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Abstract. In the framework of effective mass approximation the application of adiabatic
method for the description of impurity states in quantum dots, wires and wells with parabolic
confinement potential as well as rectangular infinitely-high potential is presented. A rate
of convergence of the method and efficiency of the proposed program complex for solving a
boundary value problem, realized by the finite element method, is demonstrated on examples
of calculation of spectral and optical characteristics of the considered quantum nanostructures.

1. Introduction
Investigations of the Coulomb systems in quantum nanostructures are important from the point
of view of application of obtained results in a construction of semiconductor devices of a new
generation. It is well known that by changing a dimension of the semiconductor structures
the impurity binding energy is increasing. For this reason the influence of impurity states is
more essential for low dimensional semiconductors. The impurity energy spectra in quantum
well (QW), wire (QWr) and dot (QD) can be manipulated by external fields too [1]. Different
methods of calculations of spectral characteristics and wave functions of impurities were applied
in many papers.

The eigenvalue problem with both Coulomb potential and magnetic field is analytically
not solvable, because the Schrödinger equation with appropriate boundary conditions is beyond
the problem of confluent hypergeometric equations. Therefore it is necessary to use different
approximation methods: variational, perturbation theory method, etc. In this regard it
should be mentioned, that Maksym and Chakraborty on the base of numerical calculations
obtained many-particle states in parabolic QD in external magnetic field and demonstrate the
generalization of Kohn theorem for quantum nanostructures [2]. Jia-Lin Zhu et al using the
method of series expansion have obtained the exact forms of series in different regions of the
radial equation (a) for donor states in rectangular QW [3], (b) for two-dimensional hydrogenic
donor states in magnetic field [4], (c) for two electrons confined by two-dimensional and three-
dimensional QDs with parabolic potentials [5]. One of the powerful methods of the analytical
solvation of similar problems is the adiabatic approximation. For the first time hydrogen-like
system in adiabatic approximation was considered in connection with analysis of such system
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behavior in extremely strong magnetic field [6]. A similar problem, but for electron with the
relativistic dispersion law was solved in [7]. In [8] within the framework of the adiabatic theory
the hydrogen-like impurity levels in spherical GaAs/Ga1−xAlxAs QD with parabolic confinement
potential under the influence of strong magnetic field are investigated. Variational and adiabatic
methods were applied for study of impurity states in parabolic QWs [9, 10] and resonance effects
of transmission and reflection at axial channeling of ions in parabolic QWrs or in magnetic
field [11].

In this paper we continue the previous investigation in the framework of adiabatic method
using elaborated symbolic-numerical algorithms [12, 13, 14] and program complex for solving
the boundary value problems (BVPs), realized by the finite element method [15, 16, 17]. A rate
of convergence of the method and efficiency of the proposed program complex is demonstrated
on examples of calculation of spectral and optical characteristics of the considered quantum
nanostructures.

2. Boundary value problems
In the effective mass approximation the Schrödinger equation for impurity electron in magnetic
field in QD, QWr, QW is read as

{
1
2µ

(
~̂p− e

c
~A

)2

+ U(~r)− qe2

κrc

}
Ψ = EΨ, (1)

where µ = βme is the effective mass of electron, q is the Coulomb charge of impurity,
rc =

√
x2 + y2 + (z − zc)2 is the distance between electron and Coulomb charge of impurity

center, zc ∈ [−z0/2, z0/2] is the shift of charge position q along z axis in the case of QW (zc = 0
for QD and QWr considered below), κ is the static dielectric constant of semiconductor (for GaAs
β = 0.067, q = 1, κ = 13.18), U(~r) is the parabolic potential with frequency ω = γr0 h̄/(µ r2

0),
γr0 ∼ π2/3 is an adjustable parameter (Model A):

U(~r) ≡ UA(~r) = µω2(ζ1(x2 + y2) + ζ3z
2)/2, (2)

r0 =
√

ζ1(x2
0 + y2

0) + ζ3z2
0 is the radius of QD (ζ1 = 1, ζ3 = 1), QWr (ζ1 = 1, ζ3 = 0) and the

depth of QW (ζ1 = 0, ζ3 = 1). For comparison we consider model QD, and QW (ζ3 = 1/2) with
potential U(~r) (Model B)

U(~r) ≡ UB(~r) = {0, 0 ≤ |~r| < r0; +∞, |~r| ≥ r0}, (3)

U(z) ≡ UB(z) = {0, |z| < z0/2;+∞, |z| ≥ z0/2}.

Choosing direction of z axis along the magnetic field ~H with vector potential ~A = 1
2

~H × ~r and
using dimensionless parameter for magnetic field γ = H/H∗

0 , and reduced atomic units (a.u.)
(for GaAs H∗

0 = 6 T a∗B = 102 Å, Eau = 2E∗
R, E∗

R ≡ Ry∗ = 5.2meV), we can rewrite (1) for
given magnetic quantum number m in the following form

(
1

g3s(xs)
Ĥ2(xf ; xs)+Ĥ1(xs)−2E

)
Ψ(xf , xs)=0, (4)

Ĥ2=− 1
g1f (xf )

∂

∂xf
g2f (xf )

∂

∂xf
+V̂f (xf )+V̂fs(xf , xs),

Ĥ1 = − 1
g1s(xs)

∂

∂xs
g2s(xs)

∂

∂xs
+V̂s(xs), Vfs(xf , xs) = − 2q√

ρ2 + (z − zc)2
= −2q

rc
.
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Here Ĥ2 ≡ Ĥ2(xf ; xs) = g3s(xs)H2(xf ;xs) and Ĥ1 ≡ Ĥ1(xs) = H1(xs) are the Hamiltonians
of so-called fast and slow subsystems, V̂fs(xf , xs) = g3s(xs)Vfs(xf , xs) is the Coulomb potential
in cylindrical or spherical coordinates (CC or SC). In the CC for QD and QWr we use the
notations xf = ρ, xs = z, g1f (xf ) = g2f (xf ) = ρ, g1s(xs) = g2s(xs) = g3s(xs) = 1 (Model A):

V̂f (xf ) = m2/ρ2 + γm + γ2ρ2/4 + ζ1ω
2ρ2, V̂s(xs) = ζ3ω

2z2.

while for QW xf = z, xs = ρ, g1f (xf ) = g2f (xf ) = 1, g1s(xs) = g2s(xs) = ρ, g3s(xs) = 1,

V̂f (xf ) = ζ3ω
2z2, V̂s(xs) = m2/ρ2 + γm + γ2ρ2/4 + ζ1ω

2ρ2.

In the SC we use the notation xf = ηc, xs = rc, g1f (xf ) = 1, g2f (xf ) = (1 − η2
c ),

g1s(xs) = g2s(xs) = r2
c , g3s(xs) = r2

c (Model A)

V̂f (xf ) = m2/(1− η2) + 2pγm + α(1− η2
c )− bηc + f, V̂s(xs) = βr4

c ,

where α = p2, p = γr2
c/2, b = f = 0, β = ω2 for QD (β = 0 for QWr) and α = −c2, c = ωr2

c ,
b = −2ωzcr

3
c , f = ωzcr

2
c , β = 0, γ = 0 for QW.

The required solution of (4) we find in the form of expansion over a set of solutions, Φj(xf ; xs),

Ψi(xf , xs) =
∑jmax

j=1
Φj(xf ; xs)χ

(i)
j (xs), (5)

of the parametric eigenvalue problem of the fast subsystem in domain Ωf = (xmin
f , xmax

f )

{
Ĥ2(xf ; xs)− Êi(xs)

}
Φi(xf ;xs) = 0, 〈Φi|Φj〉Ωf

=
∫ xmax

f

xmin
f

Φi(xf ; xs)Φj(xf ; xs)g1f (xf )dxf =δij . (6)

Substituting expansion (5) in eq. (4) and taking into account (6), we come to the BVP
for a set of the differential equations of the slow subsystem related to the vector-function
χ(i)(xs) = {χ(i)

j (xs)}jmax
j=1 :

Hχ(i)(xs) = 2Ei Iχ(i)(xs), (7)

H=− 1
g1s(xs)

I
d

dxs
g2s(xs)

d

dxs
+V̂s(xs)I+U(xs) +

g2s(xs)
g1s(xs)

Q(xs)
d

dxs
+

1
g1s(xs)

dg2s(xs)Q(z)
dxs

.

Here I, U(xs) = UT (xs) and Q(xs) = −QT (xs) are unit, symmetric and nonsymmetric
matrixes with dimensions jmax × jmax:

Uij(xs)=
1

g3s(xs)
Êi(xs)δij+

g2s(xs)
g1s(xs)

Wij(xs), (8)

Qij(xs) = −〈Φi(xs)|∂Φj(xs)
∂xs

〉Ωf
, Wij(xs) = 〈∂Φi(xs)

∂xs
|∂Φj(xs)

∂xs
〉Ωf

.

Solutions of discrete spectrum were subjected to the following boundary conditions:

lim
xs→xmin=0

g2s(xs)
dχ(i)(xs)

dxs
= 0, χ(i)(xmax

s ) = 0; and χ(i)(xmin
s ) = 0, χ(i)(xmax

s ) = 0, (9)

for xs = ρ or xs = r, and xs = z, respectively, and orthonormalization conditions
∫ xmax

s

xmin
s

(χ(i)(xs))T χ(j)(xs)g1s(xs)dxs = δij . (10)

For Model B we have potentials V̂s(xs) = 0 and V̂f (xf ) = 0 and use: conditions (9) for rmax = r0

if (7), (10) for the case of QD, and the last conditions (9) for s ↔ f , zmin = −z0/2, zmax = z0/2
if (6) for the case of QW. Presented below results of solving the BVPs (4)–(10) in the SC and
CC are found by means of complex of programs ODPEVP, POTHMF and KANTBP [15, 16, 17].
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a) b)

Figure 1. a) Binding energy of ground state electron EB/E∗
R vs magnetic length a∗H/a∗B = 1/

√
γ

( 1 ≤ γ ≤ 11) for q = 1, m = 0 and fixed radius of QD r0 = a∗B: 1 and 4 impurity electron (Model
A) with confined potential frequencies ω = 1/r2

0 and ω = π2/(3r2
0); 3 is impurity electron in

QD (Model B); 2 is impurity electron (Model A) without confined potential (ω = 0). b)Binding
energy of ground state electron EB/E∗

R vs radius of QD at fixed magnetic field γ = 1.

Figure 2. The profile of wave functions of the ground impurity states of QD with radius r0 = 1
(Model B) in plane zx at magnetic field: γ = 1(left panel) and γ = 10(right panel).

3. Results and discussions
Determining binding energy of impurity as difference between electron without impurity center
in QD E0 (q = 0) and with one E1(q = 1), we can write EB = E0 − E1. On Figs. 1a and
1b we show dependencies of the binding energies EB (aH) at fixed radius of QD r0 = a∗B and
EB (r0) at fixed magnetic field H = H∗

0 = 6 T. As one can see from Fig. 1a with increasing
H (decreasing magnetic length aH = a∗B/

√
γ) binding energy is increased, because the problem

transforms to one-dimensional one. From Fig. 1b one can see, that with decreasing r0 binding
energy EB(r0) is increased, because of reducing domain of localization of the electron probability
density around the impurity center. From comparison of curves 1, 4 3 on Fig. 1a, and curves
1, 2 and 3 on Fig. 1b follows, that choosing value of parameter γr0 = π2/3 provides quality
agreement of models A and B. This fact connected with transforming of the discussed problem
for QD as well as QWr to the problem of one dimensional hydrogen system. It is illustrated by
the distributions of the wave functions of the ground state impurity electron in QD and QWr
on Figs. 2 and 3, respectively.

On Fig. 4a we show the dependencies of binding energy of of the ground state impurity
electron EB/(2E∗

R) in QWr without confinement potential (ω = 0), versus magnetic field
γ = H/H∗

0 ,H∗
0 = 6T, that were calculated in different approximations and parametrizations

of the problem (1) in the SC and CC. Curve 1 show values of EB, i.e., E1 = γ − 2E1, that
where calculated by solving the BVP for (7)–(10) in the SC with jmax = 10 at a given accuracy
(GA), which here was chosen as ∼ 10−8. Note, in interval 1≤ γ ≤ 11 curve 1 corresponds to
curve 2 on Fig. 1. Curves 4 and 5 show upper and lower estimations of binding energy, EC

AD;c
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Figure 3. The profile of wave functions of ground impurity state in QWr without confinement
potential(ω = 0) (Model A)in plane zx at magnetic field: γ = 1(left panel) and γ = 10(right
panel).

a) b)

Figure 4. (a) The ground binding energy EB/(2E∗
R) of QWr (Model A) vs magnetic field

γ = H/H∗
0 ,H∗

0 = 6T in different approximation. (b) The first ten values of binding energy (in
Ry*) levels EB/E∗

R = Ei = γ − 2Ei classified by adiabatic sets of quantum numbers: spherical
(N, l, m) for small γ and cylindrical (Nρ,m,Nz) for large γ ones at m ≤ 0, vs magnetic filed γ.

and EAD;c, that where calculated by solving the BVP for (7) in the CC at jmax =1 in a crude
adiabatic approximation (CAD) at W11 = 0 and conventional adiabatic approximation (AD)at
W11 6= 0 . One can see that these estimations go to curve 1 of the GA starting with γ ≥ 50.
For the interval of values γ<1 the convergence rate of expansion (5) in the CC is slow, because
conditions of the Kato type in a vicinity of point z = 0 does not fulfill [11].

Correspondingly, curves 2 and 3 show the upper and lower estimations of binding energy,
EC

AD;s and EAD;s, that were calculated by solving BVP for (7) in the SC at jmax = 1 in the
CAD and the AD. One can see that these estimations approach to the values calculated with
the GA (curve 1) starting from γ < 1 and remove from the GA values starting from γ > 1.
However, for expansion (5) in the SC conditions of the Kato type near a vicinity of point r = 0
are satisfied, that leads to the high rate of convergence of such expansion and allows us to limit
the same jmax = 10 for 1 < γ ≤ 1000 too [17]. For example, on Fig. 4b we show a behavior
of the first ten values of binding energy (in Ry*) levels Ei = γ − 2Ei calculated with the GA in
the SC and classified by adiabatic sets of quantum numbers: spherical (N, l, m) for small γ and
cylindrical (Nρ,m, Nz) for large γ at m ≤ 0, vs magnetic field γ.

Note, if one describes the impurity states in QD, QWr and QW in strong magnetic field, on the
first glance, it is possible to consider Coulomb interaction in problem (1) as small perturbation
in the CC, and to use a well known estimation with logarithmic accuracy EBAS ' (ln2 γ)/2 like
in the case of ground state of a hydrogen atom in a strong magnetic field [18]. However from
Fig. 4a one can see that there is three a times difference of the logarithmic estimation (curve 6)
with respect to curve 1 of the GA. This question is discussed in details in [19].
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Figure 5. Binding energy EB/Ry∗ = Eth
1 − 2E1(zc) of QW vs position of Coulomb impurity zc

and number of basis functions jmax, and crude adiabatic approximation (upper ad), adiabatic
approximation (lower ad), and variational calculation (var): (a) Model A at q = 1, m = 0,
ω = 3, Eth

1 = ω in the SC, and (b) Model B q = 1, m = 0, z0 = 1, Eth
1 = π2/z2

0 in the CC.

   

z

a)
            

       
z

b)

Figure 6. The profile of wave function of ground impurity state in QW (Model A) in plane zx
at q = 1, m = 0, ω = 3 and shift Coulomb center: (a) zc = 0 and (b) zc = 0.4.

z

a)

z

b)

Figure 7. The profile of wave function of ground impurity state in QW (Model B) in plane zx
at q = 1, m = 0, z0 = 1 and shift Coulomb center: (a) zc = 0 and (b) zc = 0.4.

On Fig. 5 the upper and lower estimations of binding energy EB of the ground state impurity
electron in QW without magnetic field, correspondingly, for model A in the SC and model B in
the CC, connected with impurity position zc, as well as convergence by number jmax of basis
functions in expansion (5) and their comparison with variational estimation are demonstrated.
As it follows from Fig. 5, expansion (5) in the CC has a lower convergence rate with respect to
one in the SC by the same reason [10] as for the QWr mentioned above. Fig. 6 and Fig. 7 show
the wave functions of ground state of impurity electron in QW, for model A and B, respectively.
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Figure 8. The interval of
the resonance photon energy (in
meV) Eph = h̄ωph = Ef − Ei

determines the peak values of the
absorption coefficient K(ωph) vs
the position of the impurity
center zc/L, L = 102Å: the
vertical intervals are upper and
lower adiabatic estimates, the
crosses are variational estimates,
the circles are estimates with
given accuracy.

For the case of QW with parabolic confinement the coordinate of the maximum value of wave
function coincide with the coordinate of impurity center. On the other hand, for Model B, due
to Dirichlet boundary conditions in points zmin = −1/2, zmax = 1/2, the maximum of wave
function is in a vicinity of the central point. Differences in the behavior of these wave functions
allows us to verify models A and B.

Obtained estimations allow us to reveal the possible boundary of intervals of the photon
resonance energies Eph = h̄ωph presented. For example, on Fig. 8, it is illustrated the maximal
value of absorption coefficient K (ωph) dependent upon the position of impurity in QW [9].
Based on the results for wave functions and eigenvalues it is possible to calculate impurity and
inter impurity absorption coefficient for QD, QWr and QW. The impurity absorption coefficient
K (ω) in parabolic GaAs QW is calculated with the help of variational functions [9]:

K (ωph) =
4π2e2

κm2
0cωphV

∑
i,f

∣∣∣~e ~Mif

∣∣∣
2
δ (Ef −Ei − h̄ωph) , (11)

where V is the volume of a sample, ~e is the light polarization vector, ~Mif is the matrix element
of the transition from the initial state i to the final one f , Ei and Ef are the energies of the
initial and final states, delta-function provides the conservation of energy in the course of the
transitions. Fig. 9a shows the absorption curves for transitions related to acceptors and donors.
We can see, the strong difference exists between the shape of absorption curves, corresponding
to donor and acceptor levels. During transitions between the acceptor level and conductive band
the denominator of Eq. (11) at small values of wave vectors is close to unity, as far as for GaAs
the ratio mc/mv ≈ 0.1, therefore the absorption coefficient depending on the energy of incident
photon has step-like feature, thus repeating the behavior of density of states. The absorption
scenario related to donors is different. While increasing the denominator in Eq. (11) at a quite
small interval from the absorption threshold the absorption rapidly decreases (mc/mv ≈ 9.25).

Figure 9b shows the dependence of the blue shift on different values of two-dimensional
concentrations of dominant impurity (acceptor). The difference between acceptor and donor
energy levels can be presented as EDAP = Egap + EbD + EbA + e2/R, where EbD and EbA are
donor and acceptor binding energies, respectively; the fourth item in EDAP , i. e. e2/R, is the
Coulomb term. In the frameworks of our calculations the blue shift ∆Eblueshift is proportional
to the Coulomb term, i. e. inversely proportional to the distance between donor and acceptor
∆Eblueshift = e2/R. When the acceptor concentration is increasing (e. g. the concentration of
Si atoms [20]), donors (e. g. residual C atoms [20]) and acceptors become spatially closer, the
blue shift in the acceptor–donor transition peak takes place as a result of the increase of the
Coulomb term [22, 20]. So, the growth of doping level is the reason for the increase of the blue
shift.
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(a) (b)

Figure 9. a) The difference of absorbtion for transitions “conduction band → acceptor band”
(Acceptor) and “valence band→ donor band” (Donor) at L=100Å, mv/mc = 9. 2 (in GaAs QW).
b) The dependence of the blue shift (in a.u.) for transitions donor-acceptor vs concentration
of dominant (acceptor) impurity (after the averaging between D–A distance): squares are
experimental results [20], solid line is result of calculations [21], the left panel shows the domain
of low concentration, the right one shows the domain of high concentration.

4. Conclusion
In this paper we demonstrate effective methods of calculation of impurity states in the present
magnetic field for cases of QW, QWr and QD. As result of our investigation we can say
that adiabatic approach is good mechanism for describing the Coulomb systems in quantum
nanostructures. There are good agreement between adiabatic and variational procedures of
calculation of energy spectra and wave functions of impurities in QW, QWr, QD.
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