding algorithm and programs calculate with given accuracy the parametric eigenvalues,
the surface eigenfunctions with their parametric derivatives, and the potential matrix elements,
expressed as integrals of the products of surface eigenfunctions and/or their first derivatives
with respect to the parameter, which is a key problem in the adiabatic representation. These
parametric eigenvalues (potential curves) and the potential matrix elements can be used for
reducing the 3D BVP to bound-state and multi-channel scattering problems for sets of coupled
second-order ODEs with the appropriate asymptotic boundary conditions [4].

In the present paper we demonstrate the efficiency of the proposed approach by benchmark
calculations of helium atom bound states.

http://creativecommons.org/licenses/by/3.0
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2. The statement of the problem
Let us consider the BVP for the parametric self-adjoint 2D partial differential equation in the
domain Ωx, x=(x1, x2) with the piecewise continuous boundary S=∂Ωx,

(D(x; z)−εi(z)) Φi(x; z)=0, (1)

D≡D(x; z)=− 1

g0(x)

 2∑
ij=1

∂

∂xi
gij(x)

∂

∂xj

+U(x; z),

with the mixed Dirichlet/Neumann boundary conditions

(I) : Φ(x; z)|S = 0, (II) :
∂Φ(x; z)

∂nD

∣∣∣
S

= 0,
∂Φ(x; z)

∂nD
=

2∑
ij=1

(n̂, êi)gij(x)
∂Φ(x; z)

∂xj
. (2)

Here ∂Φm(z)
∂nD

is the derivative along the conormal direction, n̂ is the outer normal to the boundary

S = ∂Ω of Ω, êi is the unit vector of x =
∑2
i=1 êixi, and (n̂, êi) is the scalar product in R2,

z ∈ Ωz = [zmin, zmax] is a parameter. We assume that the functions g0(x) > 0, gij(x) > 0,
and ∂xkgij(x), U(x; z), ∂zU(x; z) and ∂zΦi(x; z) are continuous and bounded for x ∈ Ωx;
g12(x) = g21(x), g11(x)g22(x) − g2

12(x) > 0. We also assume that the elliptic BVP (1)–(2)
has only the discrete spectrum, so that ε(z) : ε1(z) < . . . < εjmax(z) < . . . is the desired set of
real eigenvalues. The eigenfunctions satisfy the orthonormality conditions

〈Φi|Φj〉=
∫

Ω
g0(x)Φi(x; z)Φj(x; z)dx=δij , dx = dx1dx2. (3)

The FEM solution of the BVP (1)–(3) is reduced to the determination of stationary points
of the variational functional [3, 5]

Ξ(Φm, εm(z)) ≡
∫
Ω

dxg0(x)Φm(x; z) (D − εm(z)) Φ(x; z) = Π(Φm, εm(z)), (4)

where Π ≡ Π(Φm, εm(z)), Φm ≡ Φm(x; z) is the symmetric quadratic functional

Π=

∫
Ω

dx

[ 2∑
ij=1

gij(x)
∂Φm

∂xi

∂Φm

∂xj
+g0(x)Φm(U(x; z)−εm(z))Φm

]
.

In the FEM, the function Φ(x; z) ∈ Fhz ∼ H1(Ωx) is approximated by the finite sum [3]

Φh(x; z) =
N∑
l=1

Φh
l (z)Np

l (x), (5)

where the piecewise polynomial functions Np
l (x) in the domain Ω are constructed by joining the

shape functions ϕpl (x) in the triangular subdomains ∆q:

Np
l (x) = {ϕpl (x), Al ∈ ∆q; 0, Al 6∈ ∆q}

and possess the following properties: i)the functionsNp
l (x) are continuous in the domain Ω; ii)the

functions Np
l (x) equal 1 at one of the points Al and zero at the rest points; iii) Np

l (x1l′ , x2l′) = δll′
in the entire domain Ω. Here l takes the values l = 1, N .
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The functions Np
l (x) form a basis in the space of polynomials of the p-th order. The vector

function Φh = {Φh
l (z)}Nl=1 has a generalized first-order partial derivative and belongs to the

Sobolev space H1(Ωx) [6]. After substituting the expansion (5) into the variational functional
and minimizing it [5, 6], we arive at the generalized eigenvalue problem

ApΦh = εhBpΦh. (6)

Here Ap is the stiffness matrix; Bp is the positive definite mass matrix; Φh is the vector
approximating the solution on the finite-element grid; and εh ≡ εh(z) is the corresponding
eigenvalue. The matrices Ap and Bp have the form Ap={apll′}Nll′=1, Bp={bpll′}Nll′=1, where the
matrix elements apll′ and bpll′ are calculated for triangular elements as

apll′ =
2∑

i,j=1

∫
∆q

gij
∂ϕpl (x; z)

∂xi

∂ϕpl′(x; z)

∂xj
dx+

∫
∆q

g0(x)ϕpl (x; z)ϕpl′(x; z)U(x; z) dx,

bpll′ =

∫
∆q

g0(x)ϕpl (x; z)ϕpl′(x; z)dx. (7)

3. The Algorithm for Calculating the Parametric Derivatives of Eigenfunctions
Differentiating Eqs. (1)–(3) with respect to the parameter z, we find that ∂zΦi(x; z) is a solution
of the following boundary-value problem with the mixed boundary conditions

(D(x; z)−εi(z))
∂Φi(x; z)

∂z
=−

[
∂

∂z
(U(x; z)−εi(z))

]
Φi(x; z), (8)

∂Φ(x; z)

∂z

∣∣∣∣
S

= 0 or
∂2Φ(x; z)

∂nD∂z

∣∣∣
S

= 0.

The parametric BVP (8) has a unique solution, if and only if it satisfies the conditions

∂εi(z)

∂z
=

∫
Ω
dxg0(x)Φi(x; z)

∂U(x; z)

∂z
Φi(x; z),

∫
Ω
dxg0(x)Φi(x; z)

∂Φi(x; z)

∂z
=0. (9)

Below we present the efficient numerical method that allows the calculation of ∂zΦi(x; z) with
the same accuracy as the one achieved for the eigenfunctions of the BVP (1)–(3) and the use of
it for computing the effective potentials Hij(z)=Hji(z) and Qij(z)=−Qji(z) defined as

Hij(z)=

∫
Ω
dxg0(x)

∂Φi(x; z)

∂z

∂Φj(x; z)

∂z
, Qij(z)=−

∫
Ω
dxg0(x)Φi(x; z)

∂Φj(x; z)

∂z
. (10)

The boundary-value problem (8)–(9) is reduced to the linear system of inhomogeneous
algebraic equations with respect to the unknown ∂Φh/∂z:

L
∂Φh

∂z
≡ (Ap − εhBp)

∂Φh

∂z
= b, b = −

(
∂Ap

∂z
− ∂εh

∂z
Bp

)
Φh. (11)

The normalization condition (3), the condition of orthogonality between the function and its
parametric derivative and the additional conditions (9) for the solution of (11) read as

(
Φh
)T

BpΦh = 1,

(
∂Φh

∂z

)T
BpΦh = 0,

∂εh

∂z
=
(
Φh
)T ∂Ap

∂z
Φh. (12)
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Then the potential matrix elements Hh
ij(z) and Qhij(z) (10) can be calculated using the

formulas

Hh
ij(z) =

(
∂Φh

i

∂z

)T
Bp∂Φh

j

∂z
, Qhij(z) = −

(
Φh
i

)T
Bp∂Φh

j

∂z
. (13)

Since εh is an eigenvalue of (6), the matrix L in Eq. (11) is degenerate. In this case, the
algorithm for solving Eq. (11) can be written in three steps as follows:

Step k1. Calculate the solutions v and w of the auxiliary inhomogeneous systems of algebraic
equations

L̄v = b̄, L̄w = d, (14)

with the non-degenerate matrix L̄ and the right-hand sides b̄ and d

L̄ss′ =

{
Lss′ , (s− S)(s′ − S) 6= 0,
δss′ , (s− S)(s′ − S) = 0,

(15)

b̄s =

{
bs, s 6= S,
0, s = S,

ds =

{
LsS , s 6= S,
0, s = S,

(16)

where S is the number of the element of the vector BpΦh having the greatest absolute value.
Step k2. Evaluate the coefficient γ

γ = − γ1

(DS − γ2)
, γ1 = vTBpΦh, γ2 = wTBpΦh, DS = (BpΦh)S . (17)

Step k3. Evaluate the vector ∂zΦ
h

∂Φh
s

∂z
=

{
vs − γws, s 6= S,
γ, s = S.

(18)

From the above consideration, it is evident that the computed derivative has the same
accuracy as the calculated eigenfunction itself. Let D(x; z) in Eq. (1) be a continuous and
bounded positive definite operator on the space H1 with the energy norm, εi(z), Φi(x, z) ∈ H2

being the exact solutions of Eqs. (1)–(3), and εhi (z), Φh
i (x; z) ∈ H1 being the corresponding

numerical solutions. Then the following estimates are valid [6]∣∣∣εi(z)− εhi (z)
∣∣∣ ≤ c1h

2p,
∥∥∥Φi(x; z)− Φh

i (x; z)
∥∥∥

0
≤ c2h

p+1, (19)

‖Φi(x; z)‖20 =

∫
Ωx

dxg0(x)Φi(x; z)Φi(x; z), (20)

where h is the largest distance between any two points in ∆q, p is the order of the finite elements,
i is the number of the corresponding solutions, and the constants c1 and c2 are independent of
the step h. The following theorem can be formulated.

Theorem Let D(x; z) in Eq. (1) be a continuous and bounded positive definite operator on
the space H1 with the energy norm. Also let ∂zU(x; z) be continuous and bounded for each
value of the parameter z. Then for the exact values of the solutions ∂zεi(z), ∂zΦi(x; z) ∈ H2,
Hij(z), Qij(z) from (8)–(10) and the corresponding numerical values ∂zε

h
i (z), ∂zΦ

h
i (x; z) ∈ H1,

Hh
ij(z), Q

h
ij(z) from (11)–(13), the following estimates are valid:∣∣∣∣∣∂εi(z)∂z

− ∂εhi (z)

∂z

∣∣∣∣∣ ≤ c3h
2p,

∥∥∥∥∥∂Φi(x; z)

∂z
− ∂Φh

i (x; z)

∂z

∥∥∥∥∥
0

≤ c4h
p+1, (21)∣∣∣Qij(z)−Qhij(z)∣∣∣ ≤ c5h

2p,
∣∣∣Hij(z)−Hh

ij(z)
∣∣∣ ≤ c6h

2p,
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where h is the largest distance between any two points of the finite element ∆q, p is the order
of finite elements, i, j are the numbers of the corresponding solutions, and the constants c3, c4,
c5, and c6 are independent of the step h.

The proof is straightforward following the scheme in accordance with [6].

4. Benchmark calculations of helium atom bound states
In the hyperspheroidal coordinates, 0 ≤ ρ < ∞, 1 ≤ ξ < ∞, −1 ≤ η ≤ 1, related to the
perimetrical ones r1, r2 and r12 as

r12 =
√

2ρ/
√
ξ2 + η2, r1 = ρ(ξ + η)/(

√
2
√
ξ2 + η2), r2 = ρ(ξ − η)/(

√
2
√
ξ2 + η2), (22)

the equation for the solution Ψ(ρ, ξ, η) =
√
ξ2 + η2Φ(ρ, ξ, η) describing S-states of the Helium

atom reads as [7][
− 1

ρ5

∂

∂ρ
ρ5 ∂

∂ρ
− 3

ρ2
+

1

ρ2

(ξ2+η2)2

ξ2−η2
h(ξ, η; ρ)− 2Em

]
Φm(ρ, ξ, η) = 0, (23)

h(ξ, η; ρ)=− ∂

∂ξ
(ξ2−1)

∂

∂ξ
− ∂

∂η
(1−η2)

∂

∂η
+

√
2ρ
(
ξ2−η2−8ξ

)√
ξ2+η23 . (24)

The function Φm(ρ, ξ, η) satisfies the boundary conditions(BCs)

lim
ρ→0

ρ5∂Φm(ρ, ξ, η)

∂ρ
= 0, lim

ρ→∞
ρ5Φm(ρ, ξ, η) = 0, (25)

lim
ξ→1

(ξ2−1)
∂Φm(ρ, ξ, η)

∂ξ
= 0, lim

ξ→∞
Φm(ρ, ξ, η) = 0, lim

η→±1
(1−η2)

∂Φm(ρ, ξ, η)

∂η
= 0, (26)

and is normalized by the condition

8π2
∫ ∞

0
dRR5

∫ ∞
1

dξ

∫ 1

−1
dη

ξ2 − η2

(ξ2 + η2)2
Φm(R, ξ, η)Φm′(R, ξ, η) = δmm′ . (27)

The parametric functions φi ≡ φi(ξ, η; ρ) and the eigenvalues εi(ρ) are eigensolutions of the 2D
BVP having purely discrete spectrum. The functions satisfy the BCs (26) and the normalization
condition[
h(ξ, η; ρ)−εi(ρ)

ξ2−η2

(ξ2+η2)2

]
φi=0, 〈φi|φj〉=

∫ ∞
1
dξ

∫ 1

−1
dη

ξ2 − η2

(ξ2 + η2)2
φi(ξ, η; ρ)φj(ξ, η; ρ) = δij .(28)

The 2D BVP (28) was solved in terms of scaled variable and parametric surface functions

ξ = ξ(λ) =
1 + λ

1− λ
, 0 ≤ λ < 1, φi(ξ, η; ρ) =

pi(ξ, η; ρ)

ξ + 1
≡ pi(λ, η; ρ)

ξ(λ) + 1
. (29)

As an example consider the calculation of the potential curves Ej(ρ) = (εj(ρ) − 3)/ρ2 and
the matrix elements

Qij(ρ)=−
〈
φi(ξ, η; ρ)

∣∣∣∣∂φj(ξ, η; ρ)

∂ρ

〉
, Hij(ρ)=

〈
∂φi(ξ, η; ρ)

∂ρ

∣∣∣∣∂φj(ξ, η; ρ)

∂ρ

〉
.

The calculations were implemented by means of the program POTHEA 2.0 using the server
with 2x4 kernels i7k (i7-3770K 4.5 GHz, 32 GB RAM, GPU GTX680), and the Intel Fortran
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compiler 17.0. The computing time per one point ρ for the considered examples with 10−12

accuracy with triangular Lagrange elements of 5th order on the uniform 2D grids λ = {0(L)1},
η = {0(L)1} at L = 10, 20, 40 is 0.38, 5.08, and 41.21 seconds, respectively.

Let us find the solution of the BVP (23)–(27) using the Kantorovich expansion [2]

Φm(ρ, ξ, η) =
jmax∑
j=1

φj(ξ, η; ρ)χjm(ρ) (30)

where φj(ξ, η; ρ) are eigenfunctions of the parametric 2D BVP with purely discrete spectrum
Ej(ρ) = (εj(ρ) − 3)/ρ2, j = 1, 2, .... Substituting the expansion (30) into the 3D BVP
(23)–(26), we arrive at the 1D BVP for a finite set of jmax coupled second-order ODEs for
χm(ρ) = {χ1m(ρ), ..., χNm(ρ)}T(

− 1

ρ5
I
d

dρ
ρ5 d

dρ
+V(ρ)+Q(ρ)

d

dρ
+

1

ρ5

dρ5Q(ρ)

dρ
−2Em I

)
χm(ρ)=0, (31)

with the boundary and normalization conditions for the discrete spectrum of E:
E1<E2<...<Em<...

lim
ρ→0

ρ5
(
dχm(ρ)

dρ
−Q(ρ)χm(ρ)

)
=0, lim

ρ→∞
ρ5χm(ρ)=0, 8π2

∫ ∞
0

dρρ5(χm(ρ))Tχm′(ρ) = δmm′ .(32)

The solution of this BVP with the help of KANTBP program [8] using Lagrange elements of
the 5th order on the non-uniform grids ρ = {0(50)5(75)20} using calculated Ej(ρ), Vij(ρ) =
Hij(ρ) +Ej(ρ)δij , Qij(ρ), i, j = 1, ..., 12 yields the upper estimate of the helium atom energy in
the ground and the first exited state E1 = −2.903 724 30 a.u. and E2 = −2.145 973 22 a.u. with
8 significant digits similar to the results of POTHEA[9].

5. Conclusion
The proposed calculation schemes, algorithms and software implementing the high-accuracy
FEM for solving the elliptic boundary value problems can be applied to the analysis of few-body
scattering dynamics and quantum tunneling and diffraction models[10, 11, 12, 13]. Detailed
description of the implementation of the FEM algorithm and program will be given elswhere.

The authors thank Prof. F.M. Penkov for collaboration. The work was supported partially
by grant MES RK 0333/GF4 and grant of Plenipotentiary Representative of the Government of
the Republic of Kazakhstan in the framework of collaboration program JINR-RK N 337, 2017.
The work was partially funded by the RFBR (grants Nos. 16-01-00080 and 17-51-44003 Mong),
the Bogoliubov-Infeld program and the RUDN University Program 5-100.

References
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