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Abstract—We considered collinear models for a trimer of identical atoms with molecular pair interactions
and for an atomic dimer scattered by an atom or tunneling through potential barriers. The models are
formulated as 2D boundary-value problems in the Jacobi and polar coordinates. In the adiabatic represen-
tation the problems are reduced to a system of second-order ordinary differential equations (SODEs) with
respect to the radial variable using the expansion of the desired solutions in the set of angular basis functions
that depend on the radial variable as a parameter. The efficiency of the elaborated method, algorithms
and programs is demonstrated by benchmark calculations of the asymptotic expansions of basis functions,
effective potentials, fundamental solutions of the SODEs, and corresponding asymptotic scattering states,
as well as the resonance scattering, metastable and bound states.
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1. INTRODUCTION

At present the resonance scattering of diatomic
molecules(dimers) by atoms via three-particle meta-
stable trimer states and the molecular dissociation
induced by collisions with atoms are a subject of
extensive theoretical and experimental studies [1–5].

To analyze such processes it is conventional to
use triatomic model systems with atoms of rare gases
bound by pair interactions described, e.g., by realistic
molecular and van der Waals potentials, that possess
bound and metastable states in the vicinity of the
dissociation threshold of the diatomic molecule [6–
8]. To extend the class of conventional models we
proposed to consider the beryllium dimer [9, 10], in
which the bond is covalent in the low-lying (0–4)
vibrational energy states and van der Waals in the
upper (5–11) states [11, 12], and to investigate the
collisions of beryllium dimers with surrounding atoms
or the near-surface diffusion [13–15]. Further study
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of these models and processes stimulates the devel-
opment and application of the known and new meth-
ods and symbolic–numerical algorithms for solving
multidimensional boundary-value problems (BVPs)
with non-separable variables and the construction of
asymptotic states of the triatomic scattering problem
below and above the breakup threshold [16–45].

In the present paper, the application of the adi-
abatic representation to the solution of the above
problem is based on the Kantorovich method [46, 47]
that provides the required mathematical background,
reducing the BVP to a system of the second-order
ordinary differential equations (SODEs) with respect
to a (hyper)radial variable using the expansion of the
desired solutions in a set of angular basis functions,
depending on the (hyper)radial variable as a param-
eter [21, 22, 48], the asymptotic methods [49], and
the finite element method (FEM), implemented in the
problem-oriented software packages [50–57].

In the present paper we develop the adiabatic
representation method in application to the models
comprising three particles in the so-called quantum
chemistry as a collinear configuration [18]: a trimer of
identical atoms with molecular pair interactions and
an atomic dimer scattered by an atom or tunneling
through short-range potential barriers on a straight
line. Then we elaborate algorithms for calculating
the asymptotic parametric angular functions, the
effective potentials and the fundamental solutions of
the SODEs and apply them to the construction of the
asymptotic states of the triatomic scattering problem.
It is a key problem, because in three-atomic systems
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at large values of the hyperradial variable the effective
potentials of SODEs have the form of expansions in
inverse powers of hyperradius even for short-range
potentials of pair interactions. Evidently, they should
be studied before considering the pair interactions of
the van der Waals type. Moreover, in the problem
of dimer tunneling above the dissociation threshold,
the expansion of the matrix elements of the Gaussian
barrier potential begins from the first inverse power of
hyperradius, which is equivalent to effective Coulomb
repulsion above the threshold. Finally, we test
the developed technique by calculating the above
asymptotic expansions, the resonance scattering of
the atomic dimer by an atom or Gaussian barriers,
and the metastable and bound states of a trimer of
beryllium atoms below the dissociation threshold.

The paper is organised as follows. In Section 2
we formulate the 2D BVP for the dimer and trimer
models. In Section 3 the 2D BVP in polar coordinates
is reduced to the SODEs. In Section 4 we present
the algorithms and benchmark calculations of the
asymptotic behavior of the parametric basis functions
and the effective potentials of the ODE system at
large values of the radial variable. In Sections 5
and 6 we construct the asymptotic expressions for the
fundamental solutions of ODEs and the scattering
states. In Sections 7 and 8 we demonstrate the effi-
ciency of the elaborated technique by test calculations
of the resonance scattering of an atomic dimer on an
atom, the metastable and bound states of a trimer,
and the resonance tunneling of a dimer through a
Gaussian barrier and the metastable states, respec-
tively. In Conclusion the results and perspectives are
discussed.

2. SETTING OF THE PROBLEM

Consider a model of three identical particles
(trimer) on a straight line with the masses Mi = M
and the coordinates x̄i ∈ R1, i = 1, 2, 3, of one-
dimensional Euclidian space R1 coupled via the
pair short-range potential Ṽ (|x̄i − x̄j |), i, j = 1, 2, 3.
Performing the change of variables corresponding
to the cyclic permutation (α, β, γ) = (1, 2, 3) of the
permutation group S3 [40]:

xγ ≡ x(αβ) = x̄β − x̄α,

yγ ≡ y(αβ)γ =
x̄α + x̄β − 2x̄γ√

3
,

x0 =

√
2√
3
(x̄1 + x̄2 + x̄3),

we get three pairs (x(αβ), y(αβ)γ)
T of the scaled Ja-

cobi variables. In the center-of-mass reference frame
of the configuration space x̄ = (x̄1, x̄2, x̄3) ∈ R3,

i.e., on the hyperplane Ω = {x̄ = (x̄1, x̄2, x̄3)|x̄1 +
x̄2 + x̄3 = 0} ⊂ R3 (see Fig. 1a), these Jacobi maps
(x, y)T ∈ Ωxy ∼ R2 are connected by the relations:

⎛
⎝xγ

yγ

⎞
⎠ ≡

⎛
⎝ x(αβ)

y(αβ)γ

⎞
⎠ = Txy(ϕγα)

⎛
⎝xα

yα

⎞
⎠ ,

Txy(ϕγα) =

⎛
⎝ cosϕγα sinϕγα

− sinϕγα cosϕγα

⎞
⎠ , (1)

where the angles ϕγα = ϕαβ = ϕβγ = −ϕαγ =

−ϕβα = −ϕγβ = 2π
3 , i.e. cosϕγα = cosϕαβ =

cosϕβγ = −1
2 , sinϕγα = sinϕαβ = sinϕβγ =

√
3
2 ,

are such that ϕγα + ϕαβ + ϕβγ = 2π, ϕαγ + ϕβα +
ϕγβ = −2π. With the variable parameter ϕ in
Txy(ϕ) they correspond to a kinematic rotation plus
an inversion of O(2) group and simply change the
sign of pairs of Jacobi coordinates in Eq. (1),⎛

⎝−x(αβ)

−y(αβ)γ

⎞
⎠ = Txy(ϕγα ± π)

⎛
⎝ x(βγ)

y(βγ)α

⎞
⎠ . (2)

In Fig. 1b the hyperplane (x, y)T ∈ Ωxy is sepa-
rated by three axes y(12)3, y(31)2, and y(23)1 into
six sectors that together with three orthogonal axes
x12, x31, x23 describe six channels of the scat-
tering problem for three identical particles. This
picture is similar to Fig. 1 for the one-dimensional
quantum scattering problem of three particles with
pair short-range repulsive potentials [35]. Note
that the theorem of existence and uniqueness of
the solution of such scattering problem was proved
in [36, 37] by constructing the resolvent kernel
limit values in the absolutely continuous spectrum.
However, the pairs (y(12)3, x12)

T , (y(31)2, x31)
T and

(y(23)1, x23)
T correspond to the pairs (l1,−k1)

T ,
(l3,−k3)

T , and (l2,−k2)
T of Ref. [35]. Our choice

is determined by the parameterization of the pairs
(y, x)T = (ρ cosϕ, ρ sinϕ)T , where the angle ϕ ∈
[0, 2π) is counted counterclockwise from the axis
y(12)3, for which ϕ = 0. This parameterization is more
suitable for constructing the asymptotic scattering
states at large values of the hyperradius ρ than the
conventional one, (y, x)T = (ρ sinϕ′, ρ cosϕ′)T . The
kinematic angle ϕ′ ∈ [−π/2, π/2] corresponds to the
double kinematic angle conventionally applied to
describe three channels of a three-body scattering
problem on half-hyperplane of Ω′

|x||y| ∼ R2
+ enclosed

in the six-dimensional configuration space R6\{0}
after separating the center-of-mass motion in a
three-body system [23, 25].
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Fig. 1. (a) The coordinate planes 1, 2, 3, labelled with boxes, the center-of-mass plane in R3, and the lines of intersection
of these planes with the pair-collision planes xi = xj , corresponding to pair-collision lines {xi = xj , x1 + x2 + x3 = 0}
(labelled 12, 23, 31) in the center-of-mass plane (x1, x2, x3)|(x1 + x2 + x3 = 0), belonging to R2 ⊂ R3. (b) The profiles
of 2D potential functions of Be3 trimer in Jacobi coordinates (1) in the center-of-mass plane and the relative arrangement of
particles in accordance with the region of the center-of-mass plane. The numbers of sectors are given in boxes. (c) The profiles
of 2D potential functions of Be2 dimer with barrier and the relative arrangement of particles and barrier. (d) The profiles of
2D potential functions of Be2 dimer in one of sectors in polar coordinates. Here coordinates and potential functions are given
in Å and Å−2, respectively.

As a result, we arrive at the Schrödinger equa-
tion for the wave function Ψ(y, x) corresponding to
the total energy E of the triatomic system in Jacobi
coordinates (x, y)T = (xγ , yγ)

T ∈ Ωxy:(
− ∂2

∂y2
− ∂2

∂x2
+

M

�2
(Ṽ (x, y)− Ẽ)

)

×Ψ(y, x) = 0. (3)

In the case of a diatomic molecule (dimer) with
identical nuclei coupled via the pair potential, Ṽ (|x̄1 −
x̄2|), moving in the external potential field Ṽ b(|x̄i −
x̄3|), i = 2, 1, of the third atom having the infinite
mass, the same equation (3) is valid for the variables

x ≡ x3 = x̄2 − x̄1, y ≡ y3 = x̄1 + x̄2,

with respect to the origin of the coordinate frame
placed at the infinite-mass atom, x̄3 = 0.

Here the potential function for the trimer with
the pair potentials (below this case is referred to as
Task 2, for example, see Fig. 1b),

Ṽ (x, y) = Ṽ (|x|) + Ṽ
(∣∣∣x−

√
3y

2

∣∣∣
)

+ Ṽ
(∣∣∣x+

√
3y

2

∣∣∣
)
, (4)

or the potential function for a dimer in the field of
p barrier potential (below this case is referred to as
Task 3, see Fig. 1c)

Ṽ (x, y) = Ṽ (|x|) + Ṽ b
(∣∣∣x− y

2

∣∣∣
)

+ Ṽ b
(∣∣∣x+ y

2

∣∣∣
)
, (5)

is an even function with respect to the straight line
x = 0 (i.e., x̄1 = x̄2), which allows one to consider the
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solutions of the problem in the half-plane x ≥ 0. The
use of the Dirichlet or Neumann boundary condition
at x = 0 allows one to obtain the solutions, symmetric
and antisymmetric with respect to the permutation of
two particles. If the pair potential possesses a high
peak at the pair collision point, then the solution of
the problem in the vicinity of x = 0 is exponentially
small and can be considered in the half-plane x ≥
xmin. In this case the Neumann or Dirichlet boundary
condition imposed at xmin yields only a minor con-
tribution to the solution. The equation, describing
the diatomic molecular subsystem (dimer) (below this
case is referred to as Task 1), has the form

(
− d2

dx2
+

M

�2
(Ṽ (|x|)− ε̃)

)
φ(x) = 0. (6)

We assume the energy spectrum of the dimer to con-
sist of the discrete part with a finite number n0≥ 1 of
bound states with the eigenfunctions φj(x), j = 1, n0

and the eigenvalues ε̃j = −|ε̃j |< 0, and the contin-
uous part with the eigenvalues ε̃ > 0 and the cor-
responding eigenfunctions φε̃(x). As a rule, the
solutions for the discrete and continuous spectrum
of the BVP with Eq. (6) can be found only numer-
ically, except some simplified models having exact
solutions and used for computer modelling of bi-
molecular chemical reactions [58]. In certain cases
the eigenfunctions of the continuous spectrum are
approximated by the eigenfunctions of pseudostates
of the discrete spectrum ε̃j > 0, j = 1 + n0, . . . cal-
culated in the sufficiently large but finite interval x ∈
[xmin, xmax] [14].

The approach proposed below is illustrated by
the example of Be2 with the reduced mass M/2 =
4.506 Da of the nuclei [13, 14] and the molecular
interaction approximated by the Morse potential

V (x) =
M

�2
Ṽ (x),

Ṽ (x) = D̃{exp[−2(x− x̂eq)α]

− 2 exp[−(x− x̂eq)α]}. (7)

Here α = 2.96812 Å−1 is the potential well width,
x̂eq = 2.47 Å is the average distance between the nu-
clei, and D̃ = 1280 K, D = (M/�2)D̃ = 236.51 Å−2

(1 K = 0.184766 Å−2, 1 Å
−2

= 5.412262 K) is the
potential well depth. This potential supports only
five bound states corresponding to the covalent
bounding of the Be2 dimer [59] having the energies
εi = (M/�2)ε̃i, i = 1, . . . , n0 = 5, presented in Ta-
ble 1. The parameter values are determined from
the condition (ε̃2 − ε̃1)/(2π�c) = 277.124 cm−1,
1 K/(2π�c) = 0.69503476 cm−1. To solve the dis-
crete spectrum problem we applied the seventh-order

FEM using the Hermitian interpolation polynomials
with double nodes [57]. As an example, follow-
ing [13], we use below the Gaussian barrier potentials
V b(xi) = D exp(−x2i /σ) with D = 236.51 Å−2 and
σ = 0.0523 Å2. The values of parameters of the
repulsive Gaussian barrier potential were estimated
following the experimental observation of the quan-
tum diffusion of hydrogen atoms on the copper
surface [60].

3. BOUNDARY-VALUE PROBLEMS

Using the change of variables x = ρ sinϕ, y =
ρ cosϕ, we rewrite Eq. (3) in polar coordinates (ρ, ϕ),
Ωρ,ϕ = (ρ ∈ (0,∞), ϕ ∈ (0, 2π))(

−1

ρ

∂

∂ρ
ρ
∂

∂ρ
+

1

ρ2
Λ(ϕ, ρ) − E

)
Ψ(ϕ, ρ) = 0,

Λ(ϕ, ρ) = − d2

dϕ2
+ ρ2V (ϕ, ρ), (8)

where for a trimer with pair potentials

V (ϕ, ρ) = V (ρ| sinϕ|) + V (ρ| sin(ϕ− 2π/3)|)
+ V (ρ| sin(ϕ− 4π/3)|), (9)

and for a dimer with pair potential in the external field
of barrier potential

V (ϕ, ρ) = V (ρ| sinϕ|) + V b(ρ| sin(ϕ− π/4)|)
+ V b(ρ| sin(ϕ+ π/4)|). (10)

Then in polar coordinates V b(ρ| sin(ϕ± π/4)|) =
D exp(−ρ2 sin2(ϕ± π/4)/σ) and V (ϕ, ρ) is dis-
played in Fig. 1d.

The solution of Eq. (8) is sought in the form of the
Kantorovich expansion [46, 47]

Ψio(ϕ, ρ) =

jmax∑
j=1

φj(ϕ; ρ)χjio(ρ). (11)

Here χjio(ρ) are unknown matrix functions, j =
1, . . . , jmax = 2N . The angular basis functions
φj(ϕ; ρ) ∈ Fρ ∼ L2(Ω) in the interval Ω = ϕ ∈ [0, 2π),
which is divided into smax subintervals Ωs = ϕ ∈
(2π(s− 1)/smax, 2πs/smax): Ωρ;ϕ =

⋃smax
s=1 Ωs, are de-

termined at each value of the parameter ρ ∈ (0,+∞)
as the eigenfunctions corresponding to the real dis-
crete eigenvalues ε1(ρ) < ε2(ρ) < . . . < εj(ρ) < . . .
of the Sturm–Liouville problem for the equation

(Λ(ϕ, ρ) − εj(ρ))φj(ϕ; ρ) = 0. (12)

The functions φ
(p)
j (ϕ; ρ) ≡ φj(ϕ; ρ) have the parity

(−1)p, p = 0, 1 with respect to the inversion of Ja-

cobi coordinates (2), i.e., φ(p)
j (ϕ; ρ) = (−1)pφ

(p)
j (ϕ±
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Table 1. The discrete spectrum of energies εi of dimer Be2, the total energies Eν and the binding energies EB
ν =

−(Eν − Ea) in Å−2 of gerade (g) and ungerade (u) states of trimer Be3 counted of Ea = ε̃1 = −193.06 Å−2 = −1044 K
dimer energy Be2 calculated in grid Ωρ = 4.1(20)7(10)10 at N = 15 of Eq. (19) for the trimer models in the configuration
space with d = 2 and d = 6

d = 1(3)
Even Odd

i or ν d = 2 d = 6 d = 2 d = 6

εi EB
ν Eν Eν EB

ν Eν Eν

1 –193.066 196.02 –389.006 –388.848 107.52 –300.393 –300.245

2 –119.392 142.37 –335.208 –335.055 67.41 –260.467 –260.325

3 –63.338 93.95 –286.828 –286.679 34.60 –227.565 –227.431

4 –24.904 52.77 –245.755 –245.615 11.79 –204.803 –204.683

5 –4.089 32.32 –225.345 –225.206 0.8 –193.831 –193.740

6 22.31 –215.226 –215.098

7 5.14 –198.129 –198.020

π; ρ); here and below p = 0. These functions satisfy
the orthogonality and completeness conditions

〈φi|φj〉

=

smax∑
s=1

2πs/smax∫

2π(s−1)/smax

dϕφi(ϕ; ρ)φj(ϕ; ρ) = δij , (13)

∑
i

|φi〉〈φi| =
∑
i

φi(ϕ; ρ)φi(ϕ0; ρ)

= δ(ϕ − ϕ0). (14)

For the three problems under consideration the
potential function V (ϕ, ρ) depending on the param-
eter ρ can be defined as follows.

Task 1. The case of one pair potential in the inter-
vals ϕ ∈ (0, 2ϕα) (ϕα = π/6, π/4 or π/2) V (ϕ, ρ) =
V (ρ sinϕ).

Task 2. The case of three pair potentials, Eq. (9),
in the interval ϕ ∈ (0, 2ϕα = π/3); the potential has
the symmetry of the D3h dihedral point group [40, 61,
62].

Task 3. The case of one pair potential and two
penetrable or almost impenetrable barriers, Eq. (10),
in the interval ϕ ∈ (0, ϕα = π/2) or in the intervals
ϕ ∈ (0, ϕα = π/4− ε) and ϕ ∈ (ϕα = π/4− ε, π/2),
0 < ε � π/4.

The solutions symmetric with respect to the
permutation of two particles satisfy the Neumann
boundary condition at ϕ = 0 and ϕ = 2ϕα, while the
antisymmetric ones satisfy the Dirichlet boundary
condition at these points, i.e., at the aforemen-
tioned points x = xαβ = 0. If the pair potential
possesses a high peak in the vicinity of the pair

collision point, then the solution of the problem (8)
will be considered in the half-plane Ωϕ,ρ = (ρ ∈
(ρmin,∞), ϕ ∈ [ϕmin(ρ), 2ϕα − ϕmin(ρ)]) with the
Neumann or Dirichlet boundary condition. Such
approximation corresponds to the so-called hard-
core model [24].

The potential function V (ϕ, ρ) of the boundary-
value problem (12) is symmetric under the reflec-
tion Îα: ϕ → (4s− 2)ϕα − ϕ with respect to the
lines ϕ = (2s− 1)ϕα in each sector of the cycle,
numbered by s = 1, . . . , smax: ÎαV (ϕ, ρ) = V (ϕ, ρ).
Therefore, the set of eigenfunctions φj(ϕ; ρ) is sep-
arated into two subsets, namely, the even and odd
φσ=±1
j (ϕ; ρ) ones: Îαφ

σ
j (ϕ; ρ) = φσ

j ((4s − 2)ϕα −
ϕ; ρ) = ±φσ=±1

j (ϕ; ρ). This fact allows separate
calculation of gerade φg

j (ϕ; ρ) = φg
j ((4s − 2)ϕα −

ϕ; ρ) or ungerade φu
j (ϕ; ρ) = −φu

j ((4s − 2)ϕα −
ϕ; ρ) eigenfunctions in the reduced interval ϕ ∈
[ϕmin(ρ), ϕα], subjecting them to Neumann or Dirich-
let boundary condition at the boundary point ϕ = ϕα

of the interval, respectively. Below the parametric an-
gular basis functions φσ=±1

j (ϕ; ρ) with the numbers
j = 1, . . . , n0 are referred to as cluster states with
εj(ρ) < 0, and those with j ≥ n0 + 1 as pseudostates
with εj(ρ) > 0, corresponding to the discrete and
continuous spectrum of BVP for Eq. (6) at large
values of the parameter ρ, respectively. To reveal
the above structurization property, we introduce the
linear combinations of these functions φγ,β

j (ϕ; ρ) for
the trimer and φ←,→

j (ϕ; ρ) for the dimer:

φγ,β
j (ϕ; ρ)

PHYSICS OF ATOMIC NUCLEI Vol. 81 No. 6 2018
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= (±φσ=−1
j (ϕ; ρ) + φσ=1

j (ϕ; ρ))/
√
2,

φ←,→
j (ϕ; ρ)

= (±φσ=−1
j (ϕ; ρ) + φσ=1

j (ϕ; ρ))/
√
2. (15)

The action of the parity operator Îα on these functions

Îαφ
γ
j (ϕ; ρ) = φβ

j (ϕ; ρ), Îαφ
β
j (ϕ; ρ) = φγ

j (ϕ; ρ),

Îαφ
←
j (ϕ; ρ) = φ→

j (ϕ; ρ),

Îαφ
→
j (ϕ; ρ) = φ←

j (ϕ; ρ), (16)

consists in the permutation of states |γ〉 ↔ |β〉 or
| ←〉 ↔ | →〉 with respect to the lines ϕ = (2s −
1)ϕα. Indeed, the parametric cluster functions at j =
1, . . . , n0 and at large ρ have maxima in the vicinity
of ϕ = (2s− 2)ϕα and ϕ = 2sϕα, respectively, that
correspond to the eigenfunctions of cluster states of
the BVP for Eq. (6). In the particular case of sector 1,
the dimer functions φ←,→

j (ϕ; ρ) have maxima in the
vicinity of ϕ = 0 and ϕ = π, i.e. for y > 0, v =←,
or for y < 0, v =→ at large ρ, respectively while
the trimer functions φγ,β

j (ϕ; ρ) have maxima in the
vicinity of ϕ = 0 and ϕ = π/3, i.e., for x12/y(12)3 >

0, v = γ, or for x31/y(31)2 < 0 v = β at large ρ,
respectively. The required properties are clearly seen
in the plots of even and odd parametric basis functions
and their linear combinations (15) of the trimer Be3
(Fig. 2). The first column in Fig. 2 presents the
number of the basis function. The second and third
columns show the even φg

j (ϕ; ρ) and odd φu
j (ϕ; ρ)

basis functions, symmetric and antisymmetric with
respect to the straight line ϕ = π/6, constructed by
solving the problem in the interval ϕ ∈ [ϕmin, π/6]
with the Neumann boundary condition at ϕ = ϕmin
and Neumann or Dirichlet boundary condition at
ϕ = π/6, respectively, with subsequent symmetrical
extrapolation of the solution into the interval ϕ ∈
[π/6, π/3 − ϕmin]. The fourth and fifth columns show
the linear combinations of the even and odd functions,
which are localized in one of the subdomains for
the basis functions (φg,u

j (ϕ; ρ), j = 1, 2, 3) below the
breakup threshold in contrast to the basis functions
(φg,u

j (ϕ; ρ), φg,u
j (ϕ; ρ), j = 1, 2, 3) above the breakup

threshold. Such behavior is typical for angular
spheroidal functions [26, 27, 30, 63].

Using the above pairs of the basis functions (15),
we rewrite expansion (11) in the σ representation

Ψio(ϕ, ρ) =

N∑
j=1

∑
σ

φσ
j (ϕ; ρ)χ

σ
jio(ρ), (17)

where σ = u, g or σ = γ, β for the unknown functions
χγ
jio

(ρ) and χβ
jio

(ρ) in the (γβ) representation, related

to the functions χg
jio

(ρ) and χu
jio(ρ) in the (gu) repre-

sentation as

χjio(ρ) =

⎛
⎝χγ

jio
(ρ)

χβ
jio

(ρ)

⎞
⎠ = A

⎛
⎝χu

jio(ρ)

χg
jio

(ρ)

⎞
⎠ ,

A =
1√
2

⎛
⎝ 1 1

−1 1

⎞
⎠ . (18)

The averaging of Eq. (8) with the basis functions
in σ representation (17) yields the system of cou-
pled ODEs with the integer d ≥ 1 determined by the
hyperspherical parametrization of the d-dimensional
configuration space[

− 1

ρd−1

d

dρ
ρd−1 d

dρ
+

εi(ρ)

ρ2
− E

]
χiio(ρ)

+

jmax∑
j=1

Wij(ρ)χjio(ρ) = 0, (19)

Wij(ρ) = Hji(ρ)

+
1

ρd−1

d

dρ
ρd−1Qji(ρ) +Qji(ρ)

d

dρ
, (20)

that corresponds to Eq. (8) for d = 2 and collinear
configuration of three atoms. Here the potential
curves (terms) εj(ρ) are eigenvalues of the BVP (12)
and the effective potentials (EPs) Qij(ρ) = −Qji(ρ),
Hij(ρ) = Hji(ρ) are expressed as integrals calculated
in the reduced intervals ϕ ∈ [0, 2ϕα] using the above
g, u symmetry:

Qij(ρ) = −〈φi|∂ρφj〉,
Hij(ρ) = 〈∂ρφi|∂ρφj〉. (21)

For Task 3 the effective potentials Ŵij(ρ) =

Wij(ρ) + V b
ij(ρ) are sums of Wij(ρ), calculated using

the potential curves and the parametric basis func-
tions of Task 1, and the matrix elements V b

ij(ρ) of the
barrier potentials

V b
ij(ρ) = 〈φi|V b(ρ| sin(ϕ− π/4)|)
+ V b(ρ| sin(ϕ+ π/4)|)|φj〉. (22)

As an example, we calculated with the required
accuracy the parametric basis functions of BVP (12)
and the effective potentials (21) for the models of
Be2 dimer and Be3 trimer in collinear configura-
tion using the FEM implemented in the program
ODPEVP [52]. The results of calculation on the grid
Ωϕ[1.8/ρ, ϕα]={1.8/ρ(24)3/ρ(10)4/ρ(5)5/ρ(10)ϕα}
for ϕα = π/2 for Be2 dimer and ϕα = π/6 for Be3
trimer are displayed in Figs. 2, 3, and 4. Using the
obtained result in the uncoupled (gu) representation
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j φj (ϕ; ρ)g φj (ϕ; ρ)u (φj (ϕ; ρ) + φj (ϕ; ρ))/√2ug (φj (ϕ; ρ) − φj (ϕ; ρ))/√2ug

Fig. 2. The density plots of the first, second, third, sixth, and seventh basis functions φg,u
j (ϕ; ρ), j = 1, 2, 3, 6, 7 displayed in

sector 1 of (y, x) plane (in Å). The negative, positive, and near-zero values of the eigenfunctions are displayed by black, white,
and gray, respectively.

and the transformation matrix A from Eq. (18), we
can rewrite the system of ODEs in the coupled (αβ)
representation with the effective potentials expressed
similarly [16]

Uij(ρ) =

⎛
⎝Uiγjγ(ρ) Uiγjβ(ρ)

Uiβjγ(ρ) Uiβjβ(ρ)

⎞
⎠

= A

⎛
⎝Uiuju(ρ) 0

0 Uigjg(ρ)

⎞
⎠A−1. (23)

In Section 7 one can see that the (γβ) repre-
sentation provides the required compatibility of the
solutions of Eqs. (19) with the asymptotic boundary
conditions (ABCs) of the scattering problem on the
total axis R1 and its semiaxis R1

+.
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Remark 1. In collinear configuration both for
dimer and for trimer embedded in the configuration
space Rd\{0} at d = 6 the BVP for Eq. (8) at d = 6
has an upper shift of spectrum in comparison with
the spectrum of the BVP for Eq. (8) at d = 2 with
the corresponding eigenfunctions χ̂(ρ) expressed in
terms of the eigenfunctions χ(ρ) of Eq. (8) at d = 2 by
the conventional substitution χ̂(ρ) = ρ−2χ(ρ). This
fact is confirmed by the comparison of the collinear
trimer spectra in the configuration space of dimension
d = 2 with those in the configuration space of dimen-
sion d = 6 presented in Table 1. This spectrum shift is
due to the additional centrifugal term (d/2 − 1)2ρ−2

induced by such substitution and the redefinition of
fundamental solutions, i.e., the replacement of the
zero-index Bessel function J0(

√
−Eρ) of Eq. (19) at

Wij(ρ) = 0 and d = 2 with the Bessel function [64] of
index two J2(

√
−Eρ) at d = 6.

4. ASYMPTOTIC EXPRESSIONS
OF CLUSTER FUNCTIONS

Let us calculate the solution of the Sturm–
Liouville problem (12)–(14) at large ρ in domain
x = ρ sinϕ ∈ (0, ρ sinϕα)

(Λ(ϕ; ρ) − εj(ρ))φj(ϕ; ρ)

≡
(
− ∂2

∂ϕ2
+ ρ2V̄ (ρ sinϕ)− εj(ρ)

x2α

)

× φj(ϕ; ρ) = 0, (24)

where V̄ (x) = V (x/xα)/x
2
α, xα = (π/2)/ϕα.

Using the new variable x′ defined as ϕ = x′/ρ,
x′ = ρ arcsin(x/ρ), we get
(
− ∂2

∂x′2
+ V̄ (ρ sin(x′/ρ))− εj(ρ)

ρ2x2α

)
φj(x

′; ρ) = 0,

φj(ϕi = x′i/ρ; ρ) =
√
ρφj(x

′
i; ρ). (25)

In the argument of the potential function
V̄ (ρ sin(x′/ρ)) we add and subtract x′ and expand
it in Taylor series in the vicinity of x′,

V̄ (ρ sin(x′/ρ)) = V̄ (x′ +Δx′)

= V̄ (x′) +
∑
k=1

dkV̄ (x′)

dx′k
(Δx′)k

k!
, (26)

where a small correction Δx′ = ρ sin(x′/ρ)− x′ � 1
is presented again in the form of Taylor series

Δx′ =
∑
k=1

(−1)k

(2k + 1)!

x′2k+1

ρ2k
.

Then the Sturm–Liouville problem for Eq. (24) is
reduced to(

− ∂2

∂x′2
+ V̄ (x′) +

∑
k=1

V̄ (k)(x′)

ρ2k
− εj(ρ)

ρ2x2α

)

× φj(x
′; ρ) = 0, (27)

〈φi(ρ)|φj(ρ)〉

≡
x′

max∫

x′
0

dx′φi(x
′; ρ)φj(x

′; ρ) = δij. (28)

Here the first terms V̄ (k)(x′) of the asymptotic expan-
sion of V̄ (ρ sin(x′/ρ)) read as

V̄ (1)(x′) = −x′3

6

dV̄ (x′)

dx′
,

V̄ (2)(x′) =
x′5

360

(
5x′

d2V̄ (x′)

dx′2
+ 3

dV̄ (x′)

dx′

)
,

V̄ (3)(x′) = − x′7

45360

(
35x′

2d
3V̄ (x′)

dx′3

+63x′
d2V̄ (x′)

dx′2
+ 9

dV̄ (x′)

dx′

)
,

. . .

Note that k!V̄ (k)(x′) are the derivatives of the po-
tential of the BVP (27) with respect to the param-
eter ρ−2. So, we apply the modified version of the
program ODPEVP [52] for calculating the parameter
derivatives of the solution up to the given order to
determine the asymptotic expansion of the cluster
eigenfunctions and eigenvalues described in detail in
Ref. [42].

The execution of the above procedure yields the
required asymptotic expansion of the eigenvalues ne-
glecting exchange exponential small terms here and
below [49]

εj(ρ)

ρ2
= ε

(0)
j (ρ) +

kmax∑
k=1

ρ−2kε
(2k)
j

= λ
(0)
j (ρ) +

kmax∑
k=1

ρ−2k

k!
λ
(k)
j , (29)

where ε(2k)j = λ
(k)
j /k!, and of the matrix elements (21)

for the cluster states, i, j = 1, . . . , n0:

Qij(ρ) =

kmax∑
k=1

Q
(2k−1)
ij

ρ2k−1
,

Hij(ρ) =

kmax−1∑
k=1

H
(2k)
ij

ρ2k
,
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Vij(ρ) = O(exp(−ρ)). (30)

For the test beryllium trimer model in collinear con-

figuration, the coefficients ε
(k)
j of expansion (29) and

the coefficients H
(k)
jj of expansion (30) at i = j have

been presented in Ref. [42], and the first coefficients of
the expansions (30) are given in Appendix. The first
six terms of the required asymptotic expansions (29)
and (30) at ρ = 20 provide the accuracy of 11 signifi-
cant digits, see Table 2.

Remark 2. The effective diagonal potentials
(EPs) have the asymptotic expressions Hjj(ρ) =

εj(ρ)ρ
−2 +Hjj(ρ) ≈ ε

(0)
j +(ε

(2)
j +H

(2)
jj )ρ−2 = ε

(0)
j +

(1/4)ρ−2, proved in Ref. [15] and confirmed in Table 2.

5. ASYMPTOTIC EXPRESSIONS
OF PSEUDOSTATE FUNCTIONS

Consider the case of ϕα = π/2 illustrated by
Fig. 5. The eigenfunctions of pseudostates εj(ρ)/x2α ≥
0, (j −n0) = 1, 2, . . ., are localized beyond the poten-
tial well with the (n0 − 1)th node at the potential-
well boundary. From this fact an estimate of the
eigenvalues for pseudostates εj(ρ) ≈ x2α(j − n0)

2

follows, namely, the eigenvalues of the corresponding
BVPs (27) in the new variable x′, εj = εj(ρ)/ρ

2,
will be small (see Fig. 1c). So, the solution εn(ρ)
(εn = εn(ρ)/ρ

2) of the derived equation is sought in
the form of a power series of g and u potential curves
at n = j − n0 for n/ρ < 1

εj(ρ) = x2α

(
n2 +

kmax∑
k=1

ε
(k)
n

ρk

)
. (31)

Here and below the g states are numbered by odd
n = 1, 3, . . ., and the u states by even n = 2, 4, . . .
Then the numerical values of the function B(ϕi; ρ) =
B(x′i) and its derivative B′(ϕi; ρ) = ρB′(x′i) on the
specified grid Ωϕ = {ϕ1 = ϕ0, . . . , ϕi = x′i/ρ, . . . ,
ϕN = ϕε} in the polar coordinates are determined
by the values of the function B(x′i) and its derivative
B′(x′i) on the gridΩx′

i
{x′1 = x′0, . . . , x

′
i, . . . , x

′
N = x′ε},

found with the same accuracy accepted in the above
chosen FEM scheme in the form of the power series
of the small parameter εn:

B(x′i) = B
(0)
i +

kmax∑
k=1

B
(k)
i (ε

(1)
n , . . . , ε

(k)
n )

ρk
,

B′(x′i) = b
(0)
i +

kmax∑
k=1

b
(k)
i (ε

(1)
n , . . . , ε

(k)
n )

ρk
, (32)

using the Runge–Kutta method, in which all terms
contain the power kmax +1 of 1/ρ and the higher pow-

ers are neglected. The expansion coefficients B
(k)
i ≡

B
(k)
i (x′i) and b

(k)
i ≡ b

(k)
i (x′i), calculated at the grid

nodes x′i for the BVP (27) with the potential V̄ (x′)
defined in Eq. (7) are presented in Fig. 6. One can see
that in the vicinity of the potential well the corrections
to the eigenfunctions are small, but at large x′ they

become essential. The coefficient b(0)i , the derivative
of the wave function with εn = 0, exponentially tends
to a constant for x′ > 5.5. From these observa-
tions the condition for choosing xε follows. However,
to avoid analytical calculations of the exponentially
small terms in the effective potentials (21) between
the weakly bound cluster states and pseudostates, it
is sufficient to choose x′ε = 10.

The interval ϕ0 ≤ ϕ ≤ π/2 is divided into two
subintervals by the point ϕε = xε/ρ: ϕ0 < ϕ ≤ ϕε

and π/2 > ϕ > ϕε. In the calculations the point
xε was chosen from the condition |V (x′ > xε)| < ε,
where ε > 0 is a preassigned number, and the left-
hand boundary of the interval ϕ0 = 0. In the case of
a high barrier, at the pair collision point, when the
eigenfunctions in its vicinity are close to zero, the
left boundary of the interval changes, ϕ0 = x′0/ρ > 0.
The eigenfunctions φj(ϕ; ρ) are calculated in the form

φj(ϕ; ρ) =

{
Aj(ρ)Bj(ϕ; ρ), ϕ0 ≤ ϕ ≤ ϕε,

Cj(ρ)D
σ
j (ϕ; ρ), ϕε < ϕ ≤ π/2,

(33)

2

π/2∫

ϕ0

dϕ(φj(ϕ; ρ))
2 = 1. (34)

Here Aj(ρ) and Cj(ρ) are the normalization factors,
B(ϕ; ρ) is determined from the numerical solution
B(x) in Cartesian coordinates using the transforma-
tion ϕ = x′/ρ; for g and u states

Dg
j (ϕ; ρ) =

√
2

π
cos

(√
εj(ρ)

xα
(ϕ− π/2)

)
,

Du
j (ϕ; ρ) =

√
2

π
sin

(√
εj(ρ)

xα
(ϕ− π/2)

)
.

Remark 3. To simplify the analytic calcula-
tions with Maple math software [65], we take sin()
and cos() in Eq. (33) for odd and even asymptotic
eigenfunctions, respectively, thereby determining the
asymptotic behavior up to the sign and the factor√
2. The sign of the asymptotic eigenfunctions is then

determined by matching the asymptotic expressions
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Fig. 3. The effective diagonal potentials Wjj(ρ) = εj(ρ)ρ
−2 +Hjj(ρ) for the Be3 trimer (a) and effective diagonal potentials

Wjj(ρ) = εj(ρ)ρ
−2 +Hjj(ρ) + V b

jj(ρ) for the tunneling problem of the dimer Be2 through the Gaussian barrier (b).
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Fig. 4. The effective potentials (21) of Be3: (a) Hjj−1(ρ), (b) Qjj−1(ρ), (c) Hj1(ρ), (d) Qj1(ρ). Here j = 2, . . . , 10.

with the numerical values of eigenfunctions obtained
by means of ODPEVP [52].

From the continuity of the eigenfunctions and
their derivatives,

φn(ϕε − 0; ρ) = φn(ϕε + 0; ρ),

dφn

dϕ
(ϕε − 0; ρ) =

dφn

dϕ
(ϕε + 0; ρ), (35)

we get the equation for the eigenvalue εn(ρ):

⎧⎪⎪⎨
⎪⎪⎩

tan

(√
εn(ρ)

xα
(ϕε − π

2 )

)
even n

− cot

(√
εj(ρ)

xα
(ϕε − π

2 )

)
odd n

−
√

εn(ρ)

xαR
= 0,
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Fig. 5. The eigenfunctions φj(ϕ; ρ) corresponding to the eigenvalues εj(ρ) ≥ 0 of the gerade (g) and ungerade (u) pseu-
dostates j = n+ 1 = 6, . . . , 10 at ρ = 200.
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Fig. 6. The expansion coefficients B(k) ≡ B
(k)
i (ε

(1)
n , . . . , ε

(k)
n ) and b(k) ≡ b

(k)
i (ε

(1)
n , . . . , ε

(k)
n ), k = 0, 2, 3, 4, 5, at n = 1 with

ε
(k)
n given by Eq. (32) calculated at the nodes x′

i of the grid Ωx′ .

R =
B′

n(ϕε; ρ)

Bn(ϕε; ρ)
=

ρB′
n(xε)

Bn(xε)
. (36)

Let us substitute (32) into (36), and then substi-
tute (31) into the resulting equation. Expanding both

sides of the equation in inverse powers of ρ, we arrive
at the system of linear equations, from which the

expansion coefficients ε
(k)
n , and then the coefficients

An(ρ) and Cn(ρ) are determined.
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Since the values of the function Bn(ϕ; ρ) and
its derivative B′

n(ϕ; ρ) on the grid Ωϕ;ρ are known,
we calculate the first integral using the quadrature
formula of the Newton–Cotes type [64]. The sec-
ond integral is calculated analytically using expan-
sion (31). We have the analytical expression in the in-
terval ϕε(ρ) < ϕ ≤ π/2, and the explicit dependence
of its values upon the parameter ρ on the grid Ωϕ;ρ.
For the considered potential (7) and n/ρ < 1 we get
the asymptotic expression (31) of the g and u potential
curves at odd and even n = j − n0, respectively. The
first terms of these expansions are expressed as

ε
(1)
j = 4.4862257n2 , ε

(2)
j = 15.094666n2 ,

ε
(3)
j = −88.164324n2 + 0.2988408n4,

ε
(4)
j = −770.50344n2 + 3.3516683n4,

ε
(5)
j = −13803.854n2 + 162.14850n4 − 0.2922734n6 ,

ε
(6)
j = −68926.763n2 + 1584.0782n4 − 4.4329308n6

for the dimer, xα = 1, and

ε
(1)
j = 13.45867176n2/9, ε

(2)
j = 135.8518842n2/9,

ε
(3)
j = (818.991555n2 + 8.069491n4)/9,

ε
(4)
j = (2179.34764n2 + 271.51158n4)/9,

ε
(5)
j = (−56227.6896n2 + 9250.8082n4

− 71.0683n6)/9,

ε
(6)
j = (−1061661.971n2 + 204829.893n4

− 3233.746n6)/9

for the trimer, xα = 3. The calculated eigenvalues in
comparison with the numerical solution obtained by
means of the program ODPEVP [52] are presented
in Table 3. The described algorithm is implemented
in the Maple–Fortran environment. The asymptotic
expansions, obtained using it at ρ = 50, coincide with
the numerical solution given by the FEM to 5–6
significant digits for the eigenvalues and to 4–5 sig-
nificant digits for the eigenfunctions, see Table 3. The
asymptotic expressions of the effective potentials (21)
between the states n1 = i−n0 and n2 = j−n0 of the
same (g or u) parity at n0 = 5, i, j = n0 + 1, . . . for
n/ρ < 1 have the form (see Appendix):

Qn1n2(ρ)=

kmax∑
k=0

Q
(k+2)
n1n2

ρk+2
,

Hn1n2(ρ)=

kmax∑
k=0

H
(k+4)
n1n2

ρk+4
,

Vn1n2(ρ)=

kmax∑
k=0

V
(k+1)
n1n2

ρk+1
. (37)

Note, that in the matrix elements of barrier poten-
tials (37) there are terms of the order ρ−1 and ρ−2

with positive and negative coefficients. This feature
gives rise to a set of local minima (see Fig. 3b) that
are important for the scattering problem under con-
sideration and has the same nature as in the excited
anti-protonic Helium atomcule [28].

Using Eqs. (29) and (33) we get the asymptotic
expansions for Qin(ρ) and Hin(ρ) between the clus-
ter states i = 1, . . . , n0 and pseudostates n− n0 =
1, 2, . . . , for n/ρ<1 (see Appendix):

Qin(ρ) =

kmax∑
k=0

Q
(k+5/2)
in

ρk+5/2
,

Hin(ρ) =

kmax∑
k=0

H
(k+7/2)
in

ρk+7/2
,

Vin(ρ) = O(exp(−ρ)). (38)

For Task 2 and Task 3, expansions (29), (30) are
the same, and expressions (37), (38) differ only in the
numerical coefficients that were calculated above for
Task 3 on the interval ϕ ∈ (0, π/2).

6. ASYMPTOTIC EXPRESSIONS
OF FUNDAMENTAL SOLUTIONS

To calculate the asymptotic solution χii′(ρ) ≡
χσ
ii′(ρ) of the set of N ODEs (19) at large values of

the independent variable ρ ≥ ρmax � N ad we rewrite
it in the form[

− 1

ρd−1

d

dρ
ρd−1 d

dρ
+Hii(ρ)− E

]
χii′(ρ)

=

N∑
j=1,j �=i

[
−Qij(ρ)

d

dρ

− 1

ρd−1

d

dρ
ρd−1Qij(ρ)−Hij(ρ)

]
χji′(ρ). (39)

The coefficients in Eq. (39) at d = 2, presented as
inverse power series (29), (30), (31), (37), (38), have
the form:

Hii(ρ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ε
(0)
i +H(2)

ii /ρ2 +
∑
k=4

H(k)
ii /ρk,

i = 1, . . . , no,

H(2)
ii /ρ2 +

∑
k=3

H(k)
ii /ρk

i = no + 1, . . . ,
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Table 2. The coefficients ε
(k)
j and H

(k)
jj in Å−2 of expansions (29) and (30), and the comparison of

10∑
k=0

ε
(k)
j /ρk with the

numerical values of εj(ρ) for the dimer (ϕα = π/2) or trimer (ϕα = π/6) at ρ = 20 Å

ε
(0)
j −193.06601252 −119.39267226 −63.338854932 −24.904560537 −4.0897890782

ε
(2)
j −127.73059638 −317.30568182 −408.25519644 −385.66879485 −223.26092504

ε
(4)
j −215.85831875 −672.02680456 −1198.7991074 −1892.8857386 −3079.0060449

ε
(6)
j −667.46086524 −2093.0917304 −3656.2842793 −5140.5360777 −3803.8470973

ε
(8)
j −2590.0140097 −8317.9479477 −15062.850569 −23930.063302 −63419.196580

ε
(10)
j −11287.527768 −37281.527942 −69636.528276 −107755.44601 164277.292590
10∑

k=0
ε
(k)
j /ρk −193.38669866 −120.19016966 −64.367043142 −25.880644327 −4.6672470749

εj(ρ, ϕα = π/2) −193.38669866 −120.19016966 −64.367043142 −25.880644327 −4.6672471622

εj(ρ, ϕα = π/6) −193.38669866 −120.19016966 −64.367043142 −25.880644327 −4.6672471630

H
(2)
jj 127.98059638 317.55568182 408.50519643 385.91879484 223.51081140

ε
(2)
j +H

(2)
jj 0.2499999984 0.2499999944 0.2499999948 0.2499999953 0.2498863674

Table 3. Convergence of the expansion (31) for εn(ρ) in Å−2 n = 1, 3, 5, 7 (gerade) and n = 2, 4, 6, 8 (ungerade) at
ρ = 50 Å and the numerical results (NUM) for the dimer

Gerade (g-parity) Ungerade (u-parity)

n2 1.000000 9.00000 25.00000 49.00000 4.000000 16.00000 36.000000 64.0000

+ε
(1)
n /ρ 1.089724 9.80752 27.24311 53.39650 4.358898 17.43559 39.230082 69.7423

+ε
(2)
n /ρ2 1.095762 9.86186 27.39405 53.69235 4.383049 17.53219 39.447445 70.1287

+ε
(3)
n /ρ3 1.095059 9.85570 27.37792 53.66353 4.380266 17.52152 39.425152 70.0934

+ε
(4)
n /ρ4 1.094936 9.85464 27.37517 53.65878 4.379781 17.51968 39.421409 70.0877

+ε
(5)
n /ρ5 1.094893 9.85428 27.37437 53.65775 4.379613 17.51911 39.420448 70.0868

+ε
(6)
n /ρ6 1.094888 9.85425 27.37432 53.65774 4.379597 17.51906 39.420407 70.0868

(NUM) 1.094887 9.85424 27.37431 53.65776 4.379592 17.51905 39.420408 70.0869

Hij(ρ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∑
k=2

H
(k)
ij /ρk, i, j = 1, . . . , no,

∑
k=4

H
(k)
ij /ρk, i, j = no + 1, . . . ,

∑
k=7/2

H
(k)
ij /ρk, otherwise,

Qij(ρ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∑
k=1

Q
(k)
ij /ρk, i, j = 1, . . . , no,

∑
k=2

Q
(k)
ij /ρk, i, j = no + 1, . . . ,

∑
k=5/2

Q
(k)
ij /ρk, otherwise.

The coefficients in these expansions can be deter-
mined by comparing Eqs. (39) and Eqs. (19) with
the asymptotic expansions found in the previous

section: H(k)
ii = ε

(k)
i +H

(k)
ii , k = 2, 4, 6, . . ., H(k)

ii =

0, k = 1, 3, 5, . . ., while H(2)
nn = x2αn

2, H(3)
nn = ε

(1)
n ,

H(k)
nn = ε

(k−2)
n +H

(k)
nn , k = 4, 5, 6, . . .

Step 1. We express the desired solution of Eq. (39)
in the form:

χji′(ρ) =

(
φji′(ρ) + ψji′(ρ)

d

dρ

)
Ri′(ρ), (40)

where φji′(ρ) and ψji′(ρ) are unknown functions,
Ri′(ρ) is a known function. We choose Ri′(ρ) as
fundamental solutions of the auxiliary problem treated
as an etalon equation:⎡

⎣− 1

ρd−1

d

dρ
ρd−1 d

dρ
+

k′max∑
k=1

Z
(k)
i′

ρk
− p2i′

⎤
⎦

PHYSICS OF ATOMIC NUCLEI Vol. 81 No. 6 2018



958 GUSEV et al.

Table 4. The sets of the first resonance energy values E at which the minimum of the transmission coefficient |Sab|2ii
is achieved, the number i of the threshold εi, the real and imaginary part of the complex energy eigenvalues Eν =

�EM
ν + ı�EM

ν in Å−2 of the even g and odd u metastable states of Be3 numbered by index ν calculated with N = 15
equations (19)

E i |Sab|2ii �EM
ν �EM

ν ν type

−193.066 1 thr

−189.676 1 1× 10−7 −188.94 −4× 10−2 1g

−164.654 1 4× 10−6 −164.72 −1× 10−2 1u

−156.882 1 3× 10−6 −157.04 −2× 10−2 2g

−140.545 1 1× 10−4 −140.57 −5× 10−3 2u

−132.485 1 1× 10−6 −132.47 −4× 10−3 3g

−124.256 1 1× 10−3 −124.16 −6× 10−3 3u

−120.638 1 1× 10−6 −120.75 −8× 10−2 4g

−119.392 2 thr

−113.248 2 0.10 −113.24 −2× 10−2 5g

−89.319 2 9× 10−4 −89.16 −3× 10−2 6g

−77.271 2 0.77 −76.51 −4× 10−6 4u

−70.309 2 0.35 −70.30 −2× 10−3 7g

−63.385 2 0.41 −65.14 −3× 10−4 5u

−63.338 3 thr

−42.858 3 0.06 −42.87 −6× 10−3 8g

−29.396 3 0.13 −29.19 −4× 10−2 9g

−24.899 3 0.19 −25.82 −1× 10−3 6u

−24.904 4 thr

−6.799 4 0.40 −7.12 −1× 10−3 10g

−4.089 5 thr

×Ri′(ρ) = 0. (41)

For example, for Task 2 or Task 3 we can choose

Z
(2)
i′ = H(2)

i′i′ = ε
(2)
i′ +H

(2)
ii = 1/4 at i′ = 1, . . . , no.

Then the fundamental solutions Ri′(ρ) are deter-
mined by the Hankel functions of the first and the sec-

ond kind [64] H(1,2)
1/2

(√
E − ε

(0)
j ρ

)
at E − ε

(0)
j > 0

with the half-integer index 1/2, j = 1, . . . , n0, and the

corresponding Kelvin functions K1/2

(√
ε
(0)
j − Eρ

)

at ε(0)j −E > 0, j = 1, . . . , n0, in the closed channels.

For Task 2 we can choose Z
(2)
i′ = H(2)

nn = ε
(2)
n =

x2α(n− n0)
2 at i′ = n = no + 1, . . . and εj(ρ)ρ

−2 ≈
x2α(j − n0)

2ρ−2 for pseudostates. The fundamental

solutions Ri′(ρ) are Hankel functions of the first and

the second kind [64] H(1,2)
m (

√
Eρ) at E > 0 with the

integer index m = xα(j − n0) = 1xα, 2xα, . . . in the
open channels.

Remark 4. For Task 3 at E > 0 in open channels

at i, i′ = no + 1, . . . , one should redefine H(k)
ii′ =

H(k)
ii′ + V

(k)
ii′ , where coefficients Vii′ are coefficients

of expansion (37), and the repulsive Coulomb-like

term Z
(1)
i′ /ρ determined by diagonal matrix elements

of Gaussian barrier potentialsZ(1)
i′ = V

(1)
i′i′ in Eq. (41),

and recalculate the above value of the coefficient
Z

(2)
i′ of centrifugal terms Z

(2)
i′ /ρ2, i.e., Z(2)

i′ � V
(2)
i′ ,

using the diagonal V (2)
i′i′ and nondiagonal V (1)

i′i′ ma-
trix elements of Gaussian barrier potentials from
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Appendix. Then one should calculate the funda-
mental solutions in terms of the irregular and reg-
ular Coulomb functions [66] Ri′(ρ) = (Gν(

√
Eρ)±

ıFν(
√
Eρ))/

(
2

√√
Eρ

)
with real-valued indexes

ν =

√
Z

(2)
i′ .

Step 2. At this step we calculate the coefficients
φi′(ρ) and ψi′(ρ) of expansion (40) in the form of

truncated expansion in inverse powers of ρ (φ(k′<0)
ji′ =

ψ
(k′<0)
ji′ = 0):

φji′(ρ) = φ
(0)
ji′ +

∑
k′

φ
(k′)
ji′

ρk′
,

ψji′(ρ) = ψ
(0)
ji′ +

∑
k′

ψ
(k′)
ji′

ρk
′ . (42)

Here k′ = 1, 3/2, 2, 5/2, . . . , kmax, where kmax is inte-
ger or half-integer.

After the substitution of (42) into Eq. (39) with
the use of Eq. (41), we arrive at the set of recurrence
relations for k′ ≤ kmax:(

ε
(0)
i − E + p2i′

)
φ
(k′)
ii′ +

(
ε
(1)
i − Z

(1)
i′

)
φ
(k′−1)
ii′

− 2p2i′(k
′ − 1)ψ

(k′−1)
ii′ = −f

(k′)
ii′ ,(

ε
(0)
i − E + p2i′

)
ψ
(k′)
ii′ + 2(k′ − 1)φ

(k′−1)
ii′

+
(
ε
(1)
i − Z

(1)
i′

)
ψ
(k′−1)
ii′ = −g

(k′)
ii′ , (43)

where the right-hand sides f
(k′)
ii′ and g

(k′)
ii′ are defined

by the expressions

f
(k′)
ii′ = −(k′ − 2)(k′ − d)φ

(k′−2)
ii′

+
k′∑

k=2

(
V

(k)
ii − Z

(k)
i′

)
φ
(k′−k)
ii′

+

k′∑
k=1

(
Z

(k)
i′ (2k′ − 2− k)ψ

(k′−k−1)
ii′

+
N∑

j=1,j �=i

(
k′∑

k′′=1

2Q
(k)
ij Z

(k′′)
i′ ψ

(k′−k−k′′)
ji′

− 2p2i′Q
(k)
ij ψ

(k′−k)
ji′ +Q

(k)
ij (−2k′ + k

+ d+ 1)φ
(k′−k−1)
ji′ + V

(k)
ij φ

(k′−k)
ji′

))
,

g
(k)
ii′ = −(k′ − 1)(k′ − 3 + d)ψ

(k′−2)
ii′

+
k′∑

k=2

(
V

(k)
ii − Z

(k)
i′

)
ψ
(k′−k)
ii′

+

N∑
j=1,j �=i

k′∑
k=1

(
2Q

(k)
ij φ

(k′−k)
ji′

−Q
(k)
ij (2k′ + d− 3− k)ψ

(k′−k−1)
ji′

+ V
(k)
ij ψ

(k′−k)
ji′

)
(44)

with the initial conditions φ
(0)
ii′ = δii′ , ψ

(0)
ii′ = 0 and

p2i′ = E− ε
(0)
i′ ≥ 0 for open channels and q2i′ = −p2i′ =

ε
(0)
i′ − E ≥ 0 for closed channels, pi′ = ıqi′ , at E < 0

and pi′ =
√
E > 0 in open channels at E > 0, see

Remark 2. Also from Eq. (43) at k′ = 1 and i = i′,(
ε
(1)
i′ − Z

(1)
i′

)
φ
(0)
i′i′ = 0,

(
ε
(1)
i′ − Z

(1)
i′

)
ψ
(0)
i′i′ = 0, (45)

we obtain condition Z
(1)
i′ = V

(1)
i′i′ .

Step 3. Here we calculate the coefficients φ
(k′)
ii′

and ψ
(k′)
ii′ using the step-by-step procedure of solving

Eqs. (43) for 2E �= ε
(0)
i′ , i �= i′ and k′ = 2, . . . , kmax:

φ
(k′)
ii′ =

[
ε
(0)
i − ε

(0)
i′

]−1

×
[
−f

(k′)
ii′ + 2p2i′(k

′ − 1)ψ
(k′−1)
ii′

]
,

ψ
(k′)
ii′ =

[
ε
(0)
i − ε

(0)
i′

]−1 [
−g

(k′)
ii′ − 2(k′ − 1)φ

(k′−1)
ii′

]
,

φ
(k′−1)
mi′ = −

[
2(k′ − 1)

]−1
g
(k′)
mi′ ,

ψ
(k′−1)
mi′ =

[
2(k′ − 1)

(
E − ε

(0)
i′

)]−1
f
(k′)
mi′ . (46)

For i′ = 1, . . . , n0 the subscripts m and i run m = i′,
i = 1, . . . , n0, n0 + 1, . . ., i �= i′, while for i′ = n0 +
1, . . . , the subscripts m and i run m = n0 + 1, . . .,
i = 1, . . . , n0.

The algorithm described above was implemented
in MAPLE and FORTRAN to calculate the desired
φ
(k′)
ii′ and ψ

(k′)
ii′ up to the needed order kmax.

The choice of the appropriate value ρmax for the
constructed expansions of the linearly independent
solutions χjio for pio > 0 is controlled by the fulfil-
ment of the Wronskian condition to the prescribed
accuracy:

Wr(Q(ρ);χ∗(ρ),χ(ρ)) =
4ı

π
Ioo,

Wr(Q,χ∗,χ) ≡ ρ

(
χ∗T

(
dχ

dρ
−Qχ

)
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−χT

(
dχ∗

dρ
−Qχ∗

))
, (47)

where Ioo is the unit matrix of dimension No ×No in
the separated σ representation or 2No × 2No in the
coupled (γβ) representation, the asterisk ∗ denotes
complex conjugation, the superscript T denotes ma-
trix transposition, χ− = χ∗, and χ+ = χ.

As an example, we present the first few terms of
expansions (42) of the asymptotic expressions of the
fundamental solutions (40) found by means of the
above algorithms

φ
(0)
i0i0

= 1, ψ
(1)
j2i0

= −
2Q

(1)
j2i0

ε
(0)
j2

− ε
(0)
i0

,

ψ
(1)
i0i0

=
∑
j2

2Q
(1)
i0j2

Q
(1)
j2i0

ε
(0)
j2

− ε
(0)
i0

−
H(2)

i0i0

2(E − ε
(0)
i0

)
, (48)

φ
(2)
j4i0

= −
4(E − ε

(0)
i0

)Q
(1)
j4i0

(ε
(0)
j4

− ε
(0)
i0

)

∑
j2

Q
(1)
i0j2

Q
(1)
j2i0

(ε
(0)
j2

− ε
(0)
i0

)

−
4(E − ε

(0)
i0

)

(ε
(0)
j4

− ε
(0)
i0

)

∑
j2

Q
(1)
j4j2

Q
(1)
j2i0

(ε
(0)
j2

− ε
(0)
i0

)
−

H
(2)
j4i0

ε
(0)
j4

− ε
(0)
i0

−
Q

(1)
j4i0

((−4−H(2)
i0i0

)ε
(0)
i0

+ 4E +H(2)
i0i0

ε
(0)
j4

)

(ε
(0)
j4

− ε
(0)
i0

)2
, (49)

ψ
(5/2)
n5i0

= −
2Q

(5/2)
n5i0

ε
(0)
n5 − ε

(0)
i0

. (50)

One can see that the desired compatibility conditions
are proved and the Jacobi variables can be approx-
imated as y =

√
ρ2 − x2 ≈ ρ(1− x2/(2ρ2) + . . .)

similar to [27, 30] in Ψio(ρ, ϕ) ≈
√
ρΦio(x

′)χioio(pio ,

ρ(1− x2/(2ρ2) + . . .)) at io = 1, . . . , no for clus-
ter states below the breakup threshold. However,
for pseudostates in open channels io = no + 1, . . . ,
above the breakup threshold we have other asymp-
totic expressions Ψio(ρ, ϕ) ≈

∑
j Φj(x

′)χjio(ρ).

7. ASYMPTOTIC EXPRESSIONS
OF SCATTERING, METASTABLE,

AND BOUND STATES

The general solution Fj of the system of ODEs
in the open channels io = 1, . . . , No is determined
by a linear combination of the fundamental solutions
χ−
ji′o

(pioρ) and χ+
ji′o

(pioρ) calculated using Eqs. (40)
and (48) with the leading terms of the Hankel func-
tions of the first and the second kind in the form of

incoming and outgoing waves

F as
j (ρ) =

No∑
i′o=1

[
χ−
ji′o

(pioρ)a
−
i′o
+ χ+

ji′o
(pioρ)a

+
i′o

]
.

The scattering matrix Sσ
ioi′o

(E) or Sσ
ioi′o

(p), where p =

diag{pio}No
io=1, is a diagonal matrix [22]. In open

channels it is defined as the matrix transforming the
amplitudes of the incoming waves a−i′o into those of the

outgoing waves a+i′o [67]

a+i′o
=

No∑
i′o=1

Sσ
io′ io

(p)a−io . (51)

The components of the radial asymptotic solutions
F as
jio

(ρ) of the scattering problem in the open channels
io = 1, . . . , No have the form

F as
jio(ρ)

=

No∑
i′o=1

[
χ−
ji′o

(pioρ)δji′o + χ+
ji′o

(pioρ)S
σ
i′oio

(p)
]
, (52)

while in the closed channel io = No + 1, . . . , N the
asymptotic solutions Fjio(ρ) are determined by the
fundamental solutions χ+

ji′o
(ıpiρ), calculated using

Eqs. (40) and (48) with the leading term of Kelvin

functions K1/2(q
(0)
io

ρ) for the decaying waves

F as
jio(ρ) = a+i′o

χ+
ji′o

(ıpioρ). (53)

These asymptotic solutions F(ρ) = {Fio(ρ)}Nio=1 =

{{Fjio(ρ)}Nj=1}Nio=1 are used to have the conventional
asymptotic boundary conditions for the components
of the numerical solution Fjio(ρ) of the system of
ODEs (19) at large ρ = ρmax

Fjio(ρ) = F as
jio(ρ),

d

dρ
Fjio(ρ) =

d

dρ
F as
jio(ρ). (54)

The scattering problem (3)–(6) with the asymptotic
boundary conditions (52) and (53) is reduced to a
boundary-value problem for the set of close-coupled
equations (19) with the boundary conditions at ρ =
ρmin and ρ = ρmax [56]:

F(ρmin) = 0,
dF(ρ)

dρ

∣∣∣∣
ρ=ρmax

= R(ρmax)F(ρmax), (55)

where R(ρmax) is a N ×N symmetric matrix function
of E, F(ρ) = {χio(ρ)}Nio=1 = {{χjio(ρ)}Nj=1}Nio=1 is
the required N ×N numerical matrix solution.
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These matrices and the No ×No matrices S±1 =

{Sg,u
i′oio

(E)}No
i′o,io=1 sought for in the open channels

No = max
E≥εj

j ≤ N . are calculated directly from (54)

using the program KANTBP 4M [57].
For metastable states the even and odd eigen-

functions obey the boundary conditions of the third
kind (55), where the matrices R(ρmax) =
diag(R(ρmax)) depend on the complex energy eigen-
value E ≡ Em = �Em + ı�Em, �Em < 0 sought
for, and are expressed as [41]

Rioio(ρmax) =

⎧⎨
⎩
ıpm, �Em ≥ εσj ,

ıqm, �Em < εσj

⎫⎬
⎭ ,

pm =
√

Em − εσio , qm = ı
√

εσio − Em, (56)

since the asymptotic solutions of this problem con-
tain only outgoing waves in the open channels io =
1, . . . , No and closed ones io = No +1, . . . , N . In this
case the eigenfunctions obey the orthogonality and
normalization conditions

(Fm|Fm′) = (ıpm + ıpm′)

×

⎡
⎣

ρmax∫

ρmin

FT
m(ρ)Fm′(ρ)dρ − δmm′

⎤
⎦+ Cmm′ = 0,

Cmm′ = −FT
m(ρmax)Fm′(ρmax) (57)

compatible with the conventional one [68].
For bound states the even (g) and odd (u) eigen-

functions obey the boundary conditions (55), with
the matrices R(ρmax) = diag(R(ρmax)) = 0. In this
case the eigenfunctions obey the orthogonality and
normalization conditions

〈Fm|Fm′〉 =
ρmax∫

ρmin

FT
m(ρ)Fm′(ρ)dρ = δmm′ .

Taking the property (15) and (16) of the quasiangular
parametric basis functions and the effective poten-
tials (23) into account, we express the S-matrix in the
(γβ) representation on the full axis R1 via the matrix
Sσ (51), (52) calculated on the half-axis R1

+. The
matrix S is a unitary and symmetric scattering matrix

S =

⎛
⎝Sγγ Sγβ

Sβγ Sββ

⎞
⎠ , S†S = SS† = I, (58)

consisting of the matrices Sγγ , Sββ and Sγβ = ST
γβ of

the dimension No ×No determined by the relations

Sγγ = Sββ = (S+1 + S−1)/2,

Sγβ = ST
βγ = (S+1 − S−1)/2, (59)

where S+1 ≡ Sg and S−1 ≡ Su are the matrices
from (52). Here I is the unit matrix with the di-
mension 2No × 2No, Sγγ and Sββ correspond to the
elastic scattering processes (in the considered case of
1D scattering it means reflection) of the dimer (αβ)
or (γα) on the atom γ (or β): γ + (αβ) → γ + (αβ),
or (γα) + β → (γα) + β, and Sβγ and the matri-
ces Sγβ correspond to the inelastic rearrangement
scattering processes (in the case of 1D scattering
it means transmission) γ + (αβ) → (γα) + β or
(γα) + β → γ + (αβ), for which the conventional
relations between inelastic and elastic scattering
below breakup threshold at E < 0 follow from (58)
that provide conservation of the Wronskian (47),
|Sβγ |2 = I− |Sγγ |2 and Sβγ = ST

γβ , where I is the
unit No ×No matrix. The incoming (outgoing) wave
of rearrangement scattering γ + (αβ) → (γα) + β
or (γα) + β → γ + (αβ) propagates along the cor-
responding y(αβ)γ (y(γα)β) or y(γα)β (y(αβ)γ) axis in
the backward or forward direction (see Fig. 1b). For
example, in the first sector of Fig. 1b the incident wave
of the rearrangement scattering 3 + (12) → (31) + 2
or (31) + 2 → 3 + (12) propagates in the channel
3 + (12) or (31) + 2 along the corresponding y(12)3 >
0 axis at x12 > 0 or y(31)2 < 0 axis at x31 > 0 in the
backward or forward direction, while the outgoing
wave propagates in the channel 3 + (12) or (31) + 2
along the corresponding y(31)2 < 0 axis at x31 > 0
or y(12)3 > 0 axis at x12 > 0 in the backward or
forward direction. It means that the states γ and
β of the scattering matrix Sβγ = ST

γβ of the direct
and inverse rearrangement scattering processes γ +
(αβ) → (γα) + β and (γα) + β → γ + (αβ) have
different signs of velocities with respect to the cor-
responding Jacobi vectors connecting the atom and
the dimer in both ingoing and outgoing channels.

For the scattering of the dimer (γβ) by the poten-
tial barriers, considered on the full axis, the matrix S is
the 2No × 2No scattering matrix (58) read as similar
to [41]

S =

⎛
⎝R← T→

T← R→

⎞
⎠ , S†S = SS† = I, (60)

where I is the unit matrix with the dimension 2No ×
2No consisting of the amplitudes of the reflected and
transmitted waves Rv = Rv(E) and Tv = Tv(E),
where v =←,→ indicates the direction of the incident
wave propagation with respect to the y axis, i.e.,
v =← and v =→ for y > 0 and y < 0, respectively,
and the No ×No matrices Rv = Rv(E) and Tv =
Tv(E) are expressed as

R← = R→ = (S+1 + S−1)/2,
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T← = TT
→ = (S+1 − S−1)/2. (61)

For the scattering of the dimer (αβ) on potential bar-
riers similar relations determine the reflection R← =
Sγγ and R→ = Sββ , and transmission T← = Sβγ

and T→ = Sγβ amplitudes. For the reflection co-

efficient |Rv |2 = R†
vRv and the transmission coeffi-

cient |Tv|2 = T†
vTv the conventional relation below

breakup threshold at E < 0 following from (58) and
constant wronskian (47), |Tv|2 = I− |Rv |2 is valid,
where I is the unit No ×No matrix.

8. BOUND, METASTABLE, AND
SCATTERING STATES OF THE TRIMER

For the considered models, the eigenvalues and
the hyperradial components of 2D eigenfunctions of
the BVP for the set of ODEs (19) with Dirichlet
boundary conditions were calculated with the prede-
termined accuracy using the FEM implemented in
the KANTBP 4M program [57].

The set of even (g) and odd (u) bound states of
the trimer Be3 (Task 2) were calculated on the grid
Ωh = {ρmin=4.24(1)4.33(10)6.13(1)6.33(23)ρmax =
11.39}, where in parentheses the number of the fifth-
order Hermitian elements [55] is indicated, for the
number of equations N = 15 in the system (19).

The set of binding energies of the trimer Be3 is pre-
sented in Table 1, and the trimer eigenfunctions (11)
are shown in Fig. 7. These solutions, i.e. the real
eigenvalues and the corresponding eigenfunctions,
were used as an initial approximation in the contin-
uous analog of Newton’s method [28] with additional
condition (Fm|Fm′) = 0 to calculate the metastable
states of the trimer Be3 on the same finite-element
grid. The corresponding problem of the dimer scat-
tering on an atom was solved on the same grid and
N = 15.

The calculated complex energies of the metastable
states EM

m ≡ Em = �Em + ı�Em for the trimer are
presented in Table 4. These metastable states
are responsible for the resonance energies, cor-
responding to the minimal probability of inelastic
scattering of the dimer by the atom, i.e., to the
resonance quantum reflection from the potential
well (Feshbach resonances, see Figs. 1b and 3a).

As an example, in Fig. 8 we display the eigen-
functions of the scattering problem for gerade and
ungerade states corresponding to the minimum of
the transmission coefficient |Sγβ |2 = |Sβγ |2 = 10−7

at E = −189.676, as well as the metastable state 1g
from Table 4. The isolines of the absolute values
|Ψγ,β(y, x)| of the linear combinations Ψγ,β(y, x) =

(Ψg(y, x)±Ψu(y, x))/
√
2 demonstrate the effect of

the resonance reflection from the effective potential

well. It can be seen from the figures that the shape
of the wave functions of the gerade scattering states
(Fig. 8a) and metastable states (Fig. 9) are similar
and they are localized in the vicinity of the poten-
tial well (Fig. 3a). At the same time, for the same
energy value E = −189.6 Å−2, the wave function
of ungerade scattering states (Fig. 8b) is a typical
nonresonant wave function.

9. METASTABLE AND SCATTERING STATES
OF THE DIMER TUNNELING

The metastable states of the dimer Be2 tunneling
through Gaussian barriers of Task 3 were calculated
for BVP calculated with N = 15 equations in the
system (19) with matrix elements of the poten-
tial barrier on the finite element grid Ωρ = {ρmin =
1.81(12)4.21(15)ρmax = 7.51} with the fifth-order
Hermitian elements (p = 5). The corresponding
problem of a dimer tunneling through the barriers was
solved on the same grid.

The corresponding algebraic eigenvalue problem
for metastable states was solved using the above
mentioned continuous analogue of Newton’s method.
As the initial approximation the real eigenvalues
and the corresponding orthonormalized eigenfunc-
tions (58) were used. They were found as a result
of solving the bound state problem with R(yt) = 0
on the grid Ωρ = {ρmin = 1.81(12)ρmax = 4.21}. The
complex values of energy of the metastable states
EM

m ≡ Em = �Em + ı�Em for the dimer Be2 tun-
neling through the Gaussian barriers, are presented
in Fig. 10. These metastable states are responsible
for the resonance values of energy, corresponding
to the maximal transmission coefficient, i.e., the
quantum transparency of the potential barriers
(see Figs. 1b and 3b), i.e., the shape resonances.
The position of peaks presented in Fig. 10 is seen
to be in quantitative agreement with the real part
�(E), and the geometric halfwidth of the |T |211(E)
peaks agrees by the order of magnitude with the
imaginary part Γ = −2�(E) of the complex energy
eigenvalues E = �(E) + ı�(E) of the metastable
states. The obtained complex energy values corre-
sponding to the resonance values of energy in the
first open channel are in good agreement with the
ones calculated analytically in the model of a rigid
diatomic molecule with Morse potential tunneling
trough the Gaussian barrier at the same values of
parameters [13]. From Fig. 10 one can see that
as the energy of the initial excited state increases,
the transmission peaks demonstrate a shift towards
higher energies, the set of peak positions keeping
approximately the same as for the transitions from the
ground state, and the peaks just replace each other.
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Fig. 7. The density plots of the eigenfunctions Ψg,u
ν (ϕ, ρ) displayed in sector 1 of (y, x) plane (in Å) of the gerade (g) and

ungerade (u) bound states with energies Eg,u
ν of the Be3 trimer presented in Table 1. The negative, positive, and near-zero

values of the eigenfunctions are displayed by black, white, and gray, respectively.

For example, the left epure shows that the positions
of the 13th and 14th peaks for the transitions from
the first state coincide with the positions of the 1st
and 2nd peaks for the transitions from the second
state, while the right epure shows that the positions
of the 25th and 26th peaks for transitions from the
first state coincide with the positions of the 13th and
14th peaks for transitions from the second state and
with the positions of the 1st and 2nd peaks for the
transitions from the third state.

For a quantum particle, the possibility of tunneling
makes the concept of potential barrier activation ill-
defined and, therefore, deviations from Arrhenius be-
havior may be expected. Diffusion can still be approx-
imately described in this form by using a temperature-
dependent activation energy, often much lower than
the classical energy barrier, i.e., the effective bar-
rier for two noninteracting atoms is 2Ṽ0. The nor-
malized thermal rate constant k̂qn/kqn(0) has the form

[29, 69, 70]:

k̂qn/kqn(0) =
No∑
i=1

k̂i(T ), k̂i(T ) =
e−ε̃i/T

Qvib
ki(T ),

Qvib =

No∑
i=1

e−ε̃i/T , (62)

ki(T ) =
1√
T

Ẽmax
y∫

0

Wii(Ẽy)e
−Ẽy/T dẼy

+
1√
T

∞∫

Ẽmax
y

Wii(Ẽy)e
−Ẽy/TdẼy, (63)

where k̂i(T ) are the weighed thermal rate constants,
Qvib is the vibrational energy and ki(T ) is the partial
thermal rate constant in the initial vibrational state
i, Wii(Ẽ) = |T |2ii(Ẽ) is the total transmission prob-
ability for the initial state i. Figure 11a illustrates the
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√
2.
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comparison of the partial k̂i(T ) (solid curve), weighed

ki(T ) (dashed lines) and total k(T ) (dash–dotted
curve) thermal rate constants vs the temperature T

and their upper, lower, and average estimates.

The total Êa(T ) and the partial Ea
i (T ) tempera-

ture-dependent activation energy is defined by

Êa(T ) = − 1
√
βk̂(T )

d
√
βk̂(T )

dβ
,
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Ea

i (T )/V0 (solid curves) and total Ea(T )/V0 (long dashed curve) activation energy and its upper (short dashed curve) and
lower (dotted curve) estimates.

Ea
i (T ) = − 1√

βki(T )

d
√
βki(T )

dβ
, β = 1/T.

Figure 11b displays the comparison of the par-
tial Ea

i (T ) (solid curve) and the total Êa(T ) (dash–
dotted curve) activation energy vs temperature T and
their upper, lower, and average estimates in the in-
terval restricted by Tmax = 100 K. In terms of the
quantum mechanical transition state theory [29, 69]
it leads to the increased thermal rate constants of the
quantum tunneling and decreased activation energy
Ea

i /V0 of the composite molecular system at the low
temperature T below the classical energy barrier V0

(see Fig. 11).

10. CONCLUSION

The model for beryllium trimer in collinear con-
figuration on a straight line was formulated as a 2D
boundary-value problem for the Schrödinger equa-
tion in polar coordinates. Using the Kantorovich
expansions this problem has been reduced to the
boundary-value problem for a set of second-order
ordinary differential equations.

The symbolic–numeric algorithms are proposed
and implemented in Maple to evaluate the asymp-
totic expansions (29), (30), (31), (37), and (38) of
the parametric BVP eigensolutions and the effective
potentials Wij(ρ) in inverse powers of large values of
the (hyper)radius ρ.

These expansions have been used for the calcula-
tion of the asymptotic expressions of the fundamen-
tal solutions (40) of the system of the second-order
ODEs at large values of ρ using recurrence rela-
tions (43) and construction of asymptotic states (52)

and (53) of triatomic scattering problem both below
and above the breakup threshold. It was shown that
to solve tunneling of atomic dimer thought the short
range potential barrier in open channels above the
dissociation threshold of dimer at E > 0 the addi-
tional effective repulsive Coulomb-like term evidently
arises as one can see from the linear dependence of
V b(x, y) in the plane, see Fig. 1d in the SODEs at
large value of radial variable, as well as leading terms
of expansions of diagonal and nondiagonal matrix
elements of the Gaussian barrier potentials of second
and first inverse power of the radial variable. In this
case one must use in construction of the asymptotic
scattering states instead of the Hankel functions of
the first and second type the irregular and regular
Coulomb functions with real valued indexes [66].

The effects of resonant quantum transmission of
atomic dimers through the potential barrier and re-
flection from the effective potential well of a trimer,
arising in the scattering process were revealed (see
Figs. 3a and 3b), generated by metastable states of
the composite system (cluster + barrier or well) with
complex energy eigenvalues below the dissociation
threshold of dimer, corresponding to the shape and
Feshbach resonances, respectively.

The proposed method of solving the three-atomic
scattering problem as well as dimer tunneling through
potential barrier in adiabatic representation both
below and above breakup threshold can be applied
to the further analysis of quantum transparency and
reflection effects [13, 14, 44], quantum diffusion [29]
and the resonance scattering in triatomic systems us-
ing modern theoretical and experimental results [9–
12] and algorithms and programs [50, 52–54, 57]. It
can be also applied in the studies of laser control of
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molecular tunneling, aimed at enhancing the rate of
chemical reactions and quantum diffusion [58] and
ternary fission of heavy-ion collision in a collinear
configuration [71, 72].
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Appendix

ASYMPTOTIC EXPRESSIONS OF MATRIX
ELEMENTS FOR DIMER AND TRIMER

The first coefficients of the expansions (30) for
both the dimer of Tasks 3 and 1 and the trimer of
Task 2 have the form

Q
(1)
ij =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 10.3201 −3.81790 1.83170 −0.903311

−10.3201 0 12.2419 −5.54402 2.68986

3.81790 −12.2419 0 11.5096 −5.30745

−1.83170 5.54402 −11.5096 0 7.99437

0.903311 −2.68986 5.30745 −7.99437 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

Q
(3)
ij =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 19.6114 −3.63427 1.58999 −6.31271

−19.6114 0 32.2355 −12.5531 22.0625

3.63427 −32.2355 0 52.0431 −53.8134

−1.58999 12.5531 −52.0431 0 105.275

6.31271 −22.0625 53.8134 −105.275 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

Q
(5)
ij =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 68.2366 −6.68774 −14.8770 128.505

−68.2366 0 91.6918 27.6600 −356.227

6.68774 −91.6918 0 68.9065 595.104

14.8770 −27.6600 −68.9065 0 −523.035

−128.505 356.227 −595.104 523.035 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

H
(2)
ij =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

127.981 −67.2820 −85.3811 73.3913 −44.4889

−67.2820 317.556 −161.487 −40.5195 46.8714

−85.3811 −161.487 408.505 −231.091 45.2520

73.3913 −40.5195 −231.091 385.919 −215.798

−44.4889 46.8714 45.2520 −215.798 223.511

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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H
(4)
ij =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

414.479 −142.333 −526.641 464.604 −624.169

−142.333 1204.00 −420.171 −812.366 1119.09

−526.641 −420.171 2009.09 −947.285 −464.551

464.604 −812.366 −947.285 3041.77 −2605.05

−624.169 1119.09 −464.551 −2605.05 5091.16

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

H
(6)
ij =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1912.47 −670.689 −2112.77 815.251 4153.61

−670.689 5431.40 −1689.40 −3295.46 −646.435

−2112.77 −1689.40 8482.51 −2016.27 −12077.1

815.251 −3295.46 −2016.27 10047.9 12431.9

4153.61 −646.435 −12077.1 12431.9 −664.074

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The first terms of the expansions (37) for the
dimer of Tasks 3 and 1 are Q•

n1n2
= 2Q̂•

n1n2
, H•

n1n2
=

2Ĥ•
n1n2

, V •
n1n2

= 4V̂ •
n1n2

,

Q̂(2)
n1n2

= 2.2431128
n1n2

(n2
1 − n2

2)
,

Q̂(3)
n1n2

= 5.0315554
n1n2

(n2
1 − n2

2)
,

Q̂(4)
n1n2

= 188.67822
n1n2

(n2
1 − n2

2)

+ 0.22413
n1n2(n

2
1 + n2

2)

(n2
1 − n2

2)
,

Ĥ(4)
n1n2

= 10.06311
n1n2(n

2
1 + n2

2)

(n2
1 − n2

2)
2

,

Ĥ(5)
n1n2

= 45.14538
n1n2(n

2
1 + n2

2)

(n2
1 − n2

2)
2

+ 69.93509n1n2,

Ĥ(6)
n1n2

= −1642.273
n1n2(n

2
1 + n2

2)

(n2
1 − n2

2)
2

+ 8.044
n3
1n

3
2

(n2
1 − n2

2)
2
+ 476.762n1n2,

Ĥ(4)
n1n1

= 0.6289444 + 2.0691442n2
1 ,

Ĥ(5)
n1n1

= 2.8215867 + 79.217746n2
1 ,

Ĥ(6)
n1n1

= −102.642068 + 138.328874n2
1

+ 0.826991n4
1.

The first terms of the expansions (37) for the dimer of
Task 3 have the form

V̂
(1)
ij = 61.031 sin

πn1

4
sin

πn2

4
,

V̂
(2)
ij = −107.521

(
n1 sin

πn2

4
cos

πn1

4

+ n2 cos
πn2

4
sin

πn1

4

)
+ 136.900 sin

πn1

4
sin

πn2

4
,

V̂
(3)
ij = −482.366

(
n2 cos

πn2

4
sin

πn1

4

+ n1 sin
πn2

4
cos

πn1

4

)

+ 191.020n1n2 cos
πn2

4
cos

πn1

4

− 95.510 sin
πn1

4
sin

πn2

4
(n2

1 + n2
2 − 3.21518)

V̂
(4)
ij = −629.005 sin

πn1

4

× sin
πn2

4
(n2

1 + n2
2 + 5.37240)

+ 1572.068

(
n2 cos

πn2

4
sin

πn1

4

+ n1 sin
πn2

4
cos

πn1

4

)

+ 1285.443n1n2 cos
πn2

4
cos

πn1

4

+ 49.862

(
cos

πn2

4
sin

πn1

4
n3
2

+ sin
πn2

4
cos

πn1

4
n3
1

)

+ 171.075

(
cos

πn2

4
sin

πn1

4
n2
1n2

+ sin
πn2

4
cos

πn1

4
n1n

2
2

)
.
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The first terms of the expansions (37) for the trimer of
Task 2 are

Q̂(2)
n1n2

= −6.729337
n1n2

(n2
1 − n2

2)
,

Q̂(3)
n1n2

= 5.031555
n1n2

(n2
1 − n2

2)
,

Ĥ(4)
n1n2

= 90.567936
n1n2(n

2
1 + n2

2)

(n2
1 − n2

2)
2

,

Ĥ(5)
n1n2

= 1218.924228
n1n2(n

2
1 + n2

2)

(n2
1 − n2

2)
2

+ 1834.900654n1n2

Ĥ(4)
n1n1

= 5.660496 + 18.622285n2
1 ,

Ĥ(5)
n1n1

= 76.182764 + 2085.531903n2
1 .

The first terms of the expansions (38) for the dimer of
Tasks 3 and 1 have the form Q•

1n =
√
2(−1)[n/2]Q̂•

1n,
H•

1n =
√
2(−1)[n/2]Ĥ•

1n

Q̂
(5/2)
1n = −0.428911n, Q̂

(7/2)
1n = −1.443145n,

Q̂
(9/2)
1n = −25.01600n + 0.183791n3,

Q̂
(5/2)
2n = 1.273900n, Q̂

(7/2)
2n = +4.286254n,

Q̂
(9/2)
2n = 75.66328n − 0.546657n3,

Q̂
(5/2)
3n = −2.497511n, Q̂

(7/2)
3n = −8.403301n,

Q̂
(9/2)
3n = −152.3919n + 1.075421n3,

Q̂
(5/2)
4n = 3.668834n, Q̂

(7/2)
4n = +12.34441n,

Q̂
(9/2)
4n = 231.9007n − 1.599005n3,

Q̂
(5/2)
5n = −4.098659n, Q̂

(7/2)
5n = −13.79066n,

Q̂
(9/2)
5n = −247.9253n + 2.018873n3,

Ĥ
(7/2)
1n = 22.53006n, Ĥ

(9/2)
1n = +77.24936n,

Ĥ
(11/2)
1n = 1551.8678n − 9.835892n3 ,

Ĥ
(7/2)
2n = −26.57543n, Ĥ

(9/2)
2n = −93.70381n,

Ĥ
(11/2)
2n = −2203.032n + 11.89657n3 ,

Ĥ
(7/2)
3n = −12.19890n, Ĥ

(9/2)
3n = −32.64199n,

Ĥ
(11/2)
3n = 262.11512n + 4.400493n3 ,

Ĥ
(7/2)
4n = 85.06821n, Ĥ

(9/2)
4n = +273.8820n,

Ĥ
(11/2)
4n = 4387.8346n − 35.91925n3 ,

Ĥ
(7/2)
5n = −120.4823n, Ĥ

(9/2)
5n = −391.5948n,

Ĥ
(11/2)
5n = −8001.428n + 54.83111n3 .

The first terms of the expansions (38) for the trimer of
Task 2 are Q•

1n =
√
2(−1)[n/2]Q̂•

1n, H•
1n =

√
2(−1)[n/2]Ĥ•

1n

Q̂
(5/2)
1n = −1.286735n, Q̂

(7/2)
1n = −12.988310n,

Q̂
(5/2)
2n = 3.821702n, Q̂

(7/2)
2n = +38.576285n,

Q̂
(5/2)
3n = −7.492536n, Q̂

(7/2)
3n = −75.629699n,

Q̂
(5/2)
4n = 11.006506n, Q̂

(7/2)
4n = +111.099726n,

Q̂
(5/2)
5n = 12.295975n, Q̂

(7/2)
5n = +124.116000n,

Ĥ
(7/2)
1n = 67.590204n, Ĥ

(9/2)
1n = +12.988310n,

Ĥ
(7/2)
2n = −79.726329n, Ĥ

(9/2)
2n = −38.576285n,

Ĥ
(7/2)
3n = −36.596734n, Ĥ

(9/2)
3n = −75.629699n,

Ĥ
(7/2)
4n = 255.204699n, Ĥ

(9/2)
4n = +111.099726n,

Ĥ
(7/2)
5n = 361.447878n, Ĥ

(9/2)
5n = +124.116000n.
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