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ELEMENTARY PARTICLES AND FIELDS

Adiabatic Representation for a Hydrogen Atom Photoionization
in a Uniform Magnetic Field*
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Abstract—A new effective method of calculating wave functions of discrete and continuous spectra of a
hydrogen atom in a strong magnetic field is developed on the basis of the adiabatic approach to parametric
eigenvalue problems in spherical coordinates. The two-dimensional spectral problem for the Schrödinger
equation at a fixed magnetic quantum number and parity is reduced to a spectral parametric problem for
a one-dimensional angular equation and a finite set of ordinary second-order radial differential equations.
The results are in good agreement with the photoionization calculations by other authors and have a true
threshold behavior.
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1. INTRODUCTION

Recent Monte Carlo estimations of the influence
of a strong magnetic field on the spontaneous recom-
bination of the anti-hydrogen in the cold positron–
antiproton plasma conditions of the ATHENA [1, 2]
and ALPHA [3] experiments (CERN) have shown
that further quantum mechanical analysis is
needed [4]. We can draw attention to a new en-
hancement mechanism of a laser-stimulated re-
combination of anti-hydrogen in cold antiproton–
positron plasma in a laboratory magnetic field via
quasistationary states embedded in the continuum
that has been revealed recently [5]. At the first stage
of such an analysis, the adiabatic representation
known in mathematics as a Kantorovich method is
developed for solving the problem of low-lying excited
states of the hydrogen atom in a magnetic field in
spherical coordinates [6] and the benchmark three-
body scattering problem on a line [7].

Indeed, the adiabatic representation in cylindri-
cal coordinates was applied recently to revive the
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basic decay mechanisms of Rydberg states with
high magnetic quantum numbers in the magnetic
traps [8]. It has been shown that the exhaustive
analysis of the complex dynamics of the electron with
decreasing module of magnetic number is impossible
without taking the nonadiabatic coupling into con-
sideration [9]. However, high-accuracy calculations
in cylindrical coordinates is a rather cumbersome
problem except the cases of high magnetic num-
bers or a dominating magnetic field [10]. So, using
spherical coordinates is preferable when Coulomb
and magnetic fields have comparable contributions
in the average potential energy [11] but leads to
nontrue threshold behavior of the photoionization
cross section calculated by the complex rotation–
variational method [12].

In this paper, we develop the Kantorovich ap-
proach with a boundary condition of the third type
in a form appropriate for the R-matrix calculations
of atomic hydrogen photoionization in a strong mag-
netic field using a uniform orthogonal parametric ba-
sis of the angular oblate spheroidal functions [13] in
spherical coordinates only, instead of the combined
nonorthogonal basis of Landau and Sturmian func-
tions in both cylindrical and spherical coordinates [14,
15]. The efficiency of the elaborated approach which
provides true threshold behavior of photoionization
cross sections of a hydrogen atom from the ground
state to the different continuous-spectrum states is
demonstrated.

The paper is organized as follows. The 2D eigen-
value problem for the Schrödinger equation for the
hydrogen atom in an axially symmetric magnetic field,
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written in spherical coordinates, is considered in Sec-
tion 2 together with the appropriate classification of
states. The reduction of the 2D eigenvalue problem
to a 1D eigenvalue problem for a set of closed radial
equations via four steps of the Kantorovich method
is described briefly in Section 3. All the asymptotic
expressions needed to find the solutions and the re-
action matrix using the R-matrix method, are pre-
sented in Section 4. The method is applied to the
calculation of ionization from the ground state to the
different continuous-spectrum states in Section 5. In
the Conclusions, we outline the prospects for further
applications of this approach.

2. STATEMENT OF THE PROBLEM

The Schrödinger equation for the wave function
Ψ̂(r, θ, ϕ) = Ψ(θ, r) exp(imϕ)/

√
2π in the spherical

coordinates (r, θ, φ) of the hydrogen atom in an ax-
ially symmetric magnetic field �B = (0, 0, B) can be
written as the 2D equation(

− 1
r2

∂

∂r
r2 ∂

∂r
− 1

r2 sin θ

∂

∂θ
sin θ

∂

∂θ
(1)

+ U(r, θ)
)

Ψ(r, θ) = εΨ(r, θ),

in the region Ω: 0 < r < ∞ and 0 < θ < π. The po-
tential function U(r, θ) is given by

U(r, θ) = −2Z
r

+ V (r, θ), (2)

V (r, θ) =
m2

r2 sin2 θ
+ γm +

γ2r2

4
sin2 θ,

where m = 0,±1, . . . is the magnetic quantum num-
ber, γ = B/B0, B0

∼= 2.35 × 105 T is a dimensionless
parameter which determines the field strength B, and
the atomic units (a.u.) � = me = e = 1 are used un-
der the assumption of infinite mass of the nucleus.
In these expressions, ε = 2E is the doubled energy
(in units of rydbergs, 1Ry = (1/2) a.u.) of the bound
state |mσ〉 at fixed values of m and z parity; σ = ±1;
Ψ ≡ Ψmσ(r, θ) = (Ψm(r, θ) + σΨm(r, π − θ))/

√
2 is

the corresponding wave function. Here, the sign of
z parity σ = (−1)Nθ is defined by the (even or odd)
number of nodes Nθ in the solution Ψ with respect
to the angular variable θ in the interval 0 < θ < π.
The wave function satisfies the following boundary
conditions in each Hmσ subspace of the full Hilbert
space:

lim
θ→0

sin θ
∂Ψ(r, θ)

∂θ
= 0, for m = 0, (3)

and Ψ(r, 0) = 0, for m �= 0,

∂Ψ
∂θ

(
r,

π

2

)
= 0, for σ = +1, (4)

and Ψ
(
r,

π

2

)
= 0, for σ = −1,

lim
r→0

r2 ∂Ψ(r, θ)
∂r

= 0. (5)

The discrete-spectrum wave function obeys the
asymptotic boundary condition approximated at large
r = rmax by a boundary condition of the first type,

lim
r→∞

r2Ψ(r, θ) = 0 → Ψ(rmax, θ) = 0. (6)

Here, the energy ε ≡ ε(rmax) plays the role of eigen-
values of the boundary problem (1)–(6) determined
by a variational principle with an additional normal-
ization condition in a finite interval 0 ≤ r ≤ rmax,

Π(Ψ, ε) = 0, (7)

2

rmax∫
0

π/2∫
0

r2 sin θ|Ψ(r, θ)|2dθdr = 1,

where Π(Ψ, ε) is a symmetric functional defined by

Π(Ψ, ε) = 2

rmax∫
0

π/2∫
0

sin θ

(
r2

∣∣∣∣∂Ψ(r, θ)
∂r

∣∣∣∣
2

+
∣∣∣∣∂Ψ(r, θ)

∂θ

∣∣∣∣
2

+ r2(U(r, θ) − ε)|Ψ(r, θ)|2
)

dθdr.

In the Fano–Lee R-matrix theory [16, 17], a
continuum-spectrum wave function Ψ(r, θ) obeys the
boundary condition of the third type at fixed values of
energy ε and radial variable r = rmax

∂Ψ(r, θ)
∂r

− µΨ(r, θ) = 0. (8)

Here, the parameters, µ ≡ µ(rmax, ε), determined by
a variational principle, play the role of eigenvalues of
a logarithmic normal derivative matrix of the solution
of the boundary problem (1)–(5) and (8)

Π(Ψ, ε) = 2µr2
max

π/2∫
0

sin θ|Ψ(rmax, θ)|2dθ. (9)

Standard theorems [18] ensure the existence of a
function µ(rmax, ε) such that Eq. (8) is satisfied (at
any finite r = rmax < ∞) [19].

3. REDUCTION OF THE 2D PROBLEM
BY THE KANTOROVICH METHOD

Consider a formal expansion of the partial wave
function ΨEmσ

i (r, θ) of (1)–(5) with (6)/(8) corre-
sponding to the eigenstate |mσi〉 using the finite set
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of one-dimensional basis functions {Φmσ
j (θ; r)}jmax

j=1

ΨEmσ
i (r, θ) =

jmax∑
j=1

Φmσ
j (θ; r)χ(mσi)

j (E, r). (10)

In Eq. (10), the functions χ(i)(r) ≡ χ(mσi)(E, r),

(χ(i)(r))T = (χ(i)
1 (r), . . . , χ(i)

jmax
(r)) are unknown,

and the surface functions Φ(θ; r) ≡ Φmσ(θ; r),
(Φ(θ; r))T = (Φ1(θ; r), . . . ,Φjmax(θ; r)) form an or-
thonormal basis for each value of the radius r, which
is treated here as a parameter.

In the Kantorovich approach, the wave functions
Φj(θ; r) and potential curves Ej(r) are determined as
the solutions of the following one-dimensional para-
metric eigenvalue problem:(

− ∂

∂θ
sin θ

∂

∂θ
+ r2 sin θV (r, θ)

)
Φj(θ; r) (11)

= Ej(r) sin θΦj(θ; r),

with the boundary conditions

lim
θ→0

sin θ
∂Φj(θ; r)

∂θ
= 0, for m = 0, (12)

and Φj(0; r) = 0, for m �= 0,
∂Φj

∂θ

(π

2
; r

)
= 0, for σ = +1, (13)

and Φj

(π

2
; r

)
= 0, for σ = −1.

Here, the sign of z parity, σ = (−1)Nθ , is defined by
the (even or odd) number of nodes Nθ in the solution
Φ(θ; r) with respect to the angular variable θ in the
interval 0 < θ < π. Since the operator on the left-
hand side of (11) is self-adjoint, its eigenfunctions are
orthonormal 〈

Φi(θ; r)
∣∣∣∣Φj(θ; r)

〉
θ

(14)

= 2

π/2∫
0

sin θΦi(θ; r)Φj(θ; r)dθ = δij ,

where δij is the Kronecker symbol.
Note that the solutions of this problem with shifted

eigenvalues, Ẽj(r, γ) = Ej(r, γ) − γmr2, correspond
to the solutions of the eigenvalue problem for oblate
angular spheroidal functions [13] with respect to the
variable η = cos θ:(

− ∂

∂η
(1 − η2)

∂

∂η
+

m2

1 − η2
(15)

+
(

γr2

2

)2

(1 − η2)

)
Φj(η; r) = Ẽj(r)Φj(η; r).

It means that, for small r, the asymptotics of the
eigenvalues Ej(r), j = 1, 2, . . ., at fixed values m and
σ is defined by the values of the orbital quantum num-
ber, l = s, p, d, f, . . .: Ej(0) = l(l + 1), l = 0, 1, . . .,
where j runs j = (l − |m|)/2 + 1 for even z-parity
states, σ = +1 = (−1)l−|m|, and j = (l − |m| + 1)/2
for odd z-parity states, σ = −1 = (−1)l−|m|. Taking
into account that the number of nodes Nθ of the
eigenfunction Φ(θ; r) at fixed |m| and σ = (−1)Nθ as
a function of the parameter r is preserved, we get a
one-to-one correspondence between these sets, i.e.,
Nθ = l − |m|.

For large r, the asymptotics of eigenvalues Ej(r),
j = 1, 2, . . ., at fixed values of m and σ is defined by
the values of the transversal quantum number, Nρ:

lim
r→∞

r−2Ej(r, γ) = εth
mσj(γ) (16)

= γ(2Nρ + |m| + m + 1),

where Nρ = 0, 1, . . . , and j runs j = Nρ + 1. The
values of the transversal quantum number Nρ, i.e., the
number of nodes of the eigenfunction Φ(θ; r) in the
subinterval 0 < η < 1 or −1 < η < 0, corresponding
to the transversal variable ρ = r sin θ on a semiaxis,
are expressed via the number of nodes Nθ of the
solution Φ(θ; r): Nρ = 1/2 · Nθ for the even z-parity
states, σ = +1 = (−1)Nθ , and Nρ = 1/2 · (Nθ − 1)
for the odd z-parity states, σ = −1 = (−1)Nθ .

Such a transversal classification also reveals a
violation of degeneracy of the states with azimuthal
quantum numbers, ±m, having the same module |m|
that holds for the angular oblate spheroidal functions,
i.e.,

lim
r→∞

r−2Ẽj(r, γ) = γ(2Nρ + |m| + 1). (17)

Taking into account the above-mentioned correspon-
dence rules between the quantum numbers l − |m|,
Nθ, Nρ and the number j at fixed values of m and
σ, we use the unified number j without pointing
out explicitly a concrete type of quantum numbers.
These rules are similar to the conventional correlation
diagrams for potential curves of a hydrogen atom in a
uniform magnetic field or a helium atom.

After substituting the expansion (10) into the vari-
ational problem (7)/(9) and using Eqs. (11)–(14),
the solution of the above problem is transformed into
the solution of an eigenvalue problem for a system of
jmax ordinary second-order differential equations for
determining the energy ε and the coefficients (radial
wave functions) χ(i)(r) of expansion (10),(

− I
1
r2

d

dr
r2 d

dr
+

U(r)
r2

+ Q(r)
d

dr
(18)
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+
1
r2

dr2Q(r)
dr

)
χ(i)(r) = εiIχ(i)(r),

lim
r→0

r2

(
∂χ(i)(r)

∂r
− Q(r)χ(i)(r)

)
= 0.

Here, I,U(r), and Q(r) are matrices of dimension
jmax × jmax whose elements are given by the relations

Uij(r) =
Ei(r) + Ej(r)

2
δij + 2Zrδij (19)

+ r2Hij(r), Iij = δij ,

Hij(r) = 2

π/2∫
0

sin θ
∂Φi(θ; r)

∂r

∂Φj(θ; r)
∂r

dθ,

Qij(r) = −2

π/2∫
0

sin θΦi(θ; r)
∂Φj(θ; r)

∂r
dθ.

The above matrix elements were calculated by means
of the authors’ combined symbolic–numerical code
MATRM implemented in both MAPLE 8 and FOR-
TRAN [20].

The discrete spectrum solutions obey the asymp-
totic boundary condition and orthonormal conditions

lim
r→∞

r2χ(i)(r) = 0 → χ(i)(rmax) = 0, (20)

rmax∫
0

r2(χ(i)(r))T χ(j)(r)dr = δij .

For the continuum-spectrum solution χ(i)(r), we
can alternatively require that projections of (8) onto
all adiabatic functions hold,〈

Φj(θ; r)
∣∣∣∣∂ΨEmσ

i (r, θ)
∂r

− µiΨEmσ
i (r, θ)

〉
θ

= 0,

(21)

r = rmax,

which leads to the third-type boundary conditions at
fixed values of energy ε > εth

mσ1(γ) and radial variable
r = rmax (

R −Q(r) − µi

)
χ(i)(r) (22)

=

(
∂χ(i)(r)

∂r
(χ(i))−1(r) − Q(r) − µi

)
χ(i)(r) = 0.

From here, µi and χ(i)(rmax) should be a set of
eigenvalues Λ = {δijµi}No

ij=1 corresponding to a set

of eigenvectors χ(r) ≡ {χ(i)(r)}No
i=1 of the following

eigenvalue problem at r = rmax

dχ(r)
dr

− Q(r)χ(r) = χ(r)Λ, (23)

which is reformulated by averaging variational prob-
lem (9) to the following one:

Π(χ, ε) − r2
maxχ

T (rmax)χ(rmax)Λ = 0. (24)

Here No is the number of the open channels (i.e., the
energy ε should belong to the interval εth

mσNo
(γ) <

ε < εth
mσNo+1(γ)), and jmax > No.

After discretization, Eq. (24) becomes the follow-
ing algebraic eigenvalue problem

Πχ̃ = r2
maxχ̃(rmax)Λ̃, (25)

r2
maxχ̃

T (rmax)χ̃(rmax) = I.

The nonsymmetric R matrix obtained by the total
set of eigenvalues Λ̃ = {δij µ̃i}jmax

ij=1 and eigenvectors

χ̃ ≡ {χ̃(i)}jmax
i=1 of the eigenvalue problem (25) reads

R = r2
maxχ̃(rmax)Λ̃χ̃T (rmax) + Q(rmax) (26)

and gives the relation between χ(r) and its derivative
at r = rmax

dχ(r)
dr

= Rχ(r). (27)

Note that, in the diagonal approximation i = j of
the problem (18)–(20), the so-called adiabatic ap-
proximation, the number of nodes Nr of the solution
χ(r) with respect to the slow radial variable r on a
semiaxis for small values of the parameter γ corre-
sponds to the radial quantum number Nr = N − l− 1
of a free hydrogen atom in the bound state charac-
terized by a conventional set of quantum numbers
(N, l,m, λ = (−1)l) and the binding energy −εj(γ =
0) = −ε

(0)
j = Z/N2 (in Ry).

Recalling that the number of nodes Nθ of the solu-
tion Φ(θ; r) with respect to the fast angular variable,
θ, at fixed |m| and σ = (−1)Nθ as a function of the
slow parameter, r, is conserved, i.e., Nθ = l − |m|,
we have a one-to-one correspondence between the
quantum numbers (N, l) of the free atom at γ = 0 and
the adiabatic ones {Nr, Nθ} of the perturbed atom at
γ �= 0.

For large values of the parameter γ, the adiabatic
radial number Nr corresponds to the longitudinal
quantum number N|z| of a hydrogen atom in the
strong magnetic field at fixed m and the sign of σ =
±1, i.e., the number of nodes of the solution χ(|z|)
with respect to the longitudinal variable z = r cos θ
on a semiaxis. It means that the solution χ(z) on
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an axis is defined as follows: χmσ(z) = (χm(ρ, z) +
σχm(ρ,−z))/

√
2 or reduced to the solution χ(|z|)

of a conventional eigenvalue problem on a semiaxis,
using the Neumann and Dirichlet boundary condi-
tions at z = 0 for the even σ = +1 and odd σ = −1
solutions, respectively.

Taking into account the above correspondence
rules with such an adiabatic set [N|z|Nρ] and the
asymptotic form of eigenvalues Ej(r) at large r, we
can express the binding energy E via the eigen-
values ε of the problem (18)–(20) as follows: E =
(εth

mσj(γ) − ε)/2 (in a.u.), where εth
mσj(γ) is the true

threshold shift (16) or the reduced one εth
mσ(γ) =

γ(|m| + m + 1), respectively.

4. ASYMPTOTIC FORM OF SOLUTION

We write system of differential equations (18)
at fixed values m, σ and energy ε = 2E in the

explicit form for χjio(r) ≡ χ
(io)
j (r), j = 1, . . . , jmax,

io = 1, . . . , No,(
− 1

r2

d

dr
r2 d

dr
− 2Z

r
− ε +

Ej(r)
r2

(28)

+ Hjj(r)
)

χjio(r) =
jmax∑

j′=1,j′ �= j

(
− Hjj′(r)

− Qjj′(r)
d

dr
− 1

r2

dr2Qjj′(r)
dr

)
χj′io(r).

At large r, the asymptotic form of matrix elements
expanded in inverse powers of r (i.e., without expo-
nential terms) has the form (for details, see [20])

r−2Ej(r) = E
(0)
j +

∑
k=1

r−2kE
(2k)
j , (29)

Hjj′(r) =
∑
k=1

r−2kH
(2k)
jj′ ,

Qjj′(r) =
∑
k=1

r−2k+1Q
(2k−1)
jj′ ,

r 	 max(nl, nr)/(2
√

γ).

Here,

E
(0)
j = γ(2n + |m| + m + 1), (30)

E
(2)
j = −2n2 − 2n − 1 − 2|m|n − |m|,

H
(2)
jj′ = (2n2 + 2n + 2|m|n + |m| + 1)δ|nl−nr|,0

−
√

n + 1
√

n + |m| + 1
√

n + 2

×
√

n + |m| + 2 δ|nl−nr|,2,

Q
(1)
jj′ = (nr − nl)

√
n + 1

√
n + |m| + 1 δ|nl−nr|,1.

In these formulas, the asymptotic quantum numbers
nl, nr denote transversal quantum numbers Nρ and
N ′

ρ, related to the unified numbers j, j′ by the above-
mentioned formulas nl = j − 1, nr = j′ − 1, and n =
min(nl, nr).

Note that E
(2)
j + H

(2)
jj = 0; i.e., at large r, centrifu-

gal terms are eliminated in Eq. (28). It means that
the leading terms of radial solutions, χjio(r), have
the asymptotic form of Coulomb functions with zero
angular momentum.

Let us consider the asymptotic solution follow-
ing [21]

χjio(r) = R(pio , r)φjio(r) +
dR(pio , r)

dr
ψjio(r),

(31)

where R(pio , r) = iF (pio , r) + G(pio , r), [F (pio , r)
and G(pio , r) are the Coulomb regular and irregular
functions] and satisfies the differential equation

d2R(pio , r)
dr2

+
2
r

dR(pio , r)
dr

(32)

+
(

p2
io +

2Z
r

)
R(pio, r) = 0.

Then we can expand the functions φjio(r) and
ψjio(r) in series in inverse powers of r

φjio(r) =
kmax∑
k=0

φ
(k)
jio

r−k, ψjio(r) =
kmax∑
k=0

ψ
(k)
jio

r−k.

(33)

As a result of substitution of expansions (33) into (31)
and (28), using (32), and equating coefficients of ex-
pansion for the same powers of r, we arrive at the
set of recurrence relations with respect to unknown

coefficients φ
(k)
jio

and ψ
(k)
jio

:
(
p2

io − 2E + E
(0)
j

)
φ

(k)
jio

− 2p2
io(k − 1)ψ(k−1)

jio
(34)

− (k − 2)(k − 3)φ(k−2)
jio

− 2Z(2k − 3)ψ(k−2)
jio

+
k∑

k′=1

(
E

(k′)
j + H

(k′)
jj

)
φ

(k−k′)
jio
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=
jmax∑

j′=1,j′ �= j

k∑
k′=1

[(
(2k − k′ − 3)Q(k′−1)

jj′

− H
(k′)
jj′

)
φ

(k−k′)
j′io

+
(
2p2

ioQ
(k′)
jj′ + 4ZQ

(k′−1)
jj′

)
ψ

(k−k′)
j′io

]
,

(p2
io − 2E + E

(0)
j )ψ(k)

jio
+ 2(k − 1)φ(k−1)

jio
(35)

− k(k − 1)ψ(k−2)
jio

+
k∑

k′=1

(
E

(k′)
j + H

(k′)
jj

)
ψ

(k−k′)
jio

=
jmax∑

j′=1,j′ �= j

k∑
k′=1

[(
(2k − k′ + 1)Q(k′−1)

jj′

− H
(k′)
jj′

)
ψ

(k−k′)
j′io

− 2Q(k′)
jj′ φ

(k−k′)
j′io

]
.

From the first four equations of the set in (34) and (35)

for φ
(0)
ioio

, φ
(0)
j0io

, ψ
(0)
ioio

, and ψ
(0)
j0io

, we get the leading
terms of the eigenfunction, the eigenvalue, and the
characteristic parameter, i.e., initial data for solving
the recurrent sequence (34) and (35),

φ
(0)
j0io

= δj0io, ψ
(0)
j0io

= 0, p2
io = 2E − E

(0)
io

, (36)

which corresponds to the leading term of χjio(r) sat-
isfying the asymptotic expansion series (33) at large
r. Substituting these initial data to the next equa-
tions of the set in (34) and (35), we get a step-by-
step procedure for determining the series coefficients

φ
(k)
jio

and ψ
(k)
jio

. Using the explicit asymptotic matrix
elements (29), we get an explicit expression of these

coefficients φ
(k)
jio

and ψ
(k)
jio

via the values of the number
of a state (or channel) io = no + 1 and the number
of current equation j = 1, . . . , jmax. For example, at
k = 0, 1, such elements take the form

φ
(0)
ioio

= 1, ψ
(0)
ioio

= 0,

φ
(1)
io−1io

= 0, ψ
(1)
io−1io

=
√

no

√
no + |m|
γ

,

φ
(1)
ioio

= 0, ψ
(1)
ioio

= −2no + |m| + 1
γ

,

φ
(1)
io+1io

= 0, ψ
(1)
io+1io

=
√

no + 1
√

no + |m| + 1
γ

.

Taking into account the region of convergence of the
matrix elements, we find that the region of conver-
gence of expansion (31), as follows from asymptotic
form of matrix elements which do not depend on

pio , is rmax 	 nio/(2
√

γ) and rmax 	 Z(2nio + |m|+
1)/(pio

√
γ).

5. THE SCATTERING STATES
AND PHOTOIONIZATION CROSS

SECTIONS

The solution of the scattering problem,

χ(p)(r) = iχ(ph)(r)(I − iK) (37)

= χs(r) + χc(r)K,

with No open channels for p2
io ≥ 0 at io = 1, . . . , No,

is defined by means of the two independent funda-
mental asymptotic solutions χs(r) = 2�(χ(r)) and
χc(r) = 2�(χ(r)) (corresponding to “regular” and
“irregular” type) of Eqs. (28) and a reaction ma-
trix K = i(I + S)−1(I − S), where S = (I + iK)(I −
iK)−1 is the scattering matrix.

In this case, the regular and irregular functions
satisfy the generalized Wronskian relation at large r

Wr(Q(r);χc(r),χs(r)) =
2
π
Ioo, (38)

where Wr(•;χc(r),χs(r)) is a generalized Wron-
skian with a long derivative defined by

Wr(•;χc(r),χs(r)) (39)

= r2

[
(χc(r))T

(
dχs(r)

dr
− •χs(r)

)

−
(

dχc(r)
dr

− •χc(r)
)T

χs(r)

]
,

which will be used to control a desirable accuracy of
the above expansion. Here, Ioo is the unit matrix of
dimension No × No.

Using Eq. (27), we obtain the equation for the
reaction matrix K via R matrix at r = rmax(

Rχc(r) − dχc(r)
dr

)
K =

(
dχs(r)

dr
− Rχs(r)

)
,

(40)

and Eq. (38) is equivalent to

Wr(Q(rmax);χs(rmax),χc(rmax)) (41)

= Wr(R;χs(rmax),χc(rmax)).

Note that, when some channels are closed, the left
and right matrices of (40) are rectangular matrices.
Therefore, multiplying (40) on the left by the matrix
(χc(ρ))T , we obtain the following formula for the
reaction matrix K:

K = −X−1(rmax)Y(rmax), (42)
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where

X(r) = (χc(r))T
(

dχc(r)
dr

− Rχc(r)
)

,

Y(r) = (χc(r))T
(

dχs(r)
dr

− Rχs(r)
)

are square matrices of dimension No × No and
X(rmax) should be a symmetric matrix, which follows
from the condition Wr(R;χc(rmax),χc(rmax)) = 0.

Let the matrices S and K have eigenvalues
exp(2iδi) and tan δi, respectively. Then

SB = Bexp(2iδ), KB = Btan δ, (43)

where exp(2iδ) and tan δ are diagonal matrices and
B can be taken to be real and normalized to

BT B = Ioo. (44)

We denote the eigenstate wave function of contin-
uum ΨEmσ

i (r, θ) with energy 2E (of ejected elec-
tron) above the first threshold εth

mσ1(γ) = εth
mσ(γ) =

γ(|m| + m + 1) by the following:

ΨEmσ
i (r, θ) =

jmax∑
j=1

Φmσ
j (θ; r)χ̂(mσ)

ji (E, r), (45)

where

χ̂(mσ)(E, r) = χ(ph)(r)B (46)

or χ̂(mσ)(E, r) = χ(p)(r)Bcos δ.

In this case, the eigenstate wave function ΨEmσ
i (r, θ)

is normalized to〈
ΨEmσ

i (r, θ)
∣∣∣∣ΨE′m′σ′

i′ (r, θ)
〉

(47)

=
jmax∑
j=1

rmax∫
0

r2dr
(
χ̂

(mσ)
ji (E, r)

)∗
χ̂

(m′σ′)
ji′ (E′, r)

= δ(E − E′)δmm′δσσ′δii′ .

In terms of the above definitions, the photoionization
cross sections σd(ω) and σp(ω) (for light polarized
along the z axis and in the XOY plane, respectively)
are expressed as

σd(ω) = 4π2αω

No∑
i=1

∣∣∣∣D̂m′mσ
i,N|z|,Nρ

(E)
∣∣∣∣
2

a2
0, (48)

σp(ω) = 4π2αω
No∑
i=1

∣∣∣∣P̂m′mσ
i,N|z|,Nρ

(E)
∣∣∣∣
2

a2
0,

where D̂mσ
i,N|z|,Nρ

(E) and P̂m′mσ
i,N|z|,Nρ

(E) are the matrix

elements of the longitudinal and transverse moments,
respectively,

D̂m′mσ
i,N|z|,Nρ

(E) (49)

= δ|m−m′|0

〈
ΨEm′−σ

i (r, θ)
∣∣∣∣r cos θ

∣∣∣∣Ψmσ
N|z|,Nρ

(r, θ)
〉

=
N∑

j=1

N∑
j′=1

rmax∫
0

r2dr
(
χ̂

(m′−σ)
ji (E, r)

)∗

× D
(m′mσ)
jj′ (r)χ(mσ)

j′ (r),

P̂m′mσ
i,N|z|,Nρ

(E) (50)

= δ|m−m′|1

〈
ΨEm′σ

i (r, θ)
∣∣∣∣r sin θ√

2

∣∣∣∣Ψmσ
N|z|,Nρ

(r, θ)
〉

=
N∑

j=1

N∑
j′=1

rmax∫
0

r2dr
(
χ̂

(m′σ)
ji (E, r)

)∗

× P
(m′mσ)
jj′ (r)χ(mσ)

j′ (r).

The longitudinal D(mσ)(r) and transversal
P (mm′σ)(r) matrix elements are expressed as

D
(m′mσ)
jj′ (r)

= δ|m−m′|0

〈
Φm′−σ

j (θ; r)
∣∣∣∣r cos θ

∣∣∣∣Φmσ
j′ (θ; r)

〉
θ

,

P
(m′mσ)
jj′ (r)

= δ|m−m′|1

〈
Φm′σ

j (θ; r)
∣∣∣∣r sin θ√

2

∣∣∣∣Φmσ
j′ (θ; r)

〉
θ

.

In the above expressions, ω = E − E(N|z|, Nρ,

σ,m) is the frequency of radiation, E(N|z|, Nρ, σ,m)
is the energy of the initial bound state Ψmσ

N|z|,Nρ
(r, η),

E is the energy of the final continuum state
ΨEmσ

i (r, η) such that No is the number of the open
channels, α is the fine-structure constant, a0 is the
Bohr radius.

In our calculations, we used the following phys-
ical constants: inverse centimeter–Hartree relation-
ship cm−1 = 4.55633 × 10−6 a.u., Bohr radius a0 =
5.29177 × 10−11 m, and fine-structure constant α =
7.29735 × 10−3 [22]. Figure 1 displays the calculated
photoionization cross sections σd(ω) and σp(ω) from
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Fig. 1. Photoionization cross sections σd(ω) (a) and σp(ω) (b) from the ground state with γ = 0.1 to the final state with
σ = −1 and m = 0 at γ = 0.05 to the final state with σ = +1 and m = 1, respectively.

the ground state to the different continuous spectrum
states. In Fig. 1a, we use the energy interval from
E = 0.05 to 0.25 a.u. for the final state with σ = −1
and m = 0. The number of open channels is equal to 1
to 2. In Fig. 1b, we used the energy interval from E =
0.075 to 0.525 a.u. for the final state with σ = +1 and
m = 1. The final-state energy E is measured relative
to the zero-field ionization threshold. The number
of open channels varies from 1 to 9. The calculated
photoionization cross section is in good agreement
with [12] between the thresholds, but not near them.
Here, we show one of the goals of the elaborated ap-
proach to provide stable and economical calculations
of the photoionization cross section having the true
threshold behavior coinciding with [15].

6. CONCLUSIONS

A new efficient method for calculating wave func-
tions of a hydrogen atom in a strong magnetic field is
developed on the basis of the Kantorovich approach to
parametric eigenvalue problems in spherical coordi-
nates. The two-dimensional spectral problem for the
Schrödinger equation at a fixed magnetic quantum
number and parity is reduced to a spectral paramet-
ric problem for a one-dimensional equation by the
angular variable and a finite set of ordinary second-
order differential equations by the radial variable. The
results are in good agreement with calculations by
other authors. The developed approach is a good tool
for calculating threshold phenomena in formation and
ionization of (anti)hydrogen-like atoms and ions in
magnetic traps. In the future, we will also calculate a
manifold of the excited states in a layer with the prin-
ciple quantum number N = 3 of a hydrogen atom in

the magnetic field 2.35 × 104 T and 6.1 T that may be
interesting from our viewpoint for a laser-stimulated
recombination in actually existing traps [23].
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