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Abstract—In the effective mass approximation for electronic (hole) states of a spheroidal quantum dot
with and without external fields the perturbation theory schemes are constructed in the framework of
the Kantorovich and adiabatic methods. The eigenvalues and eigenfunctions of the problem, obtained in
both analytical and numerical forms, were applied for the analysis of spectral and optical characteristics of
spheroidal quantum dots in homogeneous electric fields.
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1. INTRODUCTION

Quantum dots (QDs) are considered to be promis-
ing as the elementary basis for the new generation of
semiconductor devices [1, 2]. The unique opportunity
to perform the energy level control and flexible manip-
ulation in QDs is due to the full quantization of charge
carrier energy spectra in these systems. This allows
design and manufacturing of artificial structures with
prescribed quantum physical characteristics [3]. That
is why the scope of QDs potential applications is very
wide, from heterostructure lasers to nanomedicine
and nanobiology. An impressive example of such
application is represented by QD lasers possessing
low threshold current and high efficiency [3].

The peculiarities of physical processes in QDs
are caused by both their composition and geometry.
Electronic, kinetic, optical, and other properties of
QDs have been investigated experimentally and the-
oretically in many papers [4–13]. Particularly, the
optical absorption characteristics of QDs have been
shown to be strongly correlated with their geometry,
on the one hand, and with their physical–chemical
properties, on the other hand. In one of the first publi-
cations on optical transitions in QD [14] the interband
absorption of light was considered in the ensemble
of weakly interacting spherical QDs implanted in a
dielectric matrix. The dispersion of QD sizes was
characterized in the framework of Lifshitz–Slezov
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theory [15]. It was shown that in the absence of
size dispersion, due to the full quantization of charge
carriers energy spectra in QD, the absorption coeffi-
cient behaves like a delta function, and the absorption
threshold frequencies depend on the peculiarities of
electron and hole energy spectra. When the QD
size dispersion is taken into account, the averaging
procedure yields the absorption profile having finite
width and height.

Recently several reports concerning the experi-
mental implementation of narrow-band InSb QDs
have appeared [16, 17], in which the dispersion law
for electrons and light holes is non-parabolic and
described according to the double-band mirror Kane
model [18, 19]. For non-interacting band of heavy
holes the dispersion law is considered as quadratic.
The investigation of optical absorption peculiarities in
InSb QDs with the transitions from light and heavy
hole bands to the conduction band taken into account
is an interesting problem. Interband transitions in an
ensemble of cylindrical or spherical InSb QDs were
considered theoretically in the dipole approximation
with and without magnetic field, including exciton
effects, by means of the perturbation theory and
the adiabatic methods [20–22]. In our earlier work
we elaborated the calculation schemes, symbolic-
numerical algorithms (SNAs) and programs, based
on the generalized Kantorovich method (KM) for nu-
merical solving with required accuracy the boundary-
value problems (BVPs) of discrete and continuous
spectra describing the axial-symmetric models of
quantum wells (QWs), quantum wires (QWrs), and
quantum dots (QDs) in external fields within the
framework of the effective mass approximation [23–
35]. Meanwhile, for the analysis and estimations of
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the appropriate range of material parameters, spectral
and optical characteristics of QDs at the first stage
of investigation the approximate eigenvalues and
eigenfunctions evaluated in the analytical form were
applied [6–8, 14, 22]. It is a real challenge to specify
the range of applicability of such approximations in
the problems, depending on a few parameters [2], e.g.,
for impurity states of quantum wires in a homoge-
neous magnetic field [25].

With this aim in the present paper we report the
formulation and MAPLE-environment implementa-
tion of algebraic schemes of the Lennard-Jones (LJ)
and Rayleigh–Schrödinger (RS) perturbation theory
(PT) [36], permissive in the nondiagonal and diagonal
adiabatic approximations, respectively, to evaluate
in numerical and in analytic forms the eigenvalues
and eigenfunctions of models of spheroidal QDs in
homogeneous magnetic and electric fields. To con-
struct the required perturbation schemes, we choose
such models of spheroidal QDs, in which the basis
functions depending upon fast variables can be ex-
pressed in the analytic form. The region of the model
parameters, for which the PT asymptotic series are
applied, is estimated using the results of numerical
calculations carried out with required accuracy. The
efficiency of the schemes is demonstrated by the anal-
ysis of spectral characteristics of oblate and prolate
spheroidal QDs and also spherical QDs with cor-
responding shape of confinement well with walls of
infinite height under the influence of homogeneous
electric fields (HEFs). We apply the developed ap-
proach to the analysis of spectral characteristics of
oblate and prolate spheroidal QDs with parabolic and
non-parabolic dispersion laws under the influence of
HEFs, i.e., the quantum-confined Stark effect.

The paper is organized as follows. In Section 2 the
calculation scheme for solving elliptic BVP describ-
ing spheroidal QDs in homogeneous electric fields
using the Kantorovich method is presented. Section 3
is devoted to the description of the slow-variable PT
schemes in nondiagonal adiabatic approximation and
the comparison of the results with those of numerical
calculation with given accuracy. In Section 4 the
explicit PT scheme for evaluation of the basis func-
tions of the fast variable for oblate spheroidal QDs in a
homogeneous electric field is derived. Section 5 is de-
voted to the description of slow-variable PT schemes
in the diagonal adiabatic approximation for spheroidal
QDs in electric fields. The results evaluated here
in the analytic form are compared with numerical
ones to establish the range of their applicability. In
Section 6 the absorption coefficient for an ensemble
of spheroidal QDs with random dimensions of minor
semiaxis and with parabolic and non-parabolic dis-
persion laws for holes and electrons under the influ-
ence of HEFs is found using the calculated eigenval-

ues and eigenfunctions. In Conclusion we summarize
the results and discuss further applications.

2. STATEMENT OF THE PROBLEM

Let us consider an impurity localized in the center
of a QD and take the electron–hole interaction into
account. Then in the effective mass approximation
of the k · p theory the Schrödinger equation for the
slow-varying envelope wave function Ψ̃(r̃e, r̃h) of an
electron (e) and a hole (h) in a uniform magnetic field
H with the vector-potential A = 1

2H × r̃ and electric
field F in oblate and prolate QDs has the form [8]:{

H̃(r̃e, r̃h) − Ẽ
}

Ψ̃(r̃e, r̃h) = 0, (1)

H̃(r̃e, r̃h) =
∑
i=e,h

{
1

2μi

(
˜̂
ip − qi

c
A
)2

− qi(F · r̃i) + Ũconf(r̃i) −
qiqc

κ|r̃i|

}
+

qeqh

κ|r̃e − r̃h|
.

Here, r̃i is the radius-vector, |r̃i| =
√

x̃i
2 + ỹi

2 + z̃i
2,

˜̂
ip = −ı�∇r̃i is the momentum, Ẽ is the energy of the

particles, qe = −e, qh = +e, and qc are the Coulomb
charges of the electron, the hole, and the impurity
center, κ is the dc permittivity, μi = βe(h)m0 is the
effective mass of electron or hole, m0 is the mass of
electron. For the model under consideration, Ũ(r̃) is
the potential of a spherical or axially-symmetric well

Ũ(r̃i) = {0, S(r̃i) < 0; Ũ0, S(r̃i) ≥ 0}, (2)

bounded by the surface S(r̃i) = 0 with walls of infi-
nite height (infinite potential barrier model, IPBM)
or finite height 1 � Ũ0 < ∞ (finite potential barrier
model, FPBM). In Eq. (2) S(r̃i) depends on the pa-
rameters ã, c̃, which are semiaxes of a spheroidal QD,

S(r̃i) ≡ (x̃2
i + ỹ2

i )/ã
2 + z̃2

i /c̃2 − 1. (3)

Below we restrict ourselves to IPBMs of spheroidal
QDs with possible influence of the uniform electric
field F = (0, 0, F ), the magnetic field being switched
off, H = 0, and the Coulomb interaction of the
electron and the hole with the impurity center being
absent, qc = 0. In this case the wave function
Ψ̃(r̃e, r̃h) = Ψ̃e(r̃e)Ψ̃h(r̃h) is factorized. So, we arrive
at the 3D BVPs for unknowns Ψ̃e(r̃e) and Ẽe or
Ψ̃h(r̃h) and Ẽh. The eigenvalues and eigenfunctions
needed to evaluate the absorption coefficients (ACs)
were calculated with prescribed accuracy by means
of the program packages ODPEVP and KANTBP
[28–30]. The models with nonzero values of these pa-
rameters were announced in [8, 25]. Throughout the
paper we make use of the reduced atomic units [2, 5]:
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a∗B = κ�
2/(μpe

2) is the reduced Bohr radius, ẼR ≡
Ry∗ = �

2/(2μpa
∗2
B ) is the reduced Rydberg unit of

energy, and the following dimensionless quantities are

introduced: Ψ̃(r̃) = a∗B
−3/2Ψ(r), 2Ĥ = ˜̂

H/Ry∗, E ≡
2E = Ẽ/Ry∗, 2U(r) = Ũ(r̃)/Ry∗, r = r̃/a∗B, a =
ã/a∗B, c = c̃/a∗B, 2γF = F/F ∗

0 , F ∗
0 = Ry∗/(ea∗B) =

e/(2κ(a∗B)2).

2.1. The BVP for SQDs in the Effective Mass
Approximation

In cylindrical coordinates z, ρ, ϕ the solution of
Eq. (1), periodical with respect to the azimuthal angle
ϕ, is sought in the form of a product Ψ(ρ, z, ϕ) =
Ψm(ρ, z)exp (imϕ)/

√
2π, where m = 0,±1,±2, ... is

the magnetic quantum number. The 3D BVP for
spherical QDs (SQDs) at fixed values of m is reduced
to 2D BVP with respect to fast xf and slow xs

variables: oblate xf = z (minor axis), xs = ρ (major
axis) and prolate xf = ρ (minor axis), xs = z (major
axis) [27]:(

Ĥf (xf ;xs) + Ĥs(xs) + V̌fs(xf , xs) − Em
t

)
(4)

× Ψm
t (xf , xs) = 0.

Here, Ĥs(xs) is the operator of slow subsystem

Ĥs(xs) = − 1
g1s(xs)

∂

∂xs
g2s(xs)

∂

∂xs
+ V̌s(xs), (5)

and Ĥf(xf ;xs) is the operator of fast subsystem

Ĥf (xf ;xs) = − 1
g1f (xf )

∂

∂xf
g2f (xf )

∂

∂xf
(6)

+ V̌f (xf ;xs).

For oblate spheroidal QD (OSQD) g1s(xs) =
g2s(xs) = 1, g1f (xs) = g2f (xs) = ρ, V̌f (xf ;xs) = 0,
V̌s(xs) = m2/ρ2, V̌fs(xf , xs) = 2γF z, while for pro-
late spheroidal QD (PSQD) g1s(xs) = g2s(xs) = ρ,
g1f (xs) = g2f (xs) = 1, V̌f (xf ;xs) = m2/ρ2, V̌s(xs) =
2γF z, V̌fs(xf , xs) = 0. From (2) it follows that the
boundary conditions for the eigenfunctions Ψm

t (xf , xs)
of SQDs, corresponding to a well with walls of infinite
height, have the form

lim
ρ→0

(
ρ
∂Ψm

t (ρ, z)
∂ρ

δ0m + Ψm
t (ρ, z)(1 − δ0m)

)
= 0,

Ψm
t (ρ, z)

∣∣∣∣
∂Ω2

= 0,

Ω2 =
(
{ρ, z}

∣∣∣∣
ρ2

a2
+

z2

c2
< 1

)
,

∂Ω2 =
(
{ρ, z}

∣∣∣∣
ρ2

a2
+

z2

c2
= 1

)
.

The eigenfunctions Ψm
t (xf , xs) corresponding to the

eigenvalues Em
t = Em

1 < Em
2 , ... are subject to the

normalization and orthogonality conditions∫

Ω2

ρdρdzΨm
t (ρ, z)Ψm

t′ (ρ, z) = δtt′ .

Note, that at γF = 0 the solutions are separated by
the z-parity σ = ±1 into two invariant subspaces
Ψmσ

t corresponding to the eigenvalues Emσ
t = Emσ

1 <
Emσ

2 , ..., while at γF 	= 0 the z-parity is violated.

2.2. Kantorovich or Adiabatic Reduction of the BVP

The solution Ψt(xf , xs) ≡ Ψm
t (xf , xs) of the above

problem at fixed m is sought in the form of Kan-
torovich expansion

Ψt(xf , xs) =
jmax∑
j=1

Bj(xf ;xs)χjt(xs). (7)

The set of appropriate trial functions is chosen as the
set of eigenfunctions Bj(xf ;xs) corresponding to the
eigenvalues Êj(xs) of the Hamiltonian Ĥf (xf ;xs),
Eq. (6), depending parametrically on xs ∈ Ω(xs):

Ĥf (xf ;xs)Bj(xf ;xs) = Êj(xs)Bj(xf ;xs).

The eigenfunctions Bj(xf ;xs) corresponding to the
eigenvalues Êj(xs) = Ê1(xs) < Ê2(xs), ... are sub-
ject to the normalization and orthogonality conditions
with the weighting function g1f (xf ) in the same in-
terval xf ∈ Ωxf

(xs):

xmax
f (xs)∫

xmin
f (xs)

Bi(xf ;xs)Bj(xf ;xs)g1f (xf )dxf = δij . (8)

The BVP for a set of second-order differential equa-
tions (ODEs) of the slow subsystem with respect to
the unknown vector functions χt(xs) = (χ1;t(xs), ...,
χjmax;t(xs))T corresponding to the unknown eigenval-
ues 2Et ≡ Et,(

D + E(xs) + W(xs) − IEt

)
χt(xs) = 0, (9)

D = − 1
g1s(xs)

I
d

dxs
g2s(xs)

d

dxs
+ IV̌s(xs),

W(xs) = U(xs) +
g2s(xs)
g1s(xs)

H(xs)

+
1

g1s(xs)
dg2s(xs)Q(xs)

dxs
+

g2s(xs)
g1s(xs)

Q(xs)
d

dxs
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satisfy the orthogonality and normalization condi-
tions

xmax
s∫

xmin
s

(χt(xs))T χt′(xs)g1s(xs)dxs = δtt′ . (10)

Here the effective potentials Hij(xs) and Qij(xs) are
defined by the formula

Uij(xs) = Uji(xs) =

xmax
f (xs)∫

xmin
f (xs)

(11)

× Bi(xf ;xs)V̌fs(xf , xs)Bj(xf ;xs)g1f (xf )dxf ,

Hij(xs) = Hji(xs)

=

xmax
f (xs)∫

xmin
f (xs)

∂Bi(xf ;xs)
∂xs

∂Bj(xf ;xs)
∂xs

g1f (xf )dxf ,

Qij(xs) = −Qji(xs)

= −

xmax
f (xs)∫

xmin
f (xs)

Bi(xf ;xs)
∂Bj(xf ;xs)

∂xs
g1f (xf )dxf .

The basis functions of the fast subsystem and the ma-
trix elements are calculated analytically. For OSQDs
(xf = z, xs = ρ)

Bi (xf ;xs) = Bσ
i (xf ;xs) (12)

=

√
a

c
√

a2 − x2
s

sin

(
πno

2

(
xf

c
√

1 − x2
s/a

2
− 1

))
,

Ei(xs) = Eσ
i (xs) = Ei;0

a2

(a2 − x2
s)

,

Ei;0 =
π2i2

4c2
, Uii(xs) = 0,

Uij(xs) = Uij;0

√
a2 − x2

s

a
,

Uij;0 =
8γF cij(−1 + (−1)i+j)

(i2 − j2)2π2
,

Hii(xs) = Hii;0
a2x2

s

(a2 − x2
s)2

,

Hii;0 =
3 + π2i2

12a2
,

Hij(xs) = Hij;0
a2x2

s

(a2 − x2
s)2

,

Hij;0 =
2ij(i2 + j2)(1 + (−1)i+j)

a2(i2 − j2)2
,

Qij(xs) = Qij;0
axs

a2 − x2
s

,

Qij;0 =
ij(1 + (−1)i+j)

a(i2 − j2)
, j 	= i.

For PSQDs (xf = ρ, xs = z) (at m = 0 for nondiag-
onal potentials i 	= j)

Bm
nρp

(xs) =
√

2c

a
√

c2 − x2
s

(13)

×
J|m|

(√
2Enρp+1,|m| (xs)xf

)

|J|m|+1(αnρp+1,|m|)|
,

Ei (xs) = Ei;0
c2

(c2 − x2
s)

, Ei;0 =
(J̄ i

|m|)
2

a2
,

Uii(xs) = 0, Uij(xs) = 0,

Hii(xs) = Hii;0
c2x2

s

(c2 − x2
s)2

,

Hii;0 =
(1 + (J̄ i

|m|)
2)

3c2
,

Hij(xs) = Hij;0
c2x2

s

(c2 − x2
s)2

,

Hij;0 =
2
c2

⎛
⎝J̄ i

0J̄
j
0

1∫

0

J1(J̄ i
0x)

J1(J̄ i
0)

J1(J̄
j
0x)

J1(J̄
j
0 )

x3dx

− J̄ i
0

1∫

0

J1(J̄ i
0x)

J1(J̄ i
0)

J0(J̄
j
0x)

J1(J̄
j
0 )

x2dx

− J̄j
0

1∫

0

J0(J̄ i
0x)

J1(J̄ i
0)

J1(J̄
j
0x)

J1(J̄
j
0 )

x2dx

⎞
⎠ ,

Qij(xs) = Qij;0
cxs

c2 − x2
s

,

Qij;0 =
2
c
J̄j

0

1∫

0

J0(J̄ i
0x)

J1(J̄ i
0)

J1(J̄
j
0x)

J1(J̄
j
0 )

x2dx, j 	= i,

where αnρp+1,|m| = J̄
nρp+1
|m| are positive zeros of the

Bessel function of the first kind [37].
For the interesting lower part of the spectrum

Et: E1 < E2 < ..., the number jmax of the equations
solved should be at least not less than the number
of the energy levels of the problem (9) at a = c =
r0. To ensure the prescribed accuracy of calcula-
tion of the lower part of the spectrum discussed be-
low with eight significant digits we used jmax = 16
basis functions in the expansion (8) and the dis-
crete approximation of the desired solution by La-
grange finite elements of the fourth order with respect
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Table 1. The convergence of eigenenergy Et vs number jmax of basis functions at γF = 0 (Fast and slow variables xf = z
and xs = ρ (oblate spheroidal QD and spherical QD), number of nodes i = (nzo = no − 1, nρo))

jmax a = 2.5, c = 0.5 a = 2.5, c = 2.5

(nzo, nρo) (0, 0) (0, 1) (2, 0) (0, 0) (0, 1) (2, 0)

C 12.73741 19.93621 96.69683∗ 1.468496 5.445665∗ 5.589461

1 12.76548 20.04602 96.75317∗ 1.590238 5.766612∗ 6.004794

2 12.76490 20.04133 96.75427 1.580243 5.340214 6.329334

4 12.76482 20.04074 96.75215 1.579273 5.316872 6.317204

16 12.76481 20.04065 96.75201 1.579140 5.314832 6.316562

Exact 1.579136 5.314793 6.316546
∗ Diagonal approximation at j = 2.

Table 2. The convergence of eigenenergy Et vs number jmax of basis functions at γF = 0 (Fast and slow variables xf = ρ
and xs = z (prolate spheroidal QD and spherical QD), number of nodes i = (nρp, nzp))

jmax c = 2.5, a = 0.5 c = 2.5, a = 2.5

(nρp, nzp) (0, 0) (0, 2) (1, 0) (0, 0) (0, 2) (1, 0)

C 25.18473 34.42885 126.4245∗ 1.493612 5.131784 5.898668∗

1 25.20174 34.53030 126.4565∗ 1.584433 5.680831 6.071435∗

2 25.20129 34.52578 126.4573 1.579860 5.331101 6.324717

4 25.20121 34.52512 126.4561 1.579239 5.316732 6.317058

16 25.20120 34.52502 126.4561 1.579138 5.314828 6.316554

Exact 1.579136 5.314793 6.316546
∗ Diagonal approximation at j = 2.

to the grid pitch Ωp
hs

(xs) = [xs;min;xs;k = xs;k−1 +
hs;xs;max]. The details of the corresponding compu-
tational scheme are given in [24].

The convergence of eigenenergies Et vs num-
ber jmax of basis functions for oblate and prolate
spheroidal QDs, and for spherical QD is shown on
Tables 1 and 2 at γF = 0 and m = 0. The considered
QDs having the size comparable with de Broglie
wavelength of composed particles with small effective
masses are referred as quantum-size systems. In the
spheroidal QDs having different length of minor and
major axes the quantization procedure leads to differ-
ent transversal and longitudinal spectra. Moreover,
for PSQD (c = 2.5, a = 0.5) the confinement in two
variables (xy) with the minor semiaxis a = 0.5 leads
to greater eigenvalues, than the confinement in one
variable (z) with the size-for-size minor semiaxis a =
0.5 for PSQD (c = 2.5, a = 0.5). Tables 1, 2 and 3–
7 (see below) show that the expansions in basis
functions (12) and (13) in cylindrical coordinates have
better rate of convergence in the adiabatic limit of

strongly oblate and prolate QDs than for the bench-
mark spherical QDs with the known spectrum, which
is not surprising. For lower states the crude adiabatic
approximation (without Hjj(xs)) (CAA) provides a
lower estimate, while the adiabatic approximation
(AA) (with Hjj(xs)) (1) gives an upper estimate, such
that at the ratio of minor to major semiaxis equal to
1/5 the bracket is approximated with the accuracy of
∼0.1%.

Below we present the analysis of the spectrum
under the variation of parameters, which opens the
questions about the additional symmetry of the prob-
lem, associated with the existence of exact and ap-
proximate integrals of motion [27, 38].

In Fig. 1 we show the eigenenergies of the lower
part of the spectrum Et, t = 1, ..., 40, at m = 0 for
OSQD (c = 0.5, 1, 1.5, 2, a = 2.5), SQD (c = 2.5,
a = 2.5), and PSQD (c = 2.5, a = 0.5, 1, 1.5, 2) as
functions of the dimensionless strength γF of the
electric field. In spite of the fact that at γF = 0 the
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Fig. 1. Dependence of eigenenergiesE (in units of Ee) of lower part of spectrum of electronic states of QDs at m = 0 on electric
field strength γF (in units of F ∗

0 ): for spherical quantum dot (SQD) with radius a = c = 2.5, oblate and prolate spheroidal
quantum dots (OSQD and PSQD) at different minor semiaxis (for OSQD c = 0.5, 1, 1.5, 2, a = 2.5, for PSQD c = 2.5,
a = 0.5, 1, 1.5, 2).

eigenfunctions of SQD, OSQD, and PSQD have
definite z-parity, and, therefore, exhibit additional
integrals of motion and separation of variables in
spherical and spheroidal coordinates systems, the
spectrum of eigenvalues at fixed m is simple, i.e.,
nondegenerate, similar to the case γF 	= 0, when the
eigenfunctions have no definite z-parity. At γF = 0 a
one-to-one correspondence rule nρp + 1 = np = i =
n = nr + 1, i = 1, 2, ..., and nzp = l − |m| holds be-
tween the quantum numbers (n, l,m, σ̂ = (−1)|m|σ)
of SQD with the radius r0 = a = c, the spheroidal
quantum numbers {nξ = nr, nη = l − |m|,m, σ} of
PSQD with the major c and the minor a semiaxes,
and the adiabatic set of quantum numbers [np =
nρp + 1, nzp,m, σ] under the continuous variation
of the parameter ζac = a/c. At γF = 0 there is
a one-to-one correspondence rule no = nzo + 1 =
2n − (1 + σ)/2, n = 1, 2, 3, ..., and nρo = (l − |m| −
(1 − σ)/2)/2, between the sets of spherical quantum
numbers (n, l,m, σ̂ = (−1)|m|σ) of SQD with the ra-
dius r0 = a = c and spheroidal ones {nξ = nr, nη =
l − |m|,m, σ} of OSQD with the major a and the

minor c semiaxes, and the adiabatic set of cylindrical
quantum numbers [no = nzo + 1, nρo,m, σ] under the
continuous variation of the parameter ζca = c/a.

One can see that when the parameter γF in-
creases, the eigenvalues Et decrease faster for SQD,
slower for PSQD and even more slower for OSQD,
because the influence of the electric field for OSQD
at c = 0.5 is essentially weaker than for PSQD at c =
2.5. With increasing γF a series of exact crossings
of eigenenergies with different values of quantum
numbers for PSQD and OSQD occur at γF � 20
and a series of avoided crossings for SQD occur at
γF � 10. With further growth of the parameter they
first increase and then begin to decrease. Indeed,
with the growth of γF the eigenfunctions with smaller
number of nodes in the longitudinal variable z are
localized (see Fig. 2) in the vicinity of the equilibrium
point, and the corresponding eigenenergies decrease.
Increasing the number of nodes is accompanied with
delocalization of the wave functions, and the corre-
sponding eigenenergies increase and then decrease
again. For PSQD the density of states per unit
energy for the eigenfunction with the same number
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Fig. 2. (a) Eigenfunctions of sixth order of PT of 2D BVP for OSQD a = 5, c = 0.5 (t = nzo = 0, n = no = 1, 2, 3, 4, m = 0)
in electric field γF = −10 (weak asymmetry by z-axis i.e. by minor ellipsoid axis). (b) Eigenfunctions of sixth order of PT of 2D
BVP for PSQD c = 2.5, a = 0.5 (t = nρp = 0, n = np = 0, 1, 2, 3, 4, m = 0) in electric field γF = −1 (asymmetry by z-axis
i.e. by major ellipsoid axis).

of nodes nρp in the transverse variable ρ is greater
(i.e., the separation between the adjacent energy
levels is smaller) than the density of states for the
function having the same number of nodes nzp in the
longitudinal variable z. For this reason in Fig. 1 one
can see three crossing series of curves with different
number of ρ nodes nρp = 0, 1, 2, the lower of them
(e.g., with a = 0.5, nρp = 0, and nzp from 0 to 12)
are decreasing at all γF ≥ 0, while the upper ones
(e.g., with a = 0.5, nρp = 0, and nzp starting from
13) with the energies, exceeding that of the state
(nρp = 1) without z nodes (nzp = 0), increase from
the beginning and then start to decrease. Thus, at
small γF the energy levels for the groups of states with
even nρp = 0, 2, ... and odd nρp = 1, 3, ... number of
nodes are repulsing and crossing.

For OSQD, on the contrary, the number of energy
levels per unit energy for the eigenfunctions having
the same number nρo of ρ nodes is smaller (i.e., the
separation between the adjacent levels is larger) than
that for the eigenfunctions having the same number
nzo of z nodes. Therefore, in Fig. 1 one can see
four crossing series of almost “parallel” curves with
different number nzo = 0, 1, 2, 3 of z nodes.

For OSQD and PSQD the crossings of the energy
levels that occur with increasing γF are similar to the
exact crossings of the energy levels with decreasing c
semiaxis in OSQD and PSQD without electric field
(γF = 0), i.e., we observe the accidental degeneracy,
which is known to be generally associated with the

existence of an additional integral of motion [27] and
with the separability of variables in oblate and pro-
late spheroidal coordinate systems. Thus, from our
observations it follows that an additional approximate
integral of motion should exist.

For SQD eigenfunction with different numbers of
ρ and z nodes, nρ and nz , and with increasing γF

the series of crossings become mixed. Note, that the
eigenenergies of the states with the same z-parity at
γF = 0 are repulsed with increasing γF (e.g., [t = 9,
n = 1, l = 5, E9(γF = 0) = 14.01] and [t = 10, n =
3, l = 0, E10(γF = 0) = 14.21]), but the states with
different z-parity are attracted (e.g., [t = 7, n = 1,
l = 4, E7(γF = 0) = 10.71] and [t = 8, n = 2, l = 2,
E8(γF = 0) = 13.24]). This fact should be also asso-
ciated with the existence of approximate integrals of
motion. Indeed, from Fig. 1 one can see that for SQD
at a = c = 2.5 with increasing γF the series of exact
crossings appear.

3. THE PTLJ IN NONDIAGONAL ADIABATIC
APPROXIMATION

We expand the potentials (12) and (13) of the
BVP (9) and (10) in Taylor series in the vicinity of
xs = 0:

Ei(xs) = Ei;0 +
kmax∑
k=1

Ei;0

τ2k
x2k

s , (14)
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Uij(xs) = Uij;0 +
kmax∑
k=1

Ũij;k

τ2k
x2k

s ,

Hij(xs) =
kmax∑
k=1

k
Hij;0

τ2k
x2k

s ,

Qij(xs) =
kmax∑
k=1

Qij;0

τ2k−1
x2k−1

s ,

where Ũij;k = (2k−3)!!
(2k)!! Uij;0 and the parameter τ equals

τ = a for OSQD, and τ = c for PSQD. Substitution
of expansions (14) into Eq. (9) leads to the BVP
for a set of ODEs of the slow subsystem with
respect to the unknown vector functions χt(xs) =
(χ1;t(xs), ..., χjmax;t(xs))T corresponding to the un-
known eigenvalues 2Et ≡ Et:(

D(0) + (Ei;0 − Et) + V̌s(xs) (15)

+
kmax∑
k=1

Ei;0 + kHii;0

τ2k
x2k

s

)
χi;t(xs)

+
jmax∑
j �=i

kmax∑
k=1

(
Ũij;k

τ2k
x2k

s + k
Hij;0

τ2k
x2k

s

+ (2k − 1)
Qij;0

τ2k−1
x2k−2

s

+ 2
Qij;0

τ2k−1
x2k−1

s

d

dxs

)
χj;t(xs) = 0,

where Ũij;k is given by the expansion (14) and
V̌s(xs) = 0 for OSDQ; Uij(xs) = 0 and V̌s(xs) =
γF z for PSDQ. We choose the unperturbed operator
to have the eigenvalues and basis functions of 2D and
1D oscillators. For the OSQD (2D oscillator) with
respect to the scaled slow variable x we have xs =

ρ =
√

x/
√

Ef , where Ef = (Ei′;0 + Hi′i′;0)/(4a2) =

ω2
i′/4, i.e., the adiabatic frequency, at given i′ = no

L (n) = D(0) − E(0), (16)

D(0) = −
(

d

dx
x

d

dx
− x

4
− m2

4x

)
,

E(0) ≡ E(0)
n,m = n + (|m| + 1)/2,

Φ
(0)

q (x) =
√

q!x|m|/2 exp(−x/2)L|m|
q (x)√

(q + |m|)!
,

∞∫

0

Φ
(0)

q (x)Φ
(0)

q′ (x)dx = δqq′ .

Therefore, the action of the operators L(n) and x on

the function Φ(0)
q (x) ≡ Φ(0)

q,m(x) is determined by the
recurrence relations [37]

L(n)Φ(0)
q,m(x) = (q − n)Φ(0)

q,m(x), (17)

xΦ(0)
q,m(x) = −

√
q + |m|√qΦ(0)

q−1,m(x)

+ (2q + |m| + 1)Φ(0)
q,m(x)

−
√

q + |m| + 1
√

q + 1Φ(0)
q+1,m(x),

x
dΦ(0)

q,m(x)
dx

= −
√

q + |m|√qΦ(0)
q−1,m(x)/2

− Φ(0)
q,m(x)/2 +

√
q + |m| + 1

√
q + 1Φ(0)

q+1,m(x)/2.

For PSQD (1D oscillator) with respect to the
scaled slow variable x xs = x/ 4

√
Ef , where Ef =

(Ei′;0 + Hi′i′;0)/c2 = ω2
i′ , i.e., the adiabatic frequency,

at given i′ = np, we have

L (n) = D(0) − E(0), D(0) = − d2

dx2
+ x2, (18)

E(0) ≡ E(0)
n = 2n + 1, n = 0, 1, ....,

Φ
(0)

q (x) =
exp(−x2/2)Hq(x)

4
√

π
√

2q
√

q!
,

∞∫

−∞

Φ
(0)

q (x)Φ
(0)

q′ (x)dx = δqq′ .

Correspondingly, the action of operators L(n), x

and d/dx on function Φ(0)
q (x) is determined by the

recurrence relations [37]

L(n)Φ(0)
q (x) = 2(q − n)Φ(0)

q (x), (19)

xΦ(0)
q (x) =

√
q√
2
Φ(0)

q−1(x) +
√

q + 1√
2

Φ(0)
q+1(x),

d

dx
Φ(0)

q (x) =
√

q√
2
Φ(0)

q−1(x) −
√

q + 1√
2

Φ(0)
q+1(x).

The eigenfunctions (15) as functions of the new
scaled variable x are sought in the form of expansion

over the basis of the normalized functions Φ(0)
q (x),

q = 0, 1, ..., of the 2D or 1D oscillators with unknown
coefficients bj,s:

χj;t(x) =
qmax∑
q=0

bj,q;tΦ(0)
q (x), (20)

bj,q<0;t = bj,q>qmax;t = 0.

Below we demonstrate that such expansions are
appropriate for getting approximate solutions in the
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Table 3. The convergence of eigenenergies Et of Eq. (23) vs order kmax of approximation of effective potentials from (14)
for jmax = 4 and qmax = 60 basis functions at γF = 0 (Fast and slow variables xf = z and xs = ρ (oblate spheroidal QD
and spherical QD), number of nodes i = (nzo = no − 1, nρo))

kmax a = 2.5, c = 0.5 a = 2.5, c = 2.5

(nzo, nρo) (0, 0) (0, 1) (2, 0) (0, 0) (0, 1) (2, 0)

8 12.66820 19.06745 96.71486 1.192415 2.998982 5.325360

12 12.74967 19.81383 96.75070 1.377572 4.088539 5.868629

20 12.78407 19.83842 96.75172 1.132323 5.084082 6.735687

N(jmax = 4) 12.76482 20.04074 96.75215 1.579273 5.316872 6.317204

lower part of the BVP spectrum (9) and (10). Substi-
tution of the expansion (20) into (15) yields the set of
equations

qmax∑
q=0

Âiibi,q;tΦ(0)
q (x) (21)

+
jmax∑

j �= i=1

qmax∑
q=0

Âijbj,q;tΦ(0)
q (x)

=
qmax∑
q=0

κ−2EtE
−1/2
f bi,q;tΦ(0)

q (x),

Âii =

(
D(0) + V̌s(x)E−3/4

f

+ κ−2Ei;0E
−1/2
f + κ−2

kmax∑
k=1

Ei;0 + kHii;0

τ2kE
(k+1)/2
f

x2k

)
,

Âij = κ−2
kmax∑
k=1

(
Ũij;k + kHij;0

τ2kE
(k+1)/2
f

x2k
s

+
Qij;0

τ2k−1E
k/2
f

(
(2k − 1)x2k−2 + 2x2k−1 d

dx

))
,

where κ = 2 and V̌s(xs) = 0 for OSQD; κ = 1 and
V̌s(x) = γF x for PSQD. Applying the relations (17)
or (19) to get first the derivatives of the basis func-
tions, we get the expressions for the action of opera-
tors Âij :

ÂijΦ(0)
q (x) =

qmax∑
q′=0

αij;qq′Φ
(0)
q′ (x) (22)

and, hence, the algebraic eigenvalue problem with

respect to the unknown Et and bj,q;t

qmax∑
q=0

αii;q′qbi,q;t +
jmax∑

j �= i=1

qmax∑
q=0

αij;q′qbj,q;t (23)

= κ−2EtE
−1/2
f bi,q;t.

In the matrix form it reads as

ABt = κ−2EtE
−1/2
f Bt, BT

t′Bt = δtt′ ,

where Bt = (b1,0;t, b1,1;t, ..., b1,qmax;t, b2,0;t, ...,

bjmax,qmax;t)T is a vector with dimension of
jmax(qmax + 1), and A is a positive defined symmetric
matrix having the dimensions (jmax(qmax + 1)) ×
(jmax(qmax + 1)) with the elements
A(qmax+1)(i−1)+q+1,(qmax+1)(j−1)+q′+1 = αij;qq′.

Note, that the approximation with nonzero
elements on the diagonal of the matrix

A = {αii;q′q}(qmax)
q′,q=0δi=i0,j=i0, obtained by the action

of the diagonal operator Âii, Eq. (21), on the basis

function Φ(0)
q (x), Eq. (22), gives the diagonal adia-

batic approximation (AA) of PTLJ solution (23), i.e.,
Et ≈ Ei;n, n = 0, 1, ..., at each fixed i. Such adiabatic
classification of the eigenenergies is used in tables
discussed below.

The convergence of eigenenergies of Eq. (23) vs
the order kmax of approximation of the effective po-
tentials (14) for jmax = 4 and qmax = 60 is shown
in Tables 3 and 4 for OSQD, PSQD, and SQD at
γF = 0 and in Table 5 at γF = −10 for PSQD and
SQD. Table 4 shows that for PSQD we have upper
estimate and monotonic convergence with increasing
kmax to the numerical results at jmax = 4. Similar be-
havior is observed for OSQD, however, the accuracy
of approximation of the effective potentials is worse,
especially for the lowest effective potential i′ = 1, cor-
responding to the ground state of the fast subsys-
tem, because the upper estimates are violated. These
tables show also that such expansions have faster
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Table 4. The convergence of eigenenergies Et of Eq. (23) vs order kmax of approximation of effective potentials from (14)
for jmax = 4 and qmax = 60 basis functions at γF = 0 (Fast and slow variables xf = ρ and xs = z (prolate spheroidal QD
and spherical QD), number of nodes i = (nρp, nzp))

kmax c = 2.5, a = 0.5 c = 2.5, a = 2.5

(nρp, nzp) (0, 0) (0, 2) (1, 0) (0, 0) (0, 2) (1, 0)

8 25.17914 34.07677 126.4459 1.471911 4.270174 5.614892

12 25.19962 34.46884 126.4560 1.536121 4.716984 6.188144

20 25.20116 34.52202 126.4561 1.563492 5.182198 6.266533

N(jmax = 4) 25.20121 34.52512 126.4561 1.579239 5.316732 6.317058

Table 5. The convergence of eigenenergies Et of Eq. (23) vs order kmax of approximation of effective potentials from (14)
for jmax = 4 and qmax = 60 basis functions at γF = −10 (Fast and slow variables xf = ρ and xs = z (prolate spheroidal
QD and spherical QD), number of nodes i = (nρp, nzp))

kmax c = 2.5, a = 0.5 c = 2.5, a = 2.5

(nρp, nzp) (0, 0) (0, 2) (1, 0) (0, 0) (0, 2) (1, 0)

8 20.22165 30.91336 125.3062 –19.67398 –5.378707 –1.784110

12 20.60733 32.37540 125.3316 –15.34850 –6.881266 –2.605091

20 20.65846 32.67445 125.3322 –12.19445 –2.204160 –1.336853

N(jmax = 4) 20.66203 32.70877 125.3322 –10.84402 –1.511063 1.129039

convergence for strongly oblate or prolate spheroidal
QDs than for spherical ones.

4. PTRS FOR BVP FOR OSQD IN ELECTRIC
FIELD BY FAST VARIABLES

To have an analytic representation of the matrix
elements (11) for small γF , one can use V̌f (xf ;xs) =
2γF z, V̌fs(xf , xs) = 0 as potentials for OSQD in-
stead of the potentials (12) introduced in Section 2.1.
Then we arrive at the Sturm–Lioville problem for the
OSQD in fast variable expressed in the form(

− d2

dz2
− εz − Ej(ρ)

)
Bj(z; ρ) = 0, (24)

〈Bi(ρ)|Bj(ρ)〉 =

L(ρ)/2∫

−L(ρ)/2

Bi(z; ρ)Bj(z; ρ)dz = δij ,

where ε = γF is the electric field strength considered
here as a formal parameter of the PT, implying a small
interval ρ ∈ (0, L(ρ) = 2c

√
1 − ρ2/a2) of the scalar

product 〈Bi(ρ)|Bj(ρ)〉. The solutions B
(0)
j (z; ρ) and

E
(0)
j (ρ) of the unperturbed equation (at ε = 0) have

the form

{B(0)
j (z; ρ), E(0)

j (ρ)} (25)

=

{
{Bs

j (z; ρ), Es
j (ρ)}, for even j = 2, 4, ...,

{Bc
j (z; ρ), Ec

j (ρ)}, for odd j = 1, 3, ...,

where

Bs
j (z; ρ) =

√
2/L(ρ) sin(πjz/L(ρ)),

Bc
j(z; ρ) =

√
2/L(ρ) cos(πjz/L(ρ)),

Es
j (ρ) = (πj/L(ρ))2, Ec

j (ρ) = (πj/L(ρ))2.

We seek for the eigenfunctions Bj(z; ρ) and the
eigenvalues Ej(ρ) in the form of power expansions

Bj(z; ρ) =
kmax∑
k=0

εkB
(k)
j (z; ρ), (26)
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Ej(ρ) =
kmax∑
k=0

εkE
(k)
j (ρ).

Substituting Eq. (26) into Eqs. (24) and equating the
coefficients at the same powers of ε, we arrive at the
system of inhomogeneous differential equations with

respect to corrections E
(k)
j and B

(k)
j (z; ρ):

(
− d2

dz2
− E

(0)
j (ρ)

)
B

(k)
j (z; ρ) (27)

=
(
z + E

(1)
j (ρ)

)
B

(k−1)
j (z; ρ)

+
k∑

p=2

E
(p)
j (ρ)B(k−p)

j (z; ρ),

k∑
p=0

〈B(p)
j (ρ)|B(k−p)

j (ρ)〉 = 0.

In each kth order of the PT the solutions becom-
ing zero at the boundary points (z = ±L(ρ)/2) are

sought in the form

B
(k)
j (z; ρ) =

⎧
⎪⎪⎨
⎪⎪⎩

νmax∑
ν=0

Bs
j (z; ρ)S(k)

ν zν + (z2 − (L(ρ)/2)2)
νmax−2∑

ν=0
Bc

j(z; ρ)C(k)
ν+2z

ν , j = 2, 4, ...,

νmax∑
ν=0

Bs
j (z; ρ)C(k)

ν zν + (z2 − (L(ρ)/2)2)
νmax−2∑

ν=0
Bc

j(z; ρ)S(k)
ν+2z

ν , j = 1, 3, ...
(28)

Substituting Eq. (28) into the corresponding equa-
tion (27) of the kth order of the PT, and extracting
the coefficients at Bs

j (z; ρ)zν and Bc
j (z; ρ)zν , ν =

0, ..., νmax, we arrive at the set of algebraic equations

with respect to unknowns E
(k)
j (ρ), S

(k)
ν , and C

(k)
ν , for

even j:

−(−1)j(ν + 1)(L(ρ)/2)πjC
(k)
ν+3

− (ν + 2)(ν + 1)S(k)
ν+2 + (−1)j · 2(ν + 1)πjC

(k)
ν+1

− E
(1)
j (ρ)S(k−1)

ν − S
(k−1)
ν−1 −

k−1∑
p=2

E
(p)
j (ρ)S(k−p)

ν

− E
(k)
j (ρ)δν,0 = 0,

(ν + 1)(ν + 2)(L(ρ)/2)2C(k)
ν+4

− (ν + 2)(ν + 1)C(k)
ν+2 − (−1)j · 2(ν + 1)πjS

(k)
ν+1

− E
(1)
j (ρ)(C(k−1)

ν − (L(ρ)/2)2C(k−1)
ν+2 )

− C
(k−1)
ν−1 + (L(ρ)/2)2C(k−1)

ν+1 )

−
k−1∑
p=2

E
(p)
j (ρ)(C(k−p)

ν − (L(ρ)/2)2C(k−p)
ν+2 ) = 0.

For odd j the same unknowns are calculated using
these equations with the replacement C(p) � S(p).

The unknowns C
(k)
0 for odd j are determined from the

respective conditions:
k∑

p=0

∑
ν,ν′

(
S(p)

ν S
(k−p)
ν′ 〈Bs

j (ρ)|zν+ν′ |Bs
j (ρ)〉 (29)

+ [(C(p)
ν S

(k−p)
ν′ + S(p)

ν C
(k−p)
ν′ )

+ (L(ρ)/2)2(C(p)
ν+1S

(k−p)
ν′+1

+ S
(p)
ν+1C

(k−p)
ν′+1 )]〈Bs

j (ρ)|zν+ν′ |Bc
j (ρ)〉

+ [(C(p)
ν C

(k−p)
ν′ ) − 2(L(ρ)/2)2C(p)

ν+1C
(k−p)
ν′+1

+ (L(ρ)/2)4C(p)
ν+2C

(k−p)
ν′+2 ]〈Bc

j (ρ)|zν+ν′ |Bc
j(ρ)〉

)
= 0,

and S
(k)
0 for even j is calculated from the Eq. (29)

with the replacement C(p) � S(p). This algorithm
was implemented using the Maple environment. The
run was performed until the maximal order of the PT
kmax = 8. Below we present the first few coefficients
of the eigenvalue expansion, truncated by the terms
proportional to ε6 = γ6

F

Ej(ρ) =
π2j2

(L(ρ))2
(30)

+
(L(ρ))4(π2j2 − 15)

48π4j4
ε2

+
(L(ρ))10(1980 − 210π2j2 + π4j4)

2304π10j10
ε4,

the eigenfunctions truncated by the terms propor-
tional to ε2 = γ2

F
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Bj(z; ρ) =

⎧
⎪⎪⎨
⎪⎪⎩

Bs
j (z; ρ) +

(
− (L(ρ))2zBs

j (z;ρ)

4π2j2 +
L(ρ)(z2−(L(ρ)/2)2)Bc

j (z;ρ)

4πj

)
ε, j = 2, 4, ...,

Bc
j(z; ρ) +

(
− (L(ρ))2zBc

j (z;ρ)

4π2j2 − L(ρ)(z2−(L(ρ)/2)2)Bs
j (z;ρ)

4πj

)
ε, j = 1, 3, ...,

and the diagonal effective potentials, truncated by the terms proportional to ε6 = γ6
F

Hjj(z) =
(

dL(ρ)
dρ

)2 ( π2j2 + 3
12(L(ρ))2

+
(L(ρ))4(−2880 + 258π2j2 + 7π4j4)

576π6j6
ε2 (31)

+
L(ρ)10(3510000 − 389880π2j2 + 3321π4j4 + 13π6j6)

27648π12j12
ε4

)
.

5. THE PTRS IN THE DIAGONAL ADIABATIC
APPROXIMATION

The desired solutions of the original 2D BVP (4)
are determined by the diagonal approximation of the
Kantorovich expansion (7) at fixed m

Ψm
i;n(xf , xs) ≈ Bi(xf ;xs)χi;n(xs).

The diagonal approximation of the BVP (9) and (10)
in the slow variable has the form(

− 1
xd

s

d

dxs
xd

s

d

dxs
+

m̃

x2
s

+ Vi(xs) − Ei;n

)
(32)

× χi;n(xs) = 0.

and the eigenfunctions satisfy the orthonormaliza-
tion conditions on the semiaxis [xmin

s = 0, xmax
s = ∞)

at d = 1 for the OSQD and on the axis (xmin
s =

−∞, xmax
s = ∞) at d = 0 for the OSQD
xmax

s∫

xmin
s

χi;n(xs)χi,n′(xs)(xs)ddxs = δnn′ . (33)

Here Vi(xs) = V̌s(xs) + Ei(xs) + DHii(xs), where
the parameter D is D = 0 for the crude adiabatic ap-

proximation and D = 1 for the adiabatic approxima-
tion; V̌s(xs) = 0, Ei(xs) and Hii(xs), Eqs. (30), (31),
for OSQD and V̌s(xs) = 2γF z, Ei(xs) and Hii(xs),
Eq. (13), for PSQD; Ei;n are the eigenenergies of
a lower part of the spectrum Ei;0 < Ei;1 < ... < Ei;n

enumerated in the ascending order by the number of
nodes n = 0, 1, 2, ... of the eigenfunctions χi;n(xs) at
fixed adiabatic quantum numbers i = no for OSQD
and i = np for PSQD. The potential function Vi(xs)
is expanded in powers of the small parameter ε

V
[jmax]
i (xs) = V

(0)
i + κ−2ω2

i x
2
s (34)

+ κ−2
jmax∑
j=1

V
(j)
i (xs)εj .

For OSQD at the values of the parameters d = 1,

ε = c−2, κ = 2, m̃ = m the coefficients V
(j)
i are

determined by Taylor expansion of the effective poten-
tials (30), (31) in the vicinity of the equilibrium point
xs = 0. With the accuracy up to order of O(γ6

F ) the

coefficients V
(j)
i and ω2

i are expressed as:

V
(0)
i =

π2n2
o

4c2
+ γ2

F

c4(π2n2
o − 15)

3π4n4
o

+ γ4
F

4c10(π4n4
o − 210π2n2

o + 1980)
9π10n10

o

, (35)

ω2
i =

π2n2
o

(ac)2
+ D

3 + π2n2
o

a4
+ γ2

F

(
− 8c4(π2n2

o − 15)
3a2π4n4

o

+ D
4c6(7π4n4

o + 258π2n2
o − 2880)

9a4π6n6
o

)

+ γ4
F

(
− 80c10(π4n4

o − 210π2n2
o + 1980)

9a2π10n10
o

+ D
16c12(13π6n6

o + 3321π4n4
o − 389880π2n2

o − 3510000)
27a4π12n12

o

)
,

V
(j)
i =

(
π2n2

o

(ac)2
+ jD

3 + π2n2
o

a4
+ γ2

F

(
− 4c4(π2n2

o − 15)
3a4π4n4

o

δi2 − D
4c6(7π4n4

o + 258π2n2
o − 2880)

9a6π6n6
o

δi2

)
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Fig. 3. Three potential functions Vi(xs) for (a) oblate xs = ρ and (b) prolate xs = z spheroids and their power expansions till

sixth order with account of adiabatic frequencies ωi and lower bound shifts V
(0)

i .

+ γ4
F

(
16c10(π4n4

o − 210π2n2
o + 1980)

9a4π10n10
o

(
10δi2 − 10

δi3

a2
+ 5

δi4

a4
− δi5

a6

)

+ D
16c12(13π6n6

o + 3321π4n4
o − 389880π2n2

o − 3510000)
27a6π12n12

o

(
− 4δi2 + 6

δi3

a2
− 4

δi4

a4
+

δi5

a6

)))
x2j+2

s .

For PSQD at the values of the parameters d = 0, ε =
1, κ = 1, m̃ = 0 the coefficients V

(j)
i are sought in the

form of a Taylor expansion in powers of x̄s = (xs −
x0) and γF of the effective potentials Vi(xs, γF ) =
Ej(xs) + DHjj(xs) + γF xs, Eq. (13). The expansion
coefficients x0 =

∑
k τ2k+1γ

2k+1
F are sought from the

equilibrium condition

∂Vi(xs, γF )
∂xs

∣∣∣∣
xs=x0

= 0

at fixed γF . With the accuracy up to O(γ5
F ) the

coefficients V
(j)
i and ω2

i are expressed as:

V
(0)
i = −2τ1γ

2
F − 2τ3γ

4
F + α2

np,|m|/(a
2) (36)

+ D(1 + α2
np,|m|)/(3c

4) + γ2
F τ2

1 (α2
np,|m|/(a

2c2)

+ D(1 + α2
np,|m|)2/(3c

4))

+ γ4
F τ1(α2

np,|m|(τ
3
1 + 2c2τ3)/(a2c4)

+ 2D(1 + α2
np,|m|)(τ

3
1 + τ3c

2)/(3c6)),

ω2
i =

(
α2

np,|m|/(a
2c2) + D(1 + α2

np,|m|)/(3c
4)

+ γ2
F τ2

1 · 6(α2
np,|m|/(a

2c4)

+ D(1 + α2
np,|m|)2/(3c

6))

+ γ4
F τ1(α2

np,|m|(15τ
3
1 + 12c2τ3)/(a2c6)

+ D(1 + α2
np,|m|)(15τ

3
1 + 8τ3c

2)/(c8))
)
,

V
(j)
i =

(
+ 2γF τ1((i + 1)α2

np,|m|/(a
2c2i+2)

+ D(i + 1)2(1 + α2
np,|m|)/(3c

2i+4))

+ 2γ3
F (i + 1)

(
α2

np,|m|((2i
2 + 7i + 6)τ3

1

+ 3τ3c
2)/(3a2c2i+4)

)
+ D(1 + α2

np,|m|)

× ((2i3τ3
1 + 11i2 + 20i + 12)τ3

1

+ 3(i + 1)τ3c
2)/(9c2i+6)

)
x̄2i+1

s

+
(
α2

np,|m|/(a
2c2i+2) + D(1 + α2

np,|m|)

× (i + 1)/(3c2i+4) + γ2
F τ2

1 (i + 2)(2i + 3)

× (α2
np,|m|(a

2c2i+4) + D(1 + α2
np,|m|)

× (i + 2)/(3c2i+6)) + γ4
F τ1(i + 2)

× (2i + 3)
(
α2

np,|m|((2i
2 + 11i

+ 15)τ3
1 + 12c2τ3)/(6a2c2i+6)

)

+ D(1 + α2
np,|m|)((2i

3 + 17i2 + 48i

+ 45)τ3
1 + 12(i + 2)τ3c

2)/(18c2i+8)
)
x̄2i+2

s ,

where τ2k+1 is determined from the condition that the
coefficient at x̄s is zero:
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τ1 =
3a2c4

3c2α2
np,|m| + Da2(1 + α2

np,|m|)
, τ3 = −

54a6c10(3c2α2
np,|m| + 2Da2(1 + α2

np,|m|))

(3c2α2
np,|m| + Da2(1 + α2

np,|m|))
4

.

In Fig. 3 we show three potential functions Vi(xs) for
oblate xs = ρ and prolate xs = z spheroids and the
convergence of the corresponding power expansions
till the sixth order with account of adiabatic frequen-

cies ωi and lower bound shifts V
(0)
i .

We choose the unperturbed operators of Eq. (32)
at ε = 0 in the expansion (34) in the form (16)–(19)
with the eigenvalues and the basis functions of 2D
and 1D oscillators given in Section 3 with respect
to the scaled coordinate x, xs =

√
2x/ωi and x̄s =

x/
√

ωi, where the adiabatic frequencies ωi are defined
by Eqs. (35) and (36) (at fixed i′ = n + 1), respec-
tively. According to (34), we seek for the eigenfunc-
tions χi;n(xs) and the eigenvalues Ei;n in the form of

expansions in powers of ε with unknowns Φ(k)
n and

E
(k)
n , omitting the notation m for brevity:

χi;n(xs) = Φ(0)
n +

kmax∑
k=1

Φ(k)
n (xs)εk, (37)

Ei;n = V
(0)
i +

kmax∑
k=0

E(k)
i;n = V

(0)
i (38)

+ κωi

(
E

(0)
i +

kmax∑
k=1

E(k)
n εk

)
.

Substituting the expansions (34), (37), and (38) into
Eq. (32) and equating the terms with the same power
of the parameter ε, we arrive at the recurrence set of
inhomogeneous equations of the PT with respect to

the unknowns E
(k)
n and Φ(p)

n (x):

L(n)Φ(0)
n (x) = 0 ≡ f (0)(x), (39)

L(n)Φ(k)
n (x) =

k−1∑
p=0

(E(k−p)
n − V

(k−p)
i )Φ(p)

n (x)

≡ f (k)(x), k ≥ 1,

with the initial conditions (16) and (18) for OSQD and
PSQD, respectively. The solution of this problem is
implemented in four steps.

Applying the relations (17) and (19), we expand
the right-hand side f (k)(x) and the solutions Φ(k)(x)
of Eqs. (39) over the basis of normalized states

Φ(0)
n+s(x), Eqs. (16) and (18):

Φ(k)
n (x) =

smax∑
s=−smax

b(k)
s Φ(0)

n+s(x), f (k)(x) =
smax∑

s=−smax

f (k)
s Φ(0)

n+s(x). (40)

Then a recurrent set of linear algebraic equations for unknown coefficients b
(k)
s and corrections E(k) is obtained

(41)s′b(k)
s − f (k)

s = 0, s = −smax, . . . , smax,

where s′ = s for OSQD and s′ = 2s for PSQD. These equations are solved sequentially for k = 1, 2, . . . , kmax:

(42)f
(k)
0 = 0 → E(k); b(k)

s = f (k)
s /s′, s = −smax, . . . , smax, s 	= 0.

The initial conditions for this procedure are

b(0)
s = δs0, E(0) = (n + (|m̃| + 1)/2) or E(0) = (n + 1)/2.

To obtain the normalized wave function Φj(x) up to the kth order, the coefficients b
(k)
0 are determined by

the following relation:

b
(k)
0 = − 1

2〈0|0〉

k−1∑
p=1

smax∑
s′=−smax

smax∑
s=−smax

b(k−p)
s 〈s|s′〉b(p)

s′ . (43)
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The above scheme implemented in Maple was ap-
plied to the evaluations of solutions in the analytical
form up to the order kmax = 6 of the PTRS. The first
four nonzero coefficients for the energy (38) in the
analytic form, truncated by the terms proportional

to the sixth power of the electric field strength, γ6
F , in

the CAA take the form:
1) For OSQD in terms of minor c and major

a semiaxes; the set of adiabatic quantum numbers
[m,no = nzo + 1, nρo]

V (0)
no

=
π2n2

o

4c2
+ γ2

F

c4(π2n2
o − 15)

3π4n4
o

+ γ4
F

4c10(π4n4
o − 210π2n2

o + 1980)
9π10n10

o

, (44)

E(0)
no;nρo

=
[
πno

ac
− γ2

F

4c5(π2n2
o − 15)

3aπ5n5
o

− γ4
F

8c11(2π4n4
o − 360π2n2

o + 3375)
3aπ11n11

o

]
(2nρo + |m| + 1),

E(1)
no;nρo

=
[

1
a2

+ γ2
F

4c6(π2n2
o − 15)

π6n6
oa

2
+ γ4

F

16c12(7π4n4
o − 1110π2n2

o + 10350)
3π12n12

o a2

]

×(2 + 6nρo + 3|m| + 6n2
ρo + |m|2 + 6nρo|m|),

E(2)
no;nρo

= (2nρo + |m| + 1)
[

3c
2πa3no

(2 + 2nρo + |m| + 2n2
ρo + 2nρo|m|)

− γ2
F

2c7(π2n2
o − 15)

3π7n7
oa

3
(54 + 118nρo + 16|m|2 + 59|m| + 118n2

ρo + 118nρo|m|)

− γ4
F

(
4c13(1874π4n4

o − 273120π2n2
o + 2536425)

9π13n13
o a3

(2nρo + |m| + 2n2
ρo + 2nρo|m|)

+
224c13(8π4n4

o − 1140π2n2
o + 10575)

9π13n13
o a3

|m|2 +
8c13(326π4n4

o − 48480π2n2
o + 450675)

3π13n13
o a3

)]
,

2) For PSQD in terms of minor a and major c semiaxes, the set of adiabatic quantum numbers [m,np =
nρp + 1, nzp] and positive zeros αnp,|m| of the Bessel functions of the first kind [37]

V (0)
np;nzp

=
α2

np,|m|
a2

− γ2
F

a2c2

4α2
np,|m|

+ γ4
F

a6c4

16α6
np,|m|

, (45)

E(0)
np;nzp

=

[
αnp,|m|

ac
+ γ2

F

3a3c

4α3
np,|m|

− γ4
F

9a7c3

16α7
np,|m|

]
(2nzp + 1),

E(1)
np;nzp

=

[
3

4c2
+ γ2

F
27a4

16α4
np,|m|

− γ4
F

105a8c2

64α8
np,|m|

]
(2n2

zp + 2nzp + 1),

E(2)
np;nzp

=
3a

16c3αnp,|m|
(2nzp + 1)(n2

zp + nzp + 3)

+ γ2
F

(
5a5

64cα5
np ,|m|

(2nzp + 1)(25n2
zp + 25nzp + 51) − a4

4α4
np,|m|

(30n2
zp + 30nzp + 11)

)

− γ4
F

(
45a9c

256α9
np,|m|

(2nzp + 1)(23n2
zp + 23nzp + 37) − 3a8c2

8α8
np,|m|

(30n2
zp + 30nzp + 11)

)
.

In Tables 6 and 7 we demonstrate how the approx-
imate eigenvalues in the lower part of spectrum for
OSQD and PSQD at m = 0 and γF = 0 converge
to the values calculated numerically with required

accuracy in the crude adiabatic approximation with
increasing of the PT order k. The accuracy was
from 8 to 5 digits at nzo = 0, from 10 to 8 digits at
nzo = 2, from 6 to 4 digits at nρp = 0, and from 8

PHYSICS OF ATOMIC NUCLEI Vol. 76 No. 8 2013



1048 GUSEV et al.

Table 6. Convergence of eigenvalues E(kmax)
nzo,nρo = V

(0)
nzo +

∑kmax
k=0 E

(k)
nzo,nρo for oblate spheroid c = 0.5, a = 5 vs PT order

kmax at γF = 0 (First line ∗ notes adiabatic shift V
(0)
nzo,nρo . Last lines are results of numerical calculations (Num))

kmax nzo = 0, nρo = 0 nzo = 0, nρo = 1 nzo = 0, nρo = 2 nzo = 0, nρo = 3 nzo = 0, nρo = 4

* 11.12624146 13.63951558 16.15278970 18.66606383 21.17933795

0 11.20624146 14.19951558 17.67278970 21.62606383 26.05933795

1 11.21006118 14.23389305 17.80647986 21.97365822 26.78126477

2 11.21026382 14.23433886 17.80254859 21.95100281 26.71094787

3 11.21028027 14.23441723 17.80242765 21.94908610 26.70256215

4 11.21028227 14.23443790 17.80265195 21.95065251 26.70959163

5 11.21028259 14.23444049 17.80264785 21.95052291 26.70875037

Num 11.21028268 14.23444147 17.80265065 21.95050805 26.70857727

kmax nzo = 2, nρo = 0 nzo = 2, nρo = 1 nzo = 2, nρo = 2 nzo = 2, nρo = 3 nzo = 2, nρo = 4

* 92.59635079 100.1361731 107.6759955 115.2158178 122.7556402

0 92.67635079 100.6961731 109.1959955 118.1758178 127.6356402

1 92.67762403 100.7076323 109.2405589 118.2916826 127.8762825

2 92.67764654 100.7076818 109.2401221 118.2891654 127.8684695

3 92.67764715 100.7076847 109.2401176 118.2890944 127.8681589

4 92.67764718 100.7076850 109.2401203 118.2891137 127.8682457

5 92.67764718 100.7076850 109.2401203 118.2891132 127.8682422

Num 92.67764718 100.7076850 109.2401204 118.2891132 127.8682419

to 7 digits at nρp = 1, respectively. Note, that the

difference between the adiabatic shift V
(0)
i and the

eigenvalues Ei;n = V
(0)
i + E(0)

i;n in the zero order k = 0
of the PT is small, but increases with growing nρo

and nzp for OSQD and PSQD, respectively. The

shifts V
(0)
i give the main contribution and provide the

lower adiabatic estimate of each set of eigenvalues,
generated by the perturbed harmonic oscillator terms
with adiabatic frequency ωi. From Tables 6 and 7
one can see that with increasing quantum numbers
nzo (or nρp), related to the fast variable, the accuracy
of approximation of the lower part of the spectrum is
increasing. This is because the accuracy of the Taylor
approximations of potential function (34) in Eq. (32)
is improved with increasing the number i = nzo +
1 > 2 (or i = nρp + 1 > 2), which is demonstrated in
Fig. 3.

In Figs. 4 and 5 we show the eigenvalues E of
the lower part of the spectrum of oblate and pro-
late QDs versus the electric field strength within
small (left panels) and large (right panels) intervals of
γF , calculated in the crude adiabatic approximation
(solid and dashed lines) to compare them with the

numerical results (dotted lines). One can see that
the eigenvalues calculated using the PT (solid and
dashed lines), corresponding to the eigenfunctions
with smaller number of nodes along the electric field
(i.e., with smaller nzo for OSQD and nzp for PSQD)
and with greater number of nodes across the electric
field (i.e., with greater nρo for OSQD and nρp for
PSQD), provide better approximation of the eigen-
values, calculated numerically with required accuracy
(dotted lines). This property follows from the fact
that such functions have better localization in the
vicinity of the plane, passing through the QD center
transverse to the electric field, i.e., in the region with
minimal contribution of the electric field potential to
the Hamiltonian of the system. As shown in the
right panels of Figs. 4 and 5, the differences between
the egienvalues, calculated using the PT and the
numerical method, increase faster in a smaller interval
of γF for larger PSQD than for smaller OSQD, the
size being measured along the direction of the electric
field.

The range of the parameter values, for which the
PT algorithms are valid, was estimated by means of
numerical calculations using the KANTBP program
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Table 7. Convergence of eigenvalues E(kmax)
nρp,nzp = V

(0)
nρp +

∑kmax
k=0 E

(k)
nρp,nzp for prolate spheroid c = 2.5, a = 0.5 vs PT order

kmax at γF = 0 (First lines ∗ notes adiabatic shift V
(0)
nρp,nzp . Last lines are results of numerical calculations (Num))

kmax nρp = 0, nzp = 0 nρp = 0, nzp = 2 nρp = 0, nzp = 4 nρp = 0, nzp = 6 nρp = 0, nzp = 8

* 25.05660430 32.75204608 40.44748787 48.14292965 55.83837144

0 25.17660430 34.31204608 45.36748787 58.34292965 73.23837144

1 25.18408925 34.42432034 45.88394944 59.80249498 76.41947535

2 25.18465987 34.42810718 45.87103269 59.69485535 76.04779441

3 25.18472054 34.42867746 45.87114189 59.68460238 75.99436976

4 25.18472960 34.42880826 45.87257549 59.69618640 76.05191800

5 25.18473139 34.42883580 45.87259458 59.69511288 76.04351256

Num 25.18472985 34.42884694 45.87265876 59.69512314 76.04210082

kmax nρp = 1, nzp = 0 nρp = 1, nzp = 2 nρp = 1, nzp = 4 nρp = 1, nzp = 6 nρp = 1, nzp = 8

* 126.3011119 143.9653618 161.6296118 179.2938617 196.9581117

0 126.4211119 145.5253618 166.5496118 189.4938617 214.3581117

1 126.4243727 145.5742742 166.7746086 190.1297223 215.7439616

2 126.4244810 145.5749929 166.7721571 190.1092932 215.6734198

3 126.4244860 145.5750400 166.7721661 190.1084455 215.6690025

4 126.4244863 145.5750447 166.7722178 190.1088627 215.6710754

5 126.4244864 145.5750452 166.7722181 190.1088459 215.6709435

Num 126.4244896 145.5750487 166.7722220 190.1088484 215.6709278

[30], as well as the condition that the mean value
of the slow variable is smaller than the size of the
major axis of OSQD or PSQD, i.e., ρ ≤ a or z ≤ c,
or known estimates of the distribution of nodes of La-
guerre or Hermite polynomials [37]. To calculate also
the approximate eigenfunctions of the lower part of
the spectrum n = 0, ..., nmax with required numbers
n of nodes in the interval ρ ∈ (0, a) (or z ∈ (−c, c))
for OSQD (or PSQD), one should choose such value
of parameter a =

√
2x0/ωi (or c = x0/

√
ωi), that

outside this interval x ∈ (x0 = 4n + 2|m| + 2,∞)
(or |x| ∈ (x0 = (2n + 1)1/2,∞)) the Laguerre (or
Hermite) polynomials have no nodes. As an example,
in Fig. 2 we show contour plots in (z, x) and (x, z)
plane of the first four eigenfunctions of OSQD and
PSQD, respectively, that have a required number
of nodes (crossings of the function plot with zero
plane) in the interval ρ ∈ (0, a) and z ∈ (−c, c) at
the values c = 0.5, a = 5, c = 2.5, a = 0.5. One
can see that the asymmetry with respect to z-axis
of the eigenfunctions of PSQD is greater than that of
OSQD, because the variation of well depth of PSQD
is greater than of OSQD.

6. ABSORPTION COEFFICIENT
FOR AN ENSEMBLE OF QDs

One can use the differences in the energy spectra
to verify the considered models of QDs by calculating
the absorption coefficient K(ω̃ph, ã, c̃, ) of an ensem-
ble of identical semiconductor QDs [14]. Since we
do not discuss exciton effects in the present paper,
the absorption coefficient may be approximately ex-
pressed as

K̃(ω̃ph, ã, c̃, u) =
∑
ν,ν′

K̃ν,ν′(ω̃ph, ã, c̃, u) (46)

= Ã
∑
ν,ν′

Ĩν,ν′(u)δ(�ω̃ph − W̃νν′),

Ĩν,ν′(u) =
∣∣∣∣
∫

Ψ̃e
ν(r̃; ã, c̃, F, μe)Ψ̃h

ν′(r̃; ã, c̃, F, μh)d3r̃
∣∣∣∣
2

,

where Ã is proportional to the square of the matrix
element in the Bloch decomposition, Ψ̃e

ν(u) and Ψ̃h
ν′

are the eigenfunctions of the electron (e) and the
heavy hole (h), Ẽe

ν and Ẽh
ν′ are the energy eigen-

values for the electron (e) and the heavy hole (h),
depending on the semiaxis size c̃, ã for OSQD (or
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ã, c̃ for PSQD) and the adiabatic set of quantum
numbers ν = [nzo, nρo,m] and ν ′ = [n′

zo, nρo′ ,m
′]

(ν = [nρp, nzp,m] and ν ′ = [n′
ρp, n

′
zp,m

′]), where

m′ = −m, Ẽg is the band gap width in the bulk semi-
conductor, ω̃ph is the incident light frequency, W̃νν′ =
Ẽg + Ẽe

ν(ã, c̃) + Ẽh
ν′(ã, c̃) is the inter-band transition

energy for which K̃(ω̃ph) has the maximal value. We
rewrite the expression (46) in the terms of frequency
shift of the incident light Δωph/(2π) = (�ω̃ph −
Ẽg)/(2π�) corresponding to the inter-band transi-
tion energy shift ΔW̃νν′ = W̃νν′ − Ẽg = Ẽe

ν(ã, c̃) +
Ẽh

ν′(ã, c̃) for which K̃(Δω̃ph) has the maximal value,
using dimensionless variables in the reduced atomic
units

K̃(Δω̃ph, ã, c̃) = ÃẼ−1
g

∑
ν,ν′

Ĩν,ν′(u)δ[fν,ν′(u)],

(47)

fν,ν′(u) = λ1 −
2Ee

ν(a, c) + 2Eh
ν′(a, c)(μh/μe)

2Eg
,

where the parameter u will be defined below, λ1 =
(�ω̃ph − Ẽg)/Ẽg is the energy of the optical interband
transitions scaled to Ẽg, 2Eg = Ẽg/Ẽ

e
R is the dimen-

sionless band gap width.
For GaAs the functions fh→e

ν,ν′ (u) describing the
(h → e) inter-band transitions have the form

fh→e
ν,ν′ (u) = λ1 − (2Eg)−1(2Ee

ν(a, c, γF ) (48)

+ 2Ee
ν′(a, c,−(μh/μe)γF )(μe/μh)),

where μe = 0.067m0 and μh ≡ μhh = 0.558m0 are
the masses of electron and hole, respectively, Ẽg =
1430 meV is the band gap width and κ = 13.18 is the
dc permittivity and Ee

R = e2/(2κae
B) = 5.275 meV,

ae
B = �

2κ/(μee
2) = 104 Å, Eh

R = e2/(2κah
B) =

49 meV, ah
B = �

2κ/(μhe2) = 15 Å, 2γF = F/F ∗
0 ,

F ∗
0 = Ee

R/(eae
B) = e/(2κ(ae

B)2) = 5.04 kV/cm.

For InSb the dispersion law for heavy holes (hh)
is parabolic while for electrons (e) and light holes (lh)
it is non-parabolic and may be described by the Kane
model [18, 19, 22] at γF = 0. The energy values in our
notation are:

2Ẽhh
ν (InSb) = 2Ẽh

ν′(ã, c̃), (49)

2Ẽe
ν(InSb) = 2Ẽlh

ν (InSb) (50)

= −Ẽg/2 +
√

Ẽ2
g/4 + Ẽg(2Ẽe

ν(ã, c̃)).

As follows from Eqs. (49) and (50), to determine
the energy spectrum and the wave function of the light
hole and the electron one should solve the Klein–
Gordon equation [39, 40], while for heavy hole the
Schrödinger equation is applicable. The functions
fhh→e

ν,ν′ (u) and fhh→e
ν,ν′ (u) describing the (hh → e) and

the (lh → e) inter-band transitions have the forms

fhh→e
ν,ν′ (u)=λ1−

(
1/2+

√
1/4+(2Ee

ν (a, c)/(2Eg))

(51)
+(2Eg)−1 · 2Ee

ν′(a, c)(μe/μh)
)

,

(52)
f lh→e

ν,ν′ (u) = λ1 − 2
√

1/4 + (2Ee
ν(a, c)/(2Eg)),

where μe = μlh = 0.15m0 and μh ≡ μhh = 0.5m0 are
the masses of electron, light, and heavy holes, respec-
tively, Ẽg = 180 meV is the band gap width, κ = 16
is the dc permittivity, and Ee

R = Elh
R = e2/(2κae

B) =
7.972 meV, ae

B = alh
B = �

2κ/(μee
2) = 56.44 Å, Eh

R =
Ehh

R = e2/(2κahh
B ) = 26.57 meV, ah

B = ahh
B =

�
2κ/(μhe2) = 16.93 Å.

For both electron and hole carriers the dimen-
sionless energies 2Ee

ν = Ẽe
ν/Ẽe

R and 2Eh
ν (μh/μe) =

Ẽh
ν /Ẽe

R are expressed in the same reduced atomic
units Ẽe

R, and the overlap integral (46) between
the eigenfunctions, corresponding to Ee

ν(γF ) and
Eh

ν (γF ) = (μe/μh)Ee
ν(−(μh/μe)γF ), takes the form

Ĩν,ν′(u) =
∣∣∣∣
∫

(ae
B)3Ψe

ν(r; a, c, γF , μe)Ψe
ν′(r; a, c,−(μh/μe)γF , μe)d3r

∣∣∣∣
2

. (53)

Now consider an ensemble of OSQDs (or PSQDs),
differing in the minor semiaxis values c = uoc̄ (or a =
upā), determined by the random parameter u = uo (or
u = up). The corresponding minor semiaxis mean
value is c̄ at fixed major semiaxis a (or ā at fixed major

semiaxis c), and the appropriate distribution function
is P (uo) (or P (up)). Commonly, in this case the

normalized Lifshits–Slezov distribution function [15]

is used:
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P (u) = {34eu2 exp(−1/(1 − 2u/3))/25/3/(u + 3)7/3/(3/2 − u)11/3, u ∈ (0, 3/2); 0, otherwise} (54)

having conventional properties
∫

P (u)du = 1, ū =∫
uP (u)du = 1. The absorption coefficients

K̃o(ω̃ph, ¯̃a, c̃) or K̃p(ω̃ph, ã, ¯̃c) of an ensemble of
semiconductor OSQDs or PSQDs with different
dimensions of minor semiaxes are expressed as

K̃o(ω̃ph, ¯̃a, c̃) =
∫

K̃(ω̃ph, ¯̃a, c̃, uo)P (uo)duo,

(55)

K̃p(ω̃ph, ã, ¯̃c) =
∫

K̃(ω̃ph, ã, ¯̃c, up)P (up)dup.

Substituting (47) into (55) and taking into account
the known properties of the δ function, we arrive at
the analytical expression for the absorption coefficient
K̃(ω̃ph, ã, c̃) of a system of semiconductor QDs with
a distribution of random minor semiaxes:

K̃(ω̃ph)
K̃0

=
∑
ν,ν′,s

K̃ν,ν′(ω̃ph)
K̃0

, (56)

K̃ν,ν′(ω̃ph)
K̃0

= Ĩν,ν′ (us)

∣∣∣∣∣
dfν,ν′(u)

du

∣∣∣∣
u=us

∣∣∣∣∣
−1

P (us) ,

where K̃0 = Ã−1Ẽg is the normalization factor, us are
the roots of the equation fν,ν′(us) = 0.

At γF = 0 for IPBM we have the interband
overlap Ĩν,ν′ = δnρo,n′

ρo
δnzo,n′

zo
δm,−m′ for OSQD, or

Ĩν,ν′ = (J1+|m|(αnρp+1,|m|)/J1−|m|(αnρp+1,|m|))2 ×
×δnzp,n′

zp
δnρp,n′

ρp
δm,−m′ for PSQD, where αnρp+1,|m|

is the positive root of the Bessel function, and the
selection rules m = −m′, nzo = n′

zo, nρo = n′
ρo, or

nρp = n′
ρp, nzp = n′

zp [27], while at γF 	= 0 one should
calculate the interband overlap (53) in accordance
with the selection rules m = −m′, nρo = n′

ρo, or
nρp = n′

ρp, respectively. Note, that in the adiabatic
limit and at small γF the contributions of non-
diagonal matrix elements to the energy values are
about 1% for IPBM of OSQD and PSQD; then in
the Born–Oppenheimer approximation of the order
bmax for the AC we get

fν,ν′(u) = λ1 −
fmax∑
j=0

f
(j)
ν,ν′u

j−2. (57)

The coefficients of the expansion (57) for parabolic
dispersion law for small γF 	= 0 were constructed
using the expansions (44) and (45) and at γF = 0 they

are given in [27]. In general case for the calculation
fν,ν′(u) by formula (48), (51), or (52) we used the
eigenvalues Ee

ν(a, c) and Eh
ν′(a, c) calculated numer-

ically with given accuracy. After that we evaluated
the coefficients of expansion like (57) by the method
of least squares and by the polynomial interpolation
in the case of parabolic and non-parabolic dispersion
laws, respectively. Because of monotonic behavior of
function fν,ν′(u) vs u in the case under consideration,
we have only one root us of the equation fν,ν′(us) = 0,
which was used in formula (56).

For the Lifshits–Slezov distribution Figs. 6 and 7
display the total absorption coefficients K̃(ω̃ph)/K̃0

and the partial absorption coefficients K̃ν,ν(ω̃ph)/K̃0,
that form the corresponding partial sum (56) over a
fixed set of quantum numbers ν, ν ′ at m = −m′ = 0.
As a result of averaging (55) a series of curves with
finite width and height are observed instead of a series
of δ functions. One can see that the summation over
the quantum numbers no = nzo + 1 = 1, 2, 3, 4, 5 (or
np = nρp + 1 = 1, 2, 3) enumerating the nodes of the
wave function with respect to the fast variable gives
the corresponding principal maxima of the total AC
for the ensemble of QDs with distributed dimen-
sions of minor semiaxis, while the summation over
the quantum number nρo = 0, 1, 2, 3, ..., 8 (or nzp =
0, 1, 2, ..., 15) that labels the nodes of the wave func-
tion with respect to the slow variable leads to the
increase of amplitudes of these maxima and to sec-
ondary maxima arising in the case of sparer energy
levels of IPBM of OSQDs (or PSQDs).

In the regime of strong dimensional quantiza-
tion the frequencies of the interband transitions
(h → e) in GaAS between the levels no = 1, nρo =
0,m = 0 for OSQD or np = 1, nzp = 0,m = 0 for
PSQD at the fixed values ã = 2.5ae and c̃ = 0.5ae
for OSQD or ã = 0.5ae and c̃ = 2.5ae for PSQD,
are equal to Δω̃ph

100/(2π) = 16.9 THz at γF = 0 and
Δω̃ph

100/(2π) =15.9 THz at γF = 10, or Δω̃ph
100/(2π) =

33.3 THz at γF = 0 and Δω̃ph
100/(2π) = 31.5 THz at

γF = 2, where Δω̃ph
100/(2π) = (2π�)−1(W̃100,100 −

Ẽg) corresponds to the IR spectral region [7, 8],
taking the band gap value (2π�)−1Ẽg = 346 THz
into account. In Fig. 7 one can see the quantum-
confined Stark effect that consists in the reduction of
the absorption energy (light frequency) at the expense
of lowering the energy of both (e) and (h) bound states
due to the electric field effect. The total ACs at F 	= 0,
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shown by solid lines, qualitatively correspond to the
total AC at F = 0, shown by dashed lines, but have
lower magnitudes and smooth behavior, in spite of
the additional contribution to the partial ACs of the
overlap integral (53) from the interband transition
nzo 	= n′

zo or nzp 	= n′
zp in OSQD or PSQD, also

shown in Fig. 7.

At the same parameters of the QDs the frequen-
cies of the interband transitions (lh → e) in InSb

are equal to Δω̃ph
100/(2π) = 68.5 THz for OSQD

or Δω̃ph
100/(2π) = 87.2 THz for PSQD, while the

frequencies of the interband transitions (hh → e)

in InSb are equal to Δω̃ph
100/(2π) = 78.6 THz for

OSQD or Δω̃ph
100/(2π) = 102 THz for PSQD. These

values correspond to the infrared spectral region with
longer wavelength, similar to [22], with the band gap
value (2π�)−1Ẽg = 44 THz taken into account. One
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can see that the behavior of total ACs for parabolic
dispersion law for IPBM of InSb, shown in Fig. 8, is
similar to that for GaAs (Fig. 6), while the behavior
of AC for nonparabolic dispersion law, shown in
Fig. 9, is essentially different. In particular, for
OSQDs it grows faster with increasing λ1, while for
PSQDs it goes to a plateau before starting to grow.
Indeed, with increasing quantum numbers nρo or
nzp that characterize the excitation of slow motion,
the maxima of partial ACs decrease for parabolic
dispersion law, while for the non-parabolic one the
maxima of partial ACs increase.

With decreasing semiaxis the threshold energy
increases, because the “effective” band gap width
increases, which is a consequence of the dimensional
quantization enhancement. Therefore, the above fre-
quency is greater for PSQD than for OSQD, be-
cause the OSQD implemented in two direction of
the plane (x, y) is effectively larger than that in the
direction of the z-axis solely at similar values of semi-
axes. Higher-accuracy calculations reveal an essen-
tial difference in the frequency behavior of the AC
for interband transitions in systems of semiconductor
OSQDs or PSQDs having a distribution of minor
semiaxes, which can be used to verify the above
models.

7. CONCLUSIONS

The 3D BVP for spheroidal quantum dots with
respect to fast and slow variables of cylindrical co-
ordinates was reduced by Kantorovich or adiabatic
method to BVP for set of second-order differential
equations (ODE) with effective potentials given in the
analytic form with respect to the slow variable, using
the basis function of fast variables, that depended on
the slow variable as a parameter. Separation of vari-
ables of 3D BVP in spheroidal coordinates provides
exact classification of energy eigenvalues by means
of nodes of eigenfunctions which transform exactly
to an adiabatic classification of eigensolutions of a

diagonal approximation of ODE at small parameter,
i.e. ratio of minor and major semiaxes of oblate or
prolate spheroid. The effective potential of a crude di-
agonal adiabatic approximation (CDAA) of the ODE
has been approximated by power expansions by slow
variable. Energy eigenvalues and eigenfunctions of
the BVP for CDAA were sought in the form of expan-
sions over eigenfunctions of 2D or 1D oscillator with
adiabatic frequencies and power of small parameter
by the PT. Required coefficients of these expansions
were calculated in analytical form as polynomials of
the sets of adiabatic quantum numbers.

To specify the region of the model parameters, in
which the PT asymptotic series are valid, we have
compared the PT results with those of numerical
calculations carried out with required accuracy. The
PT eigensolutions were used in analytic evaluation
of the photoabsorption coefficient for ensembles of
oblate and prolate spheroidal QDs with given ran-
dom distribution of small semiaxes without and with
small values of external electric fields. In general
case for calculation fν,ν′(u) by formula (48), (51), or
(52) we used eigenvalues calculated numerically with
given accuracy and we evaluated the coefficients of
expansion like (57) by the method of least squares
and by the polynomial interpolation in the case of
parabolic and nonparabolic dispersion laws, respec-
tively. Note, in the case of numerical calculations of
the photoabsorption coefficient the required deriva-
tives of eigenenergies and eigenfunctions with respect
to a parameter, e.g., the small semiaxis, can be calcu-
lated also with the help of the numerical algorithms
[29, 35].

The elaborated methods, symbolic-numerical al-
gorithms (SNAs) and programs [23–35] can be ap-
plied for solving the BVPs of discrete and continu-
ous spectra of the Schrödinger-type equations and
the analysis of spectral and optical characteristics of
QWs, QWr’s and QD’s in external fields, as well as
the spectra of models of deformed nuclei [41].
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