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Abstract
The variation of the multiply differential cross section of the (e, 2e) simple ionization of H3

+, with the
incident and ejection energy values, as well as the directions of the ejected and scattered electrons, is
studied. The calculations have been performed in the frame of the perturbative first Born procedure,
which has required the development of equilateral triangular three center bound and continuum state
wave functions. The results explore the optimal conditions and the particularities of the triangular
targets, such as the appearance of interference patterns in the variation of the four fold differential
cross section (FDCS) with the scattering angle for a fixed orientation of the molecule. The
comparison between the results obtained by two H3

+ ground wave functions, with and without a
correlation term r12, shows that the effect of correlation on the magnitude of the triple differential
cross section is not large, but it produces some modification in the structure of the FDCS.

Keywords: e, 2e ionization, H3
+, three center continuum wave function, electron molecule

collision

(Some figures may appear in colour only in the online journal)

1. Introduction

Hydrogen is the most abundant element in the universe. It
forms the simplest triatomic ion H3

+ in equilateral triangular
form [1–3], whose electronic structure has been largely stu-
died during different periods over the past century [4–10].

H3
+ is the subject of many studies concerning specially

the dissociative recombination with electrons [11, 12] or the
observations of its vibration-rotation band [13]. H3

+ is parti-
cularly important for the understanding of the complex
magnetic and ionospheric properties of planets [14, 15]. In the
domain of the interaction of radiation with matter, the time
evolution of H3

+ and its isotope D3
+ in the presence of intense

laser fields, are studied theoretically in [16, 17]. Actually, the

ionization of H3
+ is less frequently studied. In this domain, we

can mention the calculations of Morrison et al [18], who
applied the spline methods to the problem of the excitation of
H3

+ to the continuum by an electromagnetic field. Also, the
coincidence detection measurements, presented in [19], where
the cross sections of the dissociation by multi-photon simple
and double ionization of D3

+ are measured for given orienta-
tions of the molecular plane. This is realized by the coin-
cidence detection technique of the emerging fragments
(electrons and the D+

3 centers).
To our knowledge, the simple (e, 2e) ionization by

electron impact, which consists in coincidence detection of
the ejected and the scattered electrons emerging from a mono-
collision of an electron with a molecular gas [20–22], has not
been realized on H3

+ yet. We have in the past developed [23] a
two center continuum wave function describing the ejected
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electrons from diatomic H2
+. This model has been later

applied to the (e, 2e) ionization of H2 [24] to interpret the
interference effect of a two center target. It has also been
applied to the (e, 2e) of N2 [25] and to the (e, 3e) [26] and
(γ, 2e) [27, 28] double ionizations of N2. We have later
extended this model to linear three center targets and applied
it to the simple and double ionizations of the 1 gp , 1 up and 3 us
molecular orbitals of CO2 [29–31].

The aim of the present paper is to determine the multiply
differential cross section (MDCS) of the (e, 2e) process for fixed
and random orientations of H3

+ by extending the application of
the three center continuum wave (ThCC) representing the slow
ejected electron in the Coulomb field of the equilateral triangular
potential of the residual unstable H3

++ dication. We present the
favorable energy domains and collisional geometries to possible
future measurements. Many analytic and numerical efforts were
necessary for the evaluation of the MDCS. Some original
aspects of these calculations are presented in the appendices.

2. Theory

Let the common origin O of the laboratory and the body fixed
frame of reference be placed on the circumcenter of the
equilateral triangle of H3

+ of side ρ (see figure 1). We choose
the positions of the three protons by the vectors
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r ( ) defined by their body fixed cartesian coordinates.

The orientation of the molecule with respect to the
laboratory frame will be given by the Euler angles α, β and γ.
The MDCS of a general out-of-plane detection of the scat-
tered and ejected electrons in the case of an oriented triatomic
H3

+ target is fourfold. It is given by
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where d sW , d eW are, respectively, the elements of the solid
angles for the orientations of the scattered and the ejected
electrons. d , ,Wa b g represents the element of the solid Euler
angles for a given orientation of the H3

+ plane. ki, ks and ke
represent, respectively, the moduli of the wave vectors of the
incident, scattered and ejected electrons.

In the case of randomly oriented targets, we must pass to
the triple differential cross section (TDCS) by integrating over
all possible and equally probable orientations of the molecule
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Using the symmetry properties of the equilateral triangle, we
can show that

, , 2 , , 2

, , . 3

4 4

4

s a b g s p a b p g
s p a p b g

= - -
= - -

( ) ( )
( ) ( )

and

, , , ,
2

3
, ,

4

3
.

4

4 4 4s a b g s a b g
p

s a b g
p

= + = +⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠( )

( )

This will reduce the limits of integration ona, b and g . Thus,
we obtain
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The conservation of the energy is given by

E E E I, 6i s e= + + ( )

where Ei, Es and Ee represent, respectively, the energy values
of the incident, scattered and ejected electrons. I gives the
energy necessary to eject an electron from the H3

+ target for
the equilibrium internuclear distance 1.65 aur = . The
ionization process, which is much more rapid than the
ro-vibrational effects, can be seen as a vertical transition from
the ground state of H3

+ at the equilibrium internuclear to the
dissociative ground state of H3

++ at the same internuclear
distance. The separation of the rotational and vibrational
levels, which cannot be resolved in the actual (e, 2e)
experiments, can be done by applying the closure relations
over these levels. This is explained by Iijima et al [32] in the
case of electron scattering from diatomic targets.

The transition matrix element Tfi, the square modulus of
which is proportional to the probability of a particular event,
is a combination of three terms corresponding to the possible
quantum exchanges between the incident and the two bound
electrons, given by Shulz [33] after having taken into

Figure 1. The collision geometry for the orientation 0a b g= = = 
of the molecule.

2

J. Phys. B: At. Mol. Opt. Phys. 50 (2017) 145201 S Obeid et al



account the spin combination of the incident and the bound
electrons for the case of two electron targets. These terms
are, the direct term and the two exchange terms. In the direct
term, given below, the incident electron is supposed to
become the scattered in the final state. The first exchange
term corresponds to the transition in which the incident
electron and the ejected electron are supposed to be the
same, and finally the capture term or the exchange of the
second type, for which the incident electron and the final
state bound electron are supposed to be the same (see [33]).
In the relatively high incident electron energy domain ( 500>
eV) that we will explore, the contributions of the two last
exchange terms are negligible, with respect to the direct term
[33], which is given by

T

V

dR dr dr KR

r r R r r r r
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Here, the bar indicates the complex conjugate. R is the
position of the fast incident (scattered) electron, which we
will describe by plane waves having, respectively, the wave
vectors ki and ks. These two vectors define the scattering
plane (see figure 1). The z axis of the laboratory frame is
parallel to ki. r1, r2 refer to the positions of the target elec-
trons. K k ki s= - is the momentum transferred to the tar-
get. and V R r r, ,1 2( ) represents the Coulomb interaction
between the incident electron and the target given by
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Using the Bethe transformation for the position vector R of
the incident fast electron in equation (7)
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the transition matrix element Tfi will be reduced to
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2.1. The initial state wave function

For the initial state wave function r r r r, ,i 1 2 H 1 23
Y º Y +( ) ( ) of

H3
+ molecular ion at the equilibrium internuclear distance

1.65r = au, we choose the following solution
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P12 and a b cperm , ,{ } are, respectively, the operators that
permute electrons (1 2« ) and the three nuclei (a b c« « ).
In table 1 we present the numerical values of the parameters
for two functions. The first function corresponds to the one
that we determined with 6 variational parameters and the
second one with seven parameters, in which r12 is present. To
our knowledge, this function, which is constructed, for each
electron, by a product of three exponential functions, each
related to one of the nuclei (a b c, , ) was first given in [34].
They insure more rapid convergence in the determination of
the integrals than ordinary LCAO type functions. A similar
function was first employed for the diatomic case in [35] and
then in [36].

In appendices A–C we present some basic details for the
determination of the mono and bi-electronic integrals, that we
have met in the determination of this function by the varia-
tional method. We observe that, the introduction of the r12
correlation term ( 07a ¹ ) in the second function improves the
energy (E 1.331 48H3

= -+ to E 1.340 34H3
= -+ au). Here we

must mention that, the best total energy value EH3
=+

1.343 835 625 02- au is obtained by a trial wave function
containing 1000 explicitly correlated spherical Gaussian
terms [37], whose application in our calculation of the MDCS
would need very long and cumbersome computational efforts,
which is not realistic at this stage.

2.2. The final state wave function

Following [33], the final state wave function in the direct term
equation (10), describing the state of the ejected and bound
electrons is written by the following product

r r k r r, , . 14f c1 2 e 1 H 23
Y = Y Y ++( ) ( ) ( ) ( )

Here rH3
Y ++( ) and k r,c eY ( ) are, respectively, the discrete and

continuum state wave functions of the residual H3
++ mole-

cular ion and the ejected electron. As mentioned above, the
ionization process is considered as a vertical transition, so for
these functions 1.65 aur = , the equilibrium distance of the
target H3

+. For the present work we have made the choice to
apply for the bound electron, the following simple, but quite
satisfactory wave function

N r r rr exp , 15
a b c

a b cH H
perm , ,

1 2 33 3 å b b bY = - - -++ ++( ) ( ) ( )
{ }

that we determined with our variational procedure. It gives the
total energy value E 0.111 46 auH3

= -++ (table 2). In
appendices A and B we present some details of our approach
in the determination of the needed matrix elements. We must
mention here, that a similar wave function, but with 14
parameters and 25 exponential terms is available in [38]. It
results in a total energy value of E 0.111860 55 auH3

= -++ .
As mentioned above, the originality of the present paper

is also in the introduction, for the first time, of the three center

3
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description of the ejected electron in the field of H3
++, inspired

from [29]:
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The advantage of this function, compared to one center
models applied habitually to molecules, is that it satisfies the
exact asymptotic conditions and possesses, by its nature, the
triangular symmetry of the target
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The interaction between the ejected electron and the electron
cloud of the H3

++ ion is taken into account here through the

k

2

3

1x = - , which gives the real global charge of 2 ‘seen’ by
the ejected electron. This could be enough only for ejected
electrons with moderate energies values around 30 eV. We
are conscious that, for slower ejected electrons, the intro-
duction of the polarization of the electron cloud of the resi-
dual ion H3

++, which could brake the C v3 symmetry, and
eventually the second term of the Born series of the transition
matrix element, could have important effects. We have the
intention to introduce these effects in our future calculations.

3. Results and discussion

As we mentioned in the introduction, the aim of this paper is
to study the variation of the multiply differential cross
sections of the complete (e, 2e) experiment on H3

+ for typical
geometries, that can be realized in the near future. In fact,
coincidence detection measurements are already realized in
multi-photon dissociation and simple and double ionization
of oriented and randomly oriented D3

+ targets [19]. We will
try here, to extract to optimal experimental conditions,
which result in satisfactory number of counts of coincidence
events and analyze the electronic structure of the target and
the mechanisms of the ionization.

We begin first by the variation of the TDCS given by
equation (5) with the incident energy Ei. The wave vectors ki

and ks define the collision plane. We chose the z axis of the
laboratory frame parallel to ki. We fix the ejection energy
E 10 eVe = and the ejection direction parallel to the
momentum transfer. The angle of the scattered electron with
the incidence direction 1sq = - . The results of our calcula-
tions obtained by the application of both correlated and less
correlated wave functions are shown in figure 2. Both results
show that, for the random orientation of the target, the value
of the incident electron which gives the higher values of the
TDCS is around E 1300 eVi » . The small difference in
magnitude of the two curves shows that the introduction of
more electron-electron correlation between the bound elec-
trons by the introduction of 07a ¹ has little effect on the
simple ionization process, which is mostly caused by the

Table 1. The ground state energy, the norm and the variational parameters of the wave function equation (12) at the equilibrium internuclear
distance 1.65 aur = of H3

+.

EH3
+ (au) NH3

+
1a 2a 3a 4a 5a 6a 7a

Present −1.331 48 0.17628 −0.43129 0.35127 1.38683 1.09057 0.24560 0.39686 0.00000
[34] −1.34034 0.22115 −0.00353 0.18548 1.42450 1.04710 0.15082 0.58912 0.21632
[37] −1.343 835 625 02

Table 2. The total energy, the norm and the variational parameters of the wave function equation (15) for 1.65 aur = of H3
++.

EH3
++ (au) NH3

++
1b 2b 3b

Present −0.111 46 0.35121 1.28963 0.11826 0.32445
[38] −0.111 860 55

Figure 2. The variation of the TDCS of the (e, 2e) simple ionization
of H3

+ with the incident energy Ei. The energy of the ejected electron
E 10 eVe = . The scattering angle 1sq = - . The direction of the
ejected electron is parallel to the momentum transfer Keq q= . The
full line corresponds to the results obtained by the correlated initial
state wave function (12) with 07a ¹ . The dashed line, to those
obtained by the non-correlated initial state wave function (12)
with 07a = .
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exchange of energy and momentum between the incident and
the ejected electron.

We then pass to the variation of the TDCS with the
ejection energy, by considering the ‘best’ incident energy
Ei = 1300 eV obtained above, and keeping the same ejection
and scattering directions. We mentioned above that our pro-
cedure does not take into account the polarization of the
electron cloud of the residual ion, and that, the ThCC wave
function equation (16) would not be well adapted for very
slow ejected electrons. In spite of this, we made the choice to
begin our exploration with E 5 eVe = and go up to 100 eV,
knowing that for lower values of the energy, the results
should be considered as preliminary indications. We observe
in figure 3, that the TDCS decreases continuously. This can

be due to the fact that the scattering angle, being relatively
small 1sq = - , the modulus of the momentum transferred to
the target is also small, the ejected electron has less of a
chance to acquire high kinetic energy values.

In figure 4, we pass to the variation of the TDCS with the
ejection angle eq . In this case, we chose the experimental
conditions of the (e, 2e) set up of the University of Orsay
[25]. Here the energy of the scattered electron E 500 eVs =
detected at an angle 6sq = -  in coincidence with the ejected
electron energy E 37 eVe = . We observe that the position of
the first maximum around 60eq =  which corresponds to the
ejection direction parallel to the momentum transfer is
respected. The second maximum around 240eq =  corre-
sponds to the recoil peak. This shows that when one considers
random orientations of the target, the semi-classical analysis
for which, these two directions are favorable ejection direc-
tions of the (e, 2e) process are also true for the triatomic
targets.

Let us pass to a situation where the molecule has a fixed
orientation. This can be observed experimentally by detecting the
emerging nuclei in coincidence with the electrons for the desired
orientation [19]. We begin first by the variation of the four fold
differential cross section (FDCS) equation (1) with the scattering
angle sq . This is shown in figure 5. Here the molecular plane is
kept perpendicular to the incident direction ( 0a = , 0b =  and

0g = ). As sq varies between 0° and 180° degrees, we observe
interference patterns due to the three centers of the target, which
should play the role of obstacles, by analogy to optical inter-
ference set ups. These patterns should depend on the separation
of the three nuclei given by ρ and, thus, be a characteristic of a
given molecule. To verify this, we repeated, in the same con-
ditions, the calculation for the Li+ target, which can be consider

Figure 3. The variation of the TDCS with the ejected energy Ee. The
energy of the incident electron E 1300 eVi = . The other conditions
are similar to that of figure 2.

Figure 4. The variation of the TDCS in terms of the ejection angle eq .
The energy of the scattered electron E 500 eVs = , which is detected
at an angle 6sq = -  in coincidence with the ejected electron with
energy Ee = 37 eV. The results are obtained by the correlated initial
state wave function (12) with 07a ¹ .

Figure 5. The variation of the FDCS in terms of the scattering angle
sq , with the molecular plane perpendicular to ki, i.e. 0a = , 0b = 
and 0g = . The incident energy is Ei = 1300 eV. The ejected
electron with E 10 eVe = emerges in the direction of the momentum
transfer Keq q= . The full line represents the results obtained with the
correlated initial state wave function with 07a ¹ equation (12). The
dashed line gives the results for the ionization of Li+ target in the
same conditions.
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as the united atom limit of H3
+ . We observe that, as expected,

the interference pattern disappears as the triangular target
becomes a united atom.

In the following three cases we will rotate the molecule
around each of the three axes Ox, Oy and Oz. The results are
shown in figures 6–8, respectively. They show the variations
of the FDCS in polar representation ,where the polar angles

representing the angle of rotation of the molecule beginning
always from the initial orientation 0a = , 0b =  and

0g =  as shown in figure 1. The magnitude of the FDCS is
represented by the radius of a given point on the curve. We
recall that the direction of the incident electron is always
parallel to the z axis of the laboratory.

In the first case, we observe in figure 6 that the structure of
the curve is symmetrical around the line going from 0y =  to

180y =  and that going from 90y =  to 270y = . The
FDCS being maximal when 90y =  or 270y = , which
correspond to the situations for which the plane of the molecule
coincides with the collision plane formed by the vectors ki and
ks. This can be explained by the fact that, for these two orien-
tations of the molecule, the electron cloud of the target H3

+ from
which the ejected electron will emerge is parallel to the incident
electronic flux. Now comparing the two curves corresponding to
the two initial state wave functions we observe some small but
perceptible differences in magnitude and structure which, as we
mentioned for figure 2, should be a manifestation of electron–
electron correlation present more in the first wave function than
in the second.

In figure 7, we show in the same manner as in figure 6, the
variation of the FDCS for the rotation of the molecule around the
y axis, which we recall is perpendicular to the two parallel
vectors ke and K. Here the angle of rotation is given by β. To
analyze the particularities of the structure of this curve, we must
precise, that here 45Kq =  for this particular geometry. Now
when 45b =  or 225b =  the molecular plane will include the
vectors ke andK. When 135b =  and 315b =  the vectors ke

and K will be perpendicular to the molecular plane. These are
favorable orientations because the recoil momentum of the
molecule is perpendicular to the molecular plane. We also

observe that the symmetry condition 0, , 04 3

4
s f+ =p( )

0, , 04 3

4
s f-p( ) deduced by direct Euler angle transformation

properties, is respected in our result.

Figure 6. Variation of the FDCS in polar representation, where the
radius represents the magnitude of the FDCS and the polar angle ψ
represents the rotation around the x axis of the laboratory frame.
Initially 0a = , 0b =  and 0g = . Here the incident energy is
E 1300 eVi = , with the scattered angle 1sq = -  and the energy of
the ejected electron is E 10 eVe = , whose direction is parallel to the
momentum transfer Keq q= . The full line represents the results
obtained by the correlated initial state wave function (12) with

07a ¹ , and the dashed line represents those obtained by the non-
correlated initial state wave function (12) with 07a = .

Figure 7. The same as in figure 6, but for rotations around the y axis
with the angle β.

Figure 8. The same as in figure 6, but for the rotation around the
z axis with angle γ.
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We then pass to the rotation around Oz axis shown in
figure 8. Here 0a =  and 0b =  and the rotation angle is
represented by γ. Here also the the results of the calculation
confirm the expected symmetry inherent to the triangular
symmetry of the target. the three maxima of the curves cor-
respond to equivalent orientations of the molecule.

4. Conclusion

We have determined the MDCS of the (e, 2e) simple ioniz-
ation of H3

+ by employing perturbative first Born procedure
and the three center continuum wave function adapted to the
equilateral triangular case. We have explored the influence of
the initial state electron–electron correlation, determined
some favorable conditions and shown the particularities of the
triangular targets, specially the interference patterns in the
variation of the four fold differential for fixed orientation of
the molecular plane FDCS with the scattering angle. Our
calculations could be considered as exploratory in advance of
experimental results. We hope to introduce the polarization
effect of the residual ion H3

++ which is absent in the present
procedure in our future calculations.
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Appendix A. Determination of the three center basic
mono-electronic integral

Let us consider the three-dimensional integral
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During the numerical determination of this three center int-
egral, one must be very cautious to the singularities. Here we
present our approach to avoid the singular points. We begin
by replacing the following Fourier transform in the above
integral
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We then use the following relation
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Finally, the three-dimensional basic integral (A.3) takes the
following form, which presents the advantage of avoiding the
singular points
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Appendix B. Determination of the three center mono-
electronic matrix elements

We begin with the relations
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Letting

, , ,ij i j ij i j ij i jz z z h h h x x x= + = + = +

we can now express the matrix elements of the mono-electronic
kinetic energy, the Coulomb attraction and the normalization,
respectively, in terms of combinations of Jnlm:
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Appendix C. Determination of the three center bi-
electronic matrix elements

The Hamiltonian which describes the ion H3
+ under the

assumption that the protons are infinitely massive and located
at the vertices of an equilateral triangle of side ρ is written as

follows:

H
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We seek the initial state wave function r r,1 2Y( ) at the equi-
librium internuclear distance 1.65r = au [34]
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minimization techniques. We have
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can be calculated analytically.

Thus, we have to determine a six-dimensional repulsive
Coulomb integral of the following form:
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To avoid singular points in the numerical determination of
this type of integral we make a transformation of the angular
coordinates:
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The integral (C.5) is, thus, transformed to
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Applying the following change of variables
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Now using the change of variable 12q used in [39] we have
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Finally the above integral (C.5) can be given in terms of the
sum of two non-singular integrals
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