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Abstract—Channeling problem produced by confining environment that leads to resonance scattering
of charged particles via quasistationary states imbedded in the continuum is examined. Nonmonotonic
dependence of physical parameters on collision energy and/or confining environment due to resonance
transmission and total reflection effects is confirmed that can increase the rate of recombination processes.
The reduction of the model for two identical charged ions to a boundary problem is considered together with
the asymptotic behavior of the solution in the vicinity of pair-collision point and the results of R-matrix
calculations. Tentative estimations of the enhancement factor and the total reflection effect are discussed.
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1. INTRODUCTION

The interaction of channelled particles is consid-
ered as one of the possible ways to solve the problem
of synthesis of light elements and study the interac-
tions of nuclei at low energies [1–3]. It is supposed [3],
that the effect of superfocusing beam channelling can
essentially change the behavior of a nuclear reaction
cross section as a function of the energy of colliding
particles and the parameters of the crystal lattice. To
estimate the cross section it is necessary to calcu-
late the wave function of the continuous spectrum
describing the interaction of channelled particles in a
vicinity of the point of their pair impact, rather than
the reflection and transmission coefficients within the
framework of the model [4]. One of the known ap-
proaches to solve such type of problems has been
proposed in [5, 6]. It was also applied to calculate
the quasistationary states, providing the full reflection
and resonant transmission of electrons and protons
in a homogeneous magnetic field at resonant ener-
gies [7]. Here this approach is applied to the scat-
tering of similarly charged particles channelled in a
crystal in the framework of the model of [4]. We calcu-
late the wave function of the continuous spectrum and
estimate the dependence of the reaction enhancement
coefficient on the energy by calculating a ratio of the
probability density in the vicinity of the pair-collision

∗The text was submitted by the authors in English.
1)Joint Institute for Nuclear Research, Dubna, Russia.
2)Saratov State University, Russia.
3)Institute of Nuclear Physics, Almaty, Kazakhstan.

point in the presence of an additional confining poten-
tial and without it.

The paper is organized as follows. In Section 2 the
axis channelling model of two identical charged ions
is briefly described. In Section 3 the nonrelativistic
problem of an ion in the Coulomb field and the uniform
magnetic field is recalled. In Section 4 the details of
the R-matrix-calculation scheme of the continuous
spectrum problem on a finite interval with the third-
type boundary conditions are described together with
the brief analysis of an example of quasistationary
states. In Section 5 the asymptotic expansions of the
continuous spectrum solutions in open channels at
small values of the radial variable (i.e., in the vicinity
of the pair-collision point) are presented. In Section 6
preliminary estimations of the enhancement factor are
discussed. In Conclusion the prospects of further ap-
plication of the proposed approach and the expected
results are discussed.

2. THE CHANNELLING MODEL
OF TWO IDENTICAL CHARGED IONS

The nonrelativistic model of two positive ions la-
belled by i = 1, 2 with the effective masses mi and
charges qi under the axis channelling condition with
the energy Et in the laboratory frame is described by
the 6D equation

(Ht − Et)Ψt (r1, r2) = 0, (1)

Ht = − 1
2m1

∆(3)
r1 − 1

2m2
∆(3)

r2 + U1(r1) (2)

+ U2(r2) + U12(r1 − r2),

768



CHANNELING PROBLEM FOR CHARGED PARTICLES 769

where ri are the position vectors of ions in R3, ∆(3)
ri

are the Laplace operators in R3, Ui(ri) is the energy
of interaction between the particles and the crys-
tal and U12(r1 − r2) = q1q2/ |r1 − r2| is their mutual
Coulomb interaction energy in atomic units.

The potentials of interaction between the par-
ticles and the crystals are approximated by the
known continuous potentials [8] of the form Ui(ri) ≡∑

s Ui(|ri − Rs|), where Rs are position of crystal
atomic chains formed a channel, and their expansions
in powers of the distance from channelling axis
coincided with the axis Z of a laboratory frame. Their
leading approximation yield 2D harmonic oscillators
Ui(ri) = miω

2
i ρ

2
i /2 with frequencies ω1 �= ω2 with re-

spect to the transverse variables ρi: ri = (zi, ρi, ϕ̃i) ∈
R3, where ω2

i = 2αiqi/mi, and αi ≈ α are constants
of particle–crystal interaction.

The motion of a system of two particles with
total mass M = m1 + m2 and reduced mass µ =
m1m2/(m1 + m2) in Jacobi variables R = (m1r1 +
m2r2)/(m1 + m2) and r = r1 − r2 is averaged in the
plane-wave approximation with the momentum KZ

along the axis Z, which yields the 5D equation [4]

(H − E)Ψ (R⊥, r) = 0, (3)

Ψ (R⊥, r) = Ψt (R, r) exp(ıKZZ),

H = − 1
2M

∆(2)
R⊥

− 1
2µ

∆(3)
r (4)

+ U(R⊥, r⊥) + U12(r),

where E = Et − K2
Z/2M is the energy, R⊥ =

(X⊥, Y⊥) and r⊥ = (x⊥, y⊥) are transverse compo-
nents of radius-vectors of the center-of-mass and
relative motion of ions, ∆(2)

R⊥
is the Laplace operator

in the transversal space R2 and U(R⊥, r⊥) is the
effective potential of the system of two particles

U(R⊥, r⊥) =
m1ω

2
1 + m2ω

2
2

2
R2

⊥

+ µ(ω2
1 − ω2

2)r⊥R⊥ +
µ2

2

(
ω2

1

m1
+

ω2
2

m2

)

r2
⊥.

Under the condition ω2
1 − ω2

2 = 0, namely, q1m2 −
q2m1 = 0, the variables can be separated:
Ψ(R⊥, r) = Ψ⊥(R⊥)Ψint(r), so that the 5D problem
is split into the 2D equation describing the center-of-
mass motion with the energy Ea⊥ ,

(

− 1
2µ

∆(2)
R⊥

+
m1ω

2
1 + m2ω

2
2

2
R2

⊥

)

(5)

× Ψ⊥ (R⊥) = Ea⊥Ψ⊥ (R⊥) ,

and the 3D equation that describes the relative mo-
tion,

(

− 1
2µ

∆(3)
r +

µ2

2

(
ω2

1

m1
+

ω2
2

m2

)

r2
⊥ + U12(r)

)

(6)

× Ψint (r) = EintΨint (r) ,

where Eint = E − Ea⊥ is the energy in the center-of-
mass frame. Note, that in accordance with the Kohn
theorem [9], the generalization of the above model
onto a similar n-particle system is also possible. Such
setting of the problem can be also used if the frequen-
cies ωi are considered as phenomenological param-
eters induced by a certain environment like artificial
waveguides and if U12(r) is the screening Coulomb
potential for the scattering model of neutral atoms
with confining potentials [10, 11].

We can rewrite Eq. (6) in the explicit form with
respect to Coulomb interaction

(

−∆(3)
r +

2Z
r

+
γ2

4
r2
⊥

)

Ψint (r) = εΨint (r) , (7)

where Z = µq1q2 is the reduced charge, γ2 = 8µαq̃,
q̃ = (q1m

2
2 + q2m

2
1)/ (m1 + m2)

2, is the interaction
constant, and ε = 2µEint is the reduced energy. Fur-
ther, we use the scale transformation r → √

γr, Z →
Z/

√
γ, Eint → Eint/γ:

(

−∆(3)
r +

2Ẑ
r

+
1
4
r2
⊥

)

Ψint (r) = ε̂Ψint (r) , (8)

where Ẑ = Z/
√

γ and ε̂ = ε/γ.

3. AN ION IN COULOMB AND UNIFORM
MAGNETIC FIELDS

Equation (8) is similar to the Schrödinger equa-
tion describing the motion of a particle with mass
m1 and charge q1 in Coulomb field of the particle
with the infinite mass m2 and charge q2, and in
an axially symmetric magnetic field B = (0, 0, B =
γB0), B0 = 2.35 × 105 T [6]. In spherical coor-
dinates (r, η = cos θ, ϕ) the later can be written
in atomic units for the wave function Ψ(r, η, φ) =
Ψm(r, η) exp (ımϕ)/(2π)1/2 as the 2D equation for
the fixed magnetic quantum number m in the region
Ω = {0 < r < ∞,−1 < η < 1}:

(

− 1
r2

∂

∂r
r2 ∂

∂r
+

Â(0)(η; r)
r2

+
2Z
r

− ε

)

(9)

× Ψm(r, η) = 0.
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The operator Â(0)(η; r) = A(0)(η; r)− (signq1)γmr2,
where (signq1) = −(+), for example, for electron
(positron), and A(0)(r, η) is given by

A(0)(η; r) = − ∂

∂η
(1 − η2)

∂

∂η
+

m2

1 − η2
(10)

+
(

γr2

2

)2

(1 − η2).

Here, Z = m1q1q2 is the reduced charge and ε =
2m1E is the reduced energy. Thus, Eq. (8) with
proper definitions for Z, ε, and γ formally corresponds
to Eq. (9) if we put Â(0)(η; r) = A(0)(η; r), i.e., if we
omit γmr2. The wave function satisfies the following
boundary conditions in each mσ subspace (σ is
z parity Ψm(r,−η) = σΨm(r, η)) of the full Hilbert
space:

lim
η→±1

(1 − η2)
∂Ψm(r, η)

∂η
= 0, if m = 0,

Ψm(r,±1) = 0, if m �= 0,
∂Ψm(r, η)

∂η

∣
∣
∣
∣
η=0

= 0, if σ = +1,

Ψm(r, 0) = 0, if σ = −1.

We consider the Kantorovich expansion of the
partial solution Ψmσ

i (r, η) using the set of one-
dimensional parametric basis functions φj(η; r) ≡
φmσ

j (η; r):

Ψmσ
i (r, η) =

jmax∑

j=1

φmσ
j (η; r)χ(i)

j (r). (11)

The matrix-valued functions χ(r) ≡ {χ(i)(r)}jmax
i=1

composed from vector functions (χ(i))T =
(χ(i)

1 (r), . . . , χ(i)
jmax

(r)) are unknown. The vector an-

gular functions (φ(η; r))T = (φ1(η; r), . . . ,
φjmax(η; r)) form an orthonormal basis for each value
of the radius r which is treated here as a parameter.
The angular oblate spheroidal functions φi(η; r) ∈
Fr ∼ L2([−1, 1]) and the corresponding potential
curves Ei(r) (in Ry = 1/2 a.u.) are determined as
the solutions of the following one-dimensional para-
metric eigenvalue problem:

Â(0)(η; r)φj(η; r) = Ej(r)φj(η; r),

1∫

−1

φi(η; r)φj(η; r)dη = δij .

By substituting expansion (11) into the above
boundary-value problem (9)–(11), we arrive at an
eigenvalue problem for a system of jmax ordinary
second-order differential equations that determines
the coefficients (radial wave functions) at the fixed

energy ε (χ(i)(r))T = (χ(i)
1 (r), χ(i)

2 (r), . . ., χ
(i)
jmax

(r))
in the expansion (11):

(

−I
1
r2

d

dr
r2 d

dr
+

U(r)
r2

+ Q(r)
d

dr
(12)

+
1
r2

dr2Q(r)
dr

)

χ(i)(r) = εiIχ(i)(r),

Here, I,U(r), and Q(r) are finite jmax × jmax matrices
whose elements are given by the relations

Uij(r) =
Ei(r) + Ej(r) + 4Zr

2
δij + r2Hij(r), (13)

Hij(r) =

1∫

−1

∂φi(η; r)
∂r

∂φj(η; r)
∂r

dη,

Qij(r) = −
1∫

−1

φi(η; r)
∂φj(η; r)

∂r
dη.

The continuum wave function Ψ(r, θ) satisfies the
boundary condition of the third type:

dΦ(r)
dr

= R(r)Φ(r), (14)

R(r) ≡ dΦ(r)
dr

Φ−1(r),

at fixed values of the energy ε and the radial vari-
able r = rmin > 0 and r = rmax 	 1, where Φ(r) =
{χ(i)(r)}No

i=1 is an unknown jmax × No matrix and
No = max2E≥εth

j
j < jmax is the number of open

channels with Landau threshold εth
mj(γ) =

lim
r→∞

r−2Ej(r) = γ(2j − 1 + |m| − (signq1)m).

4. THE CONTINUOUS SPECTRUM
PROBLEM

The continuous spectrum solutions χ(i)(r) obey
the third-type boundary condition at fixed energy ε =
2E above the first Landau threshold εth

mj(γ) with j =
1:

dχ(r)
dr

= Rχ(r), r = rmax, (15)

PHYSICS OF ATOMIC NUCLEI Vol. 72 No. 5 2009



CHANNELING PROBLEM FOR CHARGED PARTICLES 771

where R is a nonsymmetric jmax × jmax matrix which
was calculated using the program KANTBP [5]. The
orthogonality/normalization condition for Ψ̂Emσ

i (Ω)
at m = m′ is

〈
Ψ̂Emσ

i (Ω)
∣
∣Ψ̂E′m′σ′

i′ (Ω)
〉

(16)

= δ(E − E′)δmm′δσσ′δii′ .

We express the corresponding eigenfunction
ΨEmσ

i (r, η) of the continuous spectrum with the
energy ε = 2E in open channels i = 1, No in the form
of Eq. (11), where χ̂(mσ)(E, r) ≡ {χ(io)(r)}No

io=1 is
now the radial part of the eigenchannel or “incoming”
and “outgoing” wave function. The eigenchannel
wave function χ̂(mσ)(E, r) is expressed as

χ̂(mσ)(E, r) = (2/π)1/2χ(p)(r)Ccoscoscosδ. (17)

The function χ(p)(r) is a numerical solution of
Eq. (12) that satisfies the “standing-wave” boundary
conditions (15) and has the standard asymptotic
form [5]

χ(p)(r) = χs(r) + χc(r)K, (18)

KC = Ctantantanδ.

Here, K ≡ Kσ is the symmetric numerical short-
range reaction matrix with the diagonal eigen-
value matrix tantantanδ ≡ {δij tan δj}No

ij=1 depending on

the short-range even/odd phase shift vector δ ≡
δσ = {δσ

j }No
j=1, and the orthogonal matrix CTC = Ioo

of the corresponding eigenvectors C, where Ioo is
the unit No × No matrix. Note, that in Eq. (17),
coscoscosδ is a diagonal matrix defined in the same terms.
The regular χs(r) = 2
(χ(r)) and irregular χc(r) =
2�(χ(r)) asymptotic functions are expressed via
the fundamental asymptotic solution χ(r) with the
leading terms at r → ∞:

χjio(r) =
exp(ıpior + ıζ ln(2pior) + ıδc

io
)

2r√pio

δjio, (19)

where pio is the relative momentum in the channel
io, ζ ≡ ζio = Z/pio is a Sommerfeld-type parame-
ter, δc

io
= arg Γ(1 − ıζ) is the known Coulomb phase

shift [12]. Using the R-matrix calculus [5], we obtain
the equation expressing the reaction matrix K via the
matrix R at r = rmax

K = −X−1(rmax)Y(rmax), (20)

where X(r) and Y(r) are square No × No matrices
depending on the open–open matrix (channels)

X(r) =
(

dχc(r)
dr

− Rχc(r)
)

oo

, (21)

Y(r) =
(

dχs(r)
dr

− Rχs(r)
)

oo

.

The radial part of the “incoming” and “outgoing”
wave functions χ̂(mσ)(E, r) = (2/π)1/2χ∓(r) is ex-
pressed via the numerical “standing” wave function
and the short-range reaction matrix K by the relation

χ−(r) = ıχ(p)(r)(Ioo + ıK)−1, (22)

χ+(r) = −ıχ(p)(r)(Ioo − ıK)−1,

and have the asymptotic forms

χ̂(mσ)(E, r) = (2/π)1/2(χ(r) − χ∗(r)S†), (23)

χ̂(mσ)(E, r) = (2/π)1/2(χ∗(r) − χ(r)S).

Here, S ≡ Sσ is the symmetric unitary short-range
scattering matrix, S†S = SS† = Ioo, which can be
expressed via the calculated K matrix as

S = (Ioo + ıK)(Ioo − ıK)−1. (24)

The ionization wave function Ψ(−)
Emv̂(r, η) ≡

Ψ(−)

Em
→←

(r, η) has the asymptotic form reverse to the
common scattering problem, namely, “incident wave
+ ingoing wave”

Ψ(−)
Emv̂(r, η) = 2−1/2(ΨEm,+1(r, η) (25)

± ΨEm,−1(r, η)) exp(−ıδc).

The function Ψ(−)
Emv̂(r, η) corresponds to the func-

tion |Ev̂mNρ〉 defined in the cylindrical coordinates
(ρ, z, ϕ)

|Ev̂mNρ〉 =
exp(ımϕ)

2π

jmax∑

n′=1

Φn′(ρ)χ(−)
Emv̂n′n(z).

(26)

Here, Nρ = n − 1, v̂ denotes the initial direction
of the particle motion along the z axis, Φn′(ρ)
is the eigenfunction of a two-dimensional oscilla-
tor that corresponds to Φmv̂

j (r, η) = (Φm,+1
j (r, η) ±

Φm,−1
j (r, η))/

√
2 at r → ∞. At z → ±∞ the function

χ
(−)
Emv̂n′n(z) has the following asymptotic form:

χ
(−)
Ev̂ (z) (27)

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

{
X(+)(z) + X(−)(z)R̂†, z > 0,
X(+)(z)T̂†, z < 0,

v̂ = →,

{
X(−)(z)T̂†, z > 0,
X(−)(z) + X(+)(z)R̂†, z < 0,

v̂ = ←,
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Fig. 1. Profiles of total wave functions (25) of the continuous spectrum in the z, x plane with Z = −1, m = 0, and γ = 0.1.
The states with the energy E = 0.05885 a.u. (left) correspond to the resonance transmission, while those with the energy
E = 0.11692 a.u. (right) correspond to the total reflection.
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Fig. 2. Transmission |T̂|2 (dash-dotted curve) and reflec-
tion |R̂|2 (solid curve) coefficients (29), even δe (dashed
curve) and odd δo (dotted curve) short-range phase
shifts (18) versus (Ẽ2 − 2E)−1/2 for Z = −1, m = 0,
γ = 0.1. Here, the position of the first threshold 2E =

E1 = γ = 0.1 corresponds to (E2 − 2E)−1/2 ≈ 2.23.

where the matrix elements of X(±)(z) are

X
(±)
n′n (z) (28)

= exp
(

±ıpn′z ± ıζn′
z

|z| ln(2pn′ |z|)
)

δn′n√
pn′

,

T̂ and R̂ are the transmission and reflection ampli-
tude matrices, T̂†T̂ + R̂†R̂ = Ioo. It is easy to show
that T̂ and R̂ may be expressed in terms of the long-
range scattering matrices Šσ = exp(ıδc)Sσ exp(ıδc)
as

T̂ = 2−1(−Š+1 + Š−1), (29)

R̂ = 2−1(−Š+1 − Š−1).

Note, that the scattering wave function Ψ(+)
Emv̂(r, η)

is defined by the formula Ψ(+)

Em
→←

(r, η) =
(
Ψ(−)

Em
←→

(r, η)
)∗

having the asymptotic form “inci-

dent wave + outgoing wave”. For recombination the
above wave function should be renormalized to one
particle per unit length in the incident wave by factor√

pio in each partial wave functions.

The continuous spectrum solution χ(p)(r) having
the asymptotic form of a “standing” wave and the
reaction matrix K from (18) were calculated using
the program KANTBP [5]. As an example, the profiles
of the wave function (25) using Eq. (22) for Z = −1,
m = 0, γ = 0.1, jmax = 10, and No = 1 are shown in
Fig. 1 at two fixed values of energy E, correspond-
ing to resonance transmission |T̂|2 = sin2(δe − δo) =
1 and total reflection |R̂|2 = cos2(δe − δo) = 1. One
can see that the probability density of the wave func-
tion around a point of pair impact in the case of reflec-
tion is greater than in the case of transmission. Here,
δe ≡ δ+1

1 and δo ≡ δ−1
1 are the short-range phase

shifts for even and odd states from Eq. (18), respec-
tively. The transmission and reflection coefficients are
explicitly shown in Fig. 2 together with the even δe

and odd δo phase shifts versus the inverse square
root of energy (Ẽ2 − 2E)−1/2 relative to the second
threshold shift Ẽ2 = εth

m2(γ). The countable series of
quasistationary states imbedded in the continuum
corresponds to the short-range phase shifts δo(e) =
no(e)π + π/2 at (Ẽ2 − 2E)−1/2 = no(e) + ∆no(e)

(the
first no(e) = 1−6 of them are presented in Fig. 2).

Nonmonotonic behavior of |T̂| and |R̂| is seen to
include the cases of resonance transmission and total
reflection, related to the existence of these quasi-
stationary states.

One can fit the obtained numerical results for a
finite number of quasistationary states using the ap-
propriate analytic parametrization [13] to extrapolate
them from above the ioth threshold to below the (io +
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1)th threshold and, as a result, to estimate the count-
able set of quasistationary states between the thresh-
olds. Such a procedure provides a considerable reduc-
tion of the computer facilities required and allows one
to select the appropriate energy subregions for further
numerical calculations aimed at the determination of
the resonance frequencies of photoionization and the
induced or spontaneous recombination [14].

5. ASYMPTOTIC SOLUTION AT SMALL
VALUES OF THE RADIAL VARIABLE

Let us suppose that the set of linearly independent

solutions Φ̃reg(r) = {χ̃(i)
reg(r)}jmax

i=1 , where χ̃
(i)
reg(r) =

(χ̃reg
1i (r), . . ., χ̃

reg
jmaxi

(r))T , is constructed. Using a

linear combination of these regular solutions, χ̃(i)
reg(r),

we can find the required matrix solution Φ(r) at
r = rmin > 0:

Φ(r) = Φ̃reg(r)C, (30)

χjio(r) =
jmax∑

i=1

χ̃
reg
ji (r)Ciio ,

where C is an unknown nonzero constant jmax × No

matrix. Using the identity CC−1 = I, the R(r) ma-
trix at r = rmin can be easily found via the known set
of linear independent regular solutions Φ̃reg(r):

R(r) ≡ dΦ̃reg(r)
dr

Φ̃−1
reg(r), (31)

Rji(r) =
jmax∑

i′=1

dχ̃
reg
ji′ (r)

dr
(χ̃reg(r))−1

i
′
i
.

After the numerical calculation of the solution Φ(r) =
Φh(r) in the nodes of the finite-element grid Ωh

r with-
in the interval [rmin, rmax], taking Eqs. (14)–(31) into
account, the matrix C can be evaluated using the
formula at j = 1, . . . , jmax and io = 1, . . . , No:

C = Φ̃−1
reg(rmin)Φ(rmin), (32)

Cjio =
jmax∑

i=1

(χ̃−1
reg)ji(rmin)χiio(rmin).

The matrix C is applied to the analysis of the matrix
solution Φ(r) in the vicinity of r = 0. For example, a
constant matrix C keeps the ratio Φ̃−1

reg(0)Φ(0) finite
and nonzero even if Φ(0) ≡ 0 or is very close to zero.
To extract the required matrix C in this case, one
can use the known asymptotic form of the regular
solutions at rmin. The value rmin is defined in the
asymptotic domain of the Φ̃reg(r). As a result, we

obtain the total wave function in each open channel
r ≤ rmin:

ψio(η, r) =
jmax∑

j=1

jmax∑

i=1

φmσ
j (η; r)χreg

ji (r)Ciio .

At small r we find the asymptotic solutions of the
problem (12)–(14) as an expansion in powers of r and

Legendre polynomials P
|m|
l+s(η; r) with l = 2(j − 1) +

|m| + (1 − σ)/2:

Ej(r) = E
(0)
j + E

(2)
j r2 +

kmax/4∑

k=1

r4kE
(4k)
j , (33)

φj(η; r) = φ
(0)
j (η; r) +

kmax∑

k=1

r4kφ
(k)
j (η; r),

φ
(k)
j (η; r) =

2k∑

s=−2k

P
|m|
l+s(η; r)b(k)

sj .

The substitution of Eq. (33) into Eq. (12) leads to the

recursive relations for the unknowns b
(k)
sj for s �= 0 and

E
(4k)
j :

(s2 + (2l + 1)s)b(k)
sj (34)

= −
2∑

s′=−2

v
(1)
s;s′b

(k−1)
s−s′j +

k−1∑

p=0

E
(4k−4p)
j b

(p)
sj ,

where the matrix elements are defined by the relations
with the notation t = l + s:

v
(k)
−2;t = δ1k

1
4(2|m| + 2t − 1)

×

√
(t − 1)t(2|m| + t − 1)(2|m| + t)
(2|m| + 2t − 3)(2|m| + 2t + 1)

,

v
(k)
0;t = δ1k

2(t2 + t + 2|m|t + 2|m|2 + |m| − 1)
(2|m| + 2t − 1)(2|m| + 2t + 3)

,

v
(k)
2;t = δ1k

1
4(2|m| + 2t + 3)

×

√
(t + 1)(t + 2)(2|m| + t + 1)(2|m| + t + 2)

(2|m| + 2t + 1)(2|m| + 2t + 5)
.

These equations were solved at given initial data

E
(0)
j = l(l + 1) and b

(0)
sj = δs0. The coefficients b

(k)
0j at

s = 0 were calculated from the normalization condi-
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tion (12):

b
(k)
0j = −

k∑

p=0

2k∑

s′=−2k

2k∑

s=−2k

b
(k−p)
sj 〈s|s′〉b(p)

s′j . (35)

Thus, the asymptotic expansions of the matrix ele-
ments take the form

Hjj′(r) =
kmax/4∑

k=1

r4k−2H̄
(4k−2)
jj′ ,

Qjj′(r) =
kmax/4∑

k=1

r4k−1Q̄
(4k−1)
jj′ ,

H̄
(4k−2)
jj′ =

k∑

p=0

2k∑

s′=−2k

2k∑

s=−2k

b
(k−p)
sj

× 16p(k − p)δs+js′+j′b
(p)
s′j′ ,

Q̄
(4k−1)
jj′ =

k∑

p=0

2k∑

s′=−2k

2k∑

s=−2k

b
(k−p)
sj

× 4(k − p)δs+js′+j′b
(p)
s′j′ .

The calculation was performed using the algorithm
implemented in MAPLE up to kmax = 16. Below we
display the first few coefficients of the matrix elements
with l = 2(j − 1) + |m| + (1 − σ)/2:

Ē
(0)
j = l(l + 1), Ē

(2)
j = γm,

Ē
(4)
j =

γ2(l2 + l − 1 + |m|2)
2(2l − 1)(2l + 3)

,

Q̄
(3)
jj−2 = −γ2(l + |m|)1/2(l − |m|)1/2(l − 1 − |m|)1/2(l − 1 + |m|)1/2

2(2l − 3)1/2(2l + 1)1/2(2l − 1)2
.

At small r we find the asymptotic solutions of the
problem (12)–(14) in the form of an expansion in
powers of r:

χ̃ji(r) =
kmax∑

k=0

χ̃
(k)
ji rµi+k, χ̃

(0)
ji = δji, (36)

where µ0 is the unknown characteristic parameter.
The substitution of Eq. (36) into Eq. (12) leads to

the recursive relations for the unknowns χ̃
(k)
ji with

l′ = 2(j − 1) + |m|+ (1− σ)/2, l = 2(i− 1) + |m|+
(1 − σ)/2:

−(l′ + 1 + µi + k)(µi − l′ + k)χ̃(k)
ji (37)

= 2Zχ̃
(k−1)
ji − (mγ − ε)χ̃(k−2)

ji −
k∑

s=4

Ē
(s)
j χ̃

(k−s)
ji

−
k−2∑

s=4

H̄
(s)
jj χ̃

(k−s−2)
ji

−
k−1∑

s=3

min(jmax,i+[s/4])∑

j′=max(1,i−[s/4]),j′ 	= j

(2l + 2k − s)Q̄(s)
jj′χ̃

(k−s−1)
j′i

−
k−2∑

s=4

min(jmax,i+[s/4])∑

j′=max(1,i−[s/4]),j′ 	= j

H̄
(s)
jj′ χ̃

(k−s−2)
j′i .

As follows from Eq. (37) at k = 0, the conventional
characteristic equation yields two roots for the un-
known µi: µi = −l′ − 1 and µi = l′. The value µi =
−l′ − 1 corresponds to irregular unbound solutions
and is not considered here. The value µi = l′ corre-
sponds to the required regular and bound solutions
and is the one we have used in our calculations. In this
case (37) the coefficients of the asymptotic expansion
of the regular solution (36) are

χ̃
(0)
ii = 1, χ̃

(1)
ii =

Z

l + 1
, (38)

χ̃
(2)
ii = −−2Z2 + (ε − mγ)(l + 1)

2(l + 1)(2l + 3)
,

χ̃
(3)
ii = −Z(−2Z2 + (ε − mγ)(3l + 4))

6(l + 1)(l + 2)(2l + 3)
,

χ̃
(4)
i−1i =

Q̄
(3)
i−1i(2l + 5)
6(2l + 3)

,
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Fig. 3. (a) Effective potential 2U in the z, x plane; (b) the full enhancement coefficient (solid line) and partial enhancement
coefficients in each open channel (i = 1−5) versus the threshold energy 2E, for the effective charge Z = +6 and γ = 1 (in
scaled variables).

χ̃
(4)
ii =

Ē
(4)
i

4(2l + 5)
+

(ε − mγ)2

8(2l + 3)(2l + 5)

+
Z4 − Z2(ε − mγ)(3l + 5)

6(l + 1)(l + 2)(2l + 3)(2l + 5)
,

χ̃
(4)
i+1i =

Q̄
(3)
i+1i(2l + 5)
2(2l + 7)

.

As a result, we get the required expansion of
2D-solution in the Kantorovich form:

ψ
(as)
io

(η, r)

=
jmax∑

i=1

kmax∑

k=0

kmax−k∑

p=0

jmax∑

j=1

rµi+kφ
(k−p)
j (η)χ̃(p)reg

ji Ciio ,

φ
(k−p)
j (η) =

2k−2p∑

s=max(−l,−2k+2p)

P
|m|
l+s(η)b(k−p)

sj ,

where l = 2(i − 1) + |m| + (1 − σ)/2, µi = l. The
above asymptotic form of the Kantorovich expansion
is equivalent to the Galerkin one over the basis of
Legendre polynomials:

ψ
(as)
io

(η, r)

=
jmax∑

i=1

kmax∑

k=0

2k−2p∑

s=max(−l,−2k+2p)

f (k)
s (r, η)g(kmax−k)

si Ciio ,

f (k)
s (r, η) = rµi+kP

|m|
l+s(η),

g
(kmax−k)
si =

kmax−k∑

p=0

jmax∑

j=1

b
(k−p)
sj χ̃

(p)reg
ji .

Moreover, using the substitution r = (ρ2 + z2)1/2

and η = z(ρ2 + z2)−1/2, one gets the asymptotic
series for the regular solution in the Galerkin form in
cylindrical coordinates (ρ, z) over the homogeneous
polynomials of the degree (µi + k) with respect to the
variables (ρ, z):

f (k)
s (ρ, z) = (ρ2 + z2)(µi+k)/2P

|m|
l+s(z(ρ2 + z2)−1/2).

Note, that one can also derive the above asymptotic
expansion in Galerkin form with the help of the direct
calculation scheme [15]. The above asymptotic ex-
pansions can be applied to set the third-type bound-
ary condition around the point of pair impact in differ-
ent calculation schemes.

6. PRELIMINARY ESTIMATIONS
OF THE ENHANCEMENT COEFFICIENT

The solution of the channelling problem (8) with
the help of calculation schemes described in Sections
4 and 5 was found using the programs KANTBP 2.0
and POTHMF at various values of the scaled energy
E and the effective charge Z. As a result, the values
of the enhancement coefficient have been calcu-
lated by means of the formula |C (2E) /C0 (2E)|2 =
∑No

i=1 |Ci (2E) /C0 (2E)|2, where Ci (2E) =
= χ1i(r = 0) are the numerical values of the solu-
tion at the point of pair impact from Eq. (12) and
C0 (2E) = χ11(r = 0) is the Coulomb function with
the effective charge Z at the energy 2E − 1.

Figure 3 illustrates the estimations of the total
enhancement coefficient and the enhancement coeffi-
cients in each open channel (1–5) as functions of the
energy 2E, related to the zero energy of free threshold,
at the effective charge Z = 6 for even components of
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(a–d) open channels at 2E = 7.70, Z = +6, γ = 1 (in scaled variables).

the solution at m = 0. The maximum of the total en-
hancement coefficient is achieved at the value 2E =
6.9, between the third and the fourth channel at pass-

ing the minimum of the barrier 2U0 = 6.24, where

2U0 = 2U(ρ, z) = 2Z/(ρ2 + z2)1/2 + (1/4)ρ2 at the
saddle point with coordinates z = 0 and ρ = ρ0 under
the condition ∂U(ρ, z)/∂ρ|ρ = 0 (see Fig. 3b). The
reflection is practically total, indeed, at 2E = 6.552
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the matrix of reflections coefficients is

|R̂|2 =

⎛

⎜
⎜
⎜
⎝

0.967329 0.004785 −0.000094

0.004785 0.990368 0.000074

−0.000094 0.000074 0.999999

⎞

⎟
⎟
⎟
⎠

.

Similar to the case of attraction (see Fig. 1), the

first local minimum of the total enhancement coeffi-
cient appears with increasing energy above the forth

threshold energy to 2E = 7.70, where the diagonal

elements of the transition coefficient matrix increases
to approximately ∼ 0.5 in the first and the second

channels:

|R̂|2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0.473201 0.235919 0.043577 −4 × 10−7

0.235919 0.555215 −0.003336 1 × 10−7

0.043577 −0.003336 0.995355 4 × 10−8

−4 × 10−7 1 × 10−7 4 × 10−8 1.00000

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Such a behavior is a consequence of the effects of
superstrong focusing, corresponding to astrophysical
magnetic fields. At interaction of particles in the
channel the competition of two processes occur:
the defocusing due to Coulomb interactions and
the focusing due to the oscillator interaction [3],
effectively lowering the dimension of the problem.
Hence, there exists a region of energy, where the
probability density at the point of pair impact has a

maximum for quasistationary states of the contin-
uous spectrum. For example, the first component
of the short-range even phase-shift vector δ ≡
δe = {δe

j}No=3
j=1 = (−1.5707, 0.7717, 0.5343)T of the

even state equals −π/2 at 2E = 6.552 (see Fig. 3).
Figures 4–6 present the partial ionization wave

functions |Ψ(−)
io;E0←| and their asymptotic behavior

versus the coordinates (x, z) in the plane y = 0.
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To study the interaction of channelled particles
at real values of an effective charge, Z, for example,
for identical particles with masses and charges of
a deuterium nucleus, it is necessary to set an ef-
fective charge, Z ∼ 100, and to solve the problem
with a large number of open channels, No ∼ U0 ∼
3(Z/2)2/3/2, that requires significant computer re-
source.

7. CONCLUSIONS

In the present paper the optimal conditions have
been determined under which it is possible to solve the
problem of interaction of channelled particles. Tenta-
tive estimations of the enhancement factor were ob-
tained without additional short-range nuclear poten-
tials. The dependence of the enhancement factor upon
the energy is nonmonotonic, which is a manifestation
of two potentials, the defocucing Coulomb potential
of interaction between identical charged particles and
the focusing oscillator potential, responsible for the
interaction of particles with the crystal, supporting
the quasistationary states in the continuous spectrum
and providing the practically total reflection. In the
framework of the proposed approach one can ob-
tain improved estimations of the enchancement factor
taking into account the known parametrizations of
the R matrix of nuclear reactions at an appropriate
point rmin = r0 in the vicinity of the pair impact point.

The presented approach and the programs that
allow one to study the threshold peculiarities of pho-
toionization and recombination of particles with the
opposite-sign charges (positrons, antiprotons) in a
magneto-optical trap [16], the optical absorption in
quantum wells [17], and the channelling of similarly
charged particles in thin doped films [3] or neutral
atoms and molecules in artificial waveguides or sur-
faces [10, 11].

The application of the total reflection effect to op-
positely charged particles in a homogeneous mag-
netic field can give a new mechanism of jumps in a
magneto-optical trap [16, 18] after each pair colli-
sion without any additional external confinement in
the longitudinal direction under the resonance con-
ditions (the temperature and the axial magnetic field
parameter γ or the frequency and the polarization of
the additional laser field [14, 19]), provided that the
collision integral in the Boltzmann equation will be
properly taken into account [20, 21].
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