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Abstract: An uncoupled correlated variational method for calculating helium bound states
is proposed. The projective coordinates s = ri+rs, v = 7‘17“1'1’27‘27 w = =72 are introduced
instead of the conventional ones s =r1+r2, t =ri —ra, u = ri2. All matrix elements of
the total Hamiltonian and the weight function are expressed by simple products of three
one-dimensional integrals. The variational basis is formed by a set of Laguerre polynomials
with a single nonlinear parameter and two sets of Jacobi polynomials for the projective
coordinates s, v, w, correspondingly. It provides a reasonable degree of convergence of the
energy, E = E(N), with respect to the number N of expansion terms over the basis of the
eigenvectors. In the case of infinite and finite nuclear mass, calculations give the energy of

the helium ground state.
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1 Introduction

In atomic physics, the uncoupling of correlated calculations with a high accuracy has been re-
cently discussed[1]. A variational basis in the new projective coordinates which yields a suitable
presentation of the Hamiltonian as a simple product of three one-dimensional integrals was in-
troduced. High accuracy calculations for the ground state of a helium atom with an infinite
nuclear mass have been performed. However, such a method leads to a Hamiltonian that con-
tains d-function terms and exhibits a rather slow convergence of energy, E = E(N), with respect
to the number N of basis functions with a single nonlinear parameter. In particular, the value
E = —2.903724 377034119593 8(50) a.u. has been achieved for N = 8066 without optimization
of the nonlinear parameter[1l]. In this connection, it is interesting to investigate a simpler set of
the projective coordinates which provides an uncoupled presentation of matrix elements of the
Hamiltonian and more rapid convergence of energy.

In this paper a set of the projective coordinates is introduced and the corresponding variational
basis with a single nonlinear parameter is constructed. A study of energy convergence for the he-
lium ground state and comparison with the known calculations are presented. As a result, new
values for the nonrelative energy of the helium isotope ground state are obtained.
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2 Transformation of a conventional nonfactorable variational
three-body problem to the factorable one in projective coordinates

For two-electron S states, in terms of the spherical coordinates, the Hamiltonian takes the form

H( =2 (142 R SR S
r,T2,T12) = D) M (97% r1 Ory 87‘% T2 Ory

8?2 2 0 1 8?2 rocos@ —r, 02
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where M denotes either infinite or finite nuclear mass, r; is the distance between the nucleus and
the electron, r15 is the distance between electrons, and € is the angle between 7 and 7. The radial
portion of integration can be rewritten in the following way:

o0 o0 r1+712
J = / ridry / radry / riadri2g(ri,7a,712) (2)
0 0 |T17’l"2|
The three dimensional integration becomes uncoupled by the change of variables
r12 rL—T

s=r+ry, v= , w= . (3)
r1+ T2 T12

For the new variables Eq (3). the integral Eq (2). is transformed

00 1 1
I= / s5ds/ v2dv/ (1 —v*w?)dwf(s,v,w). (4)
0 0 0
If the function f in the integrand has the form
fls,v,w) =U(s)V(v)W(w), (5)

then the integral in (4). uncouples into a product of three one-dimensional integrals.
Full advantage of this decoupling is achieved by choosing a radial basis set of the form

Vi gk = Ui(s)Vj(v) Wag (w), (6)

where Wy (w) are even functions for 1S state of the helium atom. With this basis set, matrix
elements of the overlap and of the Hamiltonian can be written as products of one dimensional
integrals in the form Eq (4). The simplest basis functions for U; can be Slater functions and for V;
and W5, simple powers of variables v and w. Notice that unlike the case of perimetric coordinates,
there is no limitation on the number of the nonlinear parameters which can be introduced for any
of the one-dimensional basis functions.

3 Reduction of the factorable problem to the algebraic finite
generalized eigenvalue problem

In this work, the basis sets are based on orthogonal polynomials suited for the domains of integra-
tion of each integrals. We use

Ui(s) = Nie"** L} (2u5), V;(v) = N;P\"% (20 - 1),
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Wak (w) = Nop P (w), (7)

where N;, Nj, Noy, are normalization constants, L! is a generalized Laguerre polynomial, P]-(q’t)
is a Jacobi polynomial and «; is a variational parameter. The basis set U; is orthonormal, if one
chooses a set with a single parameter a. With these definitions, we have

00 1
/ s°Up (8)Upn(8)ds = Op.m, / V2V (V) Vi (V) dv = 61y,
0 0

/0 (1 = w?)Wan (W) Wam (w)dw = 62 2m- (8)

The overlap matrix is made up of a set of block-diagonal arrays, one for each order of the Laguerre
polynomials.
Using the following additional conditions

t=i4+a-j7+2b-k < Nsvw (9)
d=j+ 2k < Now,

where Nsvw is the largest value of terms in the sum of the orders U;,V; and Wy, Nvw is the
largest value of terms in the sum of the orders V; and Wy, and @ > b > 1.
Now we can write the trial wave function in the form

t<Nsvw d<Nvw

¥(s,v,w) = Z Ci,j,2ki,5,2k (8, v, ), (10)

,J,k=0

where C; j 25, are unknown constants.
After substitution of expansion Eq (10). into the Rayleigh-Ritz variational functional

. < VYIH|¥ >
E(a) = min — T[S (11)

and subsequent minimization of the functional, the solution of Eq (1). is reduced to a solution of
a generalized eigenvalue problem for an infinite set.

Aley, Z, M)C = E(a)BC, (12)

Ala, Z, M) =a?A; (M) + aAy(2Z) (13)

here A(a, Z, M) is a stiffness matrix and B is a mass matrix.

An enormous advantage of using the orthogonal polynomials as basis functions is the very high
numerical stability of the calculations, which show no sign of a numerical dependence for the very
large basis set. This stability allows one to accelerate the matrix diagonalization when more than
13-digit accuracy is required and quadruple precision calculations are necessary.

We use a method of Inverse Iteration for calculation of eigenvalues. Then we minimized the
energy E = E(a) by a nonlinear parameter a.

Table I shows the variational energy E (in a.u.) for the ground state of the helium atom
obtained in this work. A comparison with the other available data is presented.

We studied the convergence by using an extrapolation formula in the form

E* = E(N)+CN %, (14)
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to compare the convergence rate of the two methods mentioned above. We looked for the param-
eters £E*, C, 8 minimizing functional

2
" [ E* — E(n;) — Cn; P
2(E, C =Y m) =) (15)
i=1 v

The asymptotic values of E can be found in Table I and the parameter 3, which corresponds

to the convergence rate, in Table II.

Table I

Variational energy values E (in a.u.) obtained in this work and
comparison with the data published. E%%is the extrapolated value.
* Nuclear masses for helium isotopes adopted in present calculations

are Msprea+ = 5495.8852m, and Ma g2+ = 7294.2996m, [4].

N M=co (*He?T)* (CHe*T)*

2204 | -2.903 724 377 034 110 549 -2.903 304 557 733 234 348 -2.903 167 210 703 584 071
2037 | -2.903 724 377 034 119 593 3 -2.903 304 557 733 234 392 6 -2.903 167 210 703 584 115 5
3424 | -2.903 724 377 034 119 596 3 -2.903 304 557 733 234 395 5 -2.903 167 210 703 584 118 5
4077 | -2.903 724 377 034 119 597 9 -2.903 304 557 733 234 397 2 -2.903 167 210 703 584 120 1
4683 | -2.903 724 377 034 119 598 231 -2.903 304 557 733 234 397 493  -2.903 167 210 703 584 120 433
5272 | -2.903 724 377 034 119 598 279 -2.903 304 557 733 234 397 541  -2.903 167 210 703 584 120 481
5669 | -2.903 724 377 034 119 598 288 -2.903 304 557 733 234 397 550  -2.903 167 210 703 584 120 489
E™ | -2.903 724 377 034 110 598 207 -2.903 304 557 733 234 397 556 -2.903 167 210 703 584 120 495

2 -2.903 724 377 034 119 598 296
3 -2.903 724 377 034 119 596

1 -2.903 724 377 034 119 594

5 -2.903 724 377 034 118

6 -2.903 724 377 034 115

7 -2.903 724 377 032 6

Table 1T
B is the convergence rate,

and G is the result of [1]

Mass [
00 11

‘He*t 11

3He?t 11
G 9

From this, we can see the convergence rate, which is calculated the energy by the use Eq (10).
with the condition 0E(a)/0a = 0, is better than results in [1]. 777
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