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INTRODUCTION

As is known, the various integral equations satisfied
by the wave functions or T�matrix [1, 2, 3, 4] can be
used for determining the wave functions and transition
amplitudes in multiparticle systems with short�range
pair potentials. Since solving these equations com�
pletely is a very complicated task, approximate methods
are frequently used, that with the expansion of wave
functions and amplitudes in a Born series being a very
widespread one. Here, the following aspect is crucial: if
an entrance reaction channel corresponds to a collision
of two fragments, then the terms of a Born series for the
transition amplitudes have definite values close to (on)
the energy shell. On the other hand, the case of particle
systems with Coulomb interaction is much more intri�
cate: a Born series, constructed according to the same
scheme as in the case of short�range potentials, diverges
upon taking the z parameter—a complex system
energy—on the energy shell [5, 6]. As a result, the tran�
sition amplitudes also diverge on the energy shell (that
is, there is no compensation of singularities coming
from different order terms).

The reason for this phenomenon is well known: the
standard formalism of the multichannel scattering the�
ory, based on either integral Lippmann–Schwinger (LS)
equations or resolvent�type integral equations (Faddeev,
Weinberg–van Winter, and others), is not applicable to
systems of charged particles. This is because of the so�
called Coulomb singularities not being isolated in these
equations (with the exception of the Veselova equations
[1, 7] determining three�particle amplitude for the ener�
gies below the breakup threshold in which the two�par�
ticle Coulomb singularities are explicitly isolated). The
existence of such singularities is predicted by the stan�
dard Coulomb scattering theory [3, 6, 8, 9] and, in fact,

follows from the general theory of infrared divergences
in QED [10, 11]. However, isolation of Coulomb singu�
larities related to the breakup of a system into three or
more fragments in the resolvent�type equations has not
been successful so far. The attempt to isolate a three�par�
ticle Coulomb singularity in the Faddeev equations
undertaken in [12, 13] led to a homogeneous equation
for the coefficient factor in front of the singularity.
Establishing a relationship between the Faddeev compo�
nents of the breakup amplitude was the only success of
those studies.

To avoid the above�mentioned problems, systems
of differential equations for the wave function compo�
nents in the coordinate representation (Merkuriev
equations) were formulated in order to describe the
dynamics of systems of charged particles, whereas, for
calculating the scattering amplitudes, various approx�
imations based on either the distorted wave method in
pair subsystems (e.g., Peterkop’s method of effective
charges [14]) or the approximate expressions for the
Coulomb wave function of three�particle systems as a
whole (the Redmond–Merkuriev method [1, 15],
Bencze approach [16], and others) were developed.
Since the coordinate asymptotics of the multiparticle
Coulomb wave function are quite complicated, espe�
cially in the so�called singular domains [1, 17],
Merkuriev equations were not widespread in the study
of dynamics of specific quantum systems. As for the
approximate methods mentioned above, their main
shortcoming is the problem of evaluating further
approximations, behind which there emerges once
again a question as to the properties of the solutions to
the resolvent�type integral equations.

The history of the development of the multiparticle
Coulomb scattering theory was several decades long,
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with a substantial number of scientists and scientific
schools participating in the process. Among the most
famous Russian (Soviet) schools, the following should
be mentioned. Petersburg (Leningrad) (L.D. Faddeev,
S.P. Merkuriev, A.M. Veselova, Yu.A. Kuperin,
A.A. Kvitsinskii, S.L. Yakovlev, et al.), Tashkent
(A.M. Mukhamedzhanov, D.M. Latypov, A.S. Kady�
rov, et al.), and Riga (R.K. Peterkop, M.K. Gailitis,
et al.), Kyiv (V.F. Kharchenko, S.A. Shadchin, et al.).
Of the numerous foreign scientists, one should men�
tion the names of J. Dollard, D. Muhlerin, I.I. Zinnes,
C. Chandler, A.G. Gibson, E. Prugove ki, J. Zorbas,
E.O. Alt, L.P. Kok, H. van Haeringen, M.R.H. Rudje,
M.J. Seaton, and many others. The seminal papers by
V.A. Fock and J. Schwinger had a large influence on
the development of the ideas. It is virtually impossible
to cite every paper in the field we review; therefore, in
what follows only citations required by the context will
be referred to, and we will mainly follow our principal
works in the course of review.

In this review, the problem of constructing the Born
series for the amplitudes of multiple ionization pro�
cesses is considered in the framework of the consistent
Coulomb scattering quantum theory. What is it good
for? The point is that a number of effective and physi�
cally transparent methods of studying the quantum
structure of a target and mechanisms of scattering of
several charged particles is based on the domination of
the first approximation of some perturbative series.
For example, the method of electron momentum
spectroscopy (EMS), the theoretical foundations of
which were given in [18, 19, 20], was experimentally
implemented nearly 40 years ago [21–24]. In a nut�
shell, a target is bombarded by a monochromatic elec�
tron beam with sufficiently high energy E0. A great
number of events are produced by the electrons from
the incident beam. By using a coincidence circuit,
only those events are selected in which an incoming
electron, passing by some target electron at a small (at
atomic scale) distance, instantly knocks that electron
out of a target by means of Coulomb interaction,
transferring to the latter a substantial part of its own
kinetic energy. The energy and angular distributions of
both secondary electrons are measured. Such a pro�
cess is often called a quasi�elastic (e, 2e) reaction.

In a simplest case of coplanar geometry (when the
momentum vectors of the incident and both secondary
electrons lie in the same plane), a coincidence circuit
registers the final electrons with the energies Es and Ee

outgoing at the angles θs and θe counted from the inci�
dent beam direction (for θs = θe and Es = Ee, the kine�
matics is symmetrical), thereby defining the momenta
of final electrons ps and pe. Here, we consider the kine�
matics of quasi�elastic knock�out, which is close to
free scattering kinematics with the angle between
momenta ps and pe being approximately 90° and the
energies Es ~ Ee ~ E0/2, i.e., close to those of free scat�
tering. This restriction means that the virtual momen�

c

^

tum of a knocked�out electron in a target q � ps, pe and
its ionization potential |εi| � Es, Ee.

In the EMS method, the kinematics of a studied
pair collision is fixed in such a way as to reduce an
effect of many electron system, containing a knocked�
out electron, to two simple, yet fundamentally impor�
tant, factors: a knocked�out electron has definite
binding energy εi and (at the impact instant) momen�
tum –q (momentum q, opposite in direction, is a
recoil one received by a final system; such a choice of
signs is simply a tribute to the tradition). These quan�
tities are fixed in the experiment by the conservation
laws for pair collisions E0 + εi = Es + Ee and p0 – q =
ps + pe (a target mass is assumed to be infinitely large).
By measuring E0, Es, and Ee, we learn out of which sin�
gle particle state (an atom orbital in atom or molecule)
an electron is knocked out. The momenta ps and pe are
fixed by the energies Es and Ee and measured solid
angles Ωs and Ωe. Let us repeat that the conditions
under which a quasi�free collision takes place are |εi| �
Es, Ee and q � ps, pe. Thus, the quantities εi and q are
restored by using a small but well�measured deviation
of the kinematics of quasi�elastic (e, 2e) process from
the kinematics of a fast electron scattering off a free
electron at rest. The momentum q may be measured by
either slightly varying two final electron emission
angles in their emission plane, or changing an orienta�
tion of incident electron beam with respect to that
plane. As a result, the momentum distribution |ϕi(q)|2

of a single particle state i with the ionization potential
|εi| is measured within virtually the entire range of
physically relevant q values from zero to several atomic
units.

The theory behind EMS method is based on a
plane�wave first Born (impulse) approximation. Until
recently, the real contribution of the higher order
terms of a corresponding perturbative series was not
studied in detail; however, estimating it is extremely
important from the point of view of the information
capacity of the EMS method. Firstly, a differential
cross section of quasi�elastic processes is proportional
to Q–4, where Q = p0 – ps is the momentum transferred
to the system, which is large for these reactions. The
higher the energy of an incoming electron, the lower
the differential cross section and the harder to measure
it experimentally. Therefore, one can talk about
“trade�off” energies, at which the contribution of
higher Born terms may not be asymptotically small.
Second, to assess the applicability of the first order
approximation, it is necessary to calculate at least sec�
ond order terms, and higher Born terms are described
by the formally divergent integrals that need to be reg�
ularized by extracting in a certain way and then dis�
carding divergent terms. Such a procedure was pro�
posed by Popov [5]; similar results were also obtained
by Zorbas [6]. In fact, the values of Sommerfeld Cou�
lomb parameters (Coulomb numbers) of the scattering
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channels were taken for the small parameters. Third,
in this context it is required to develop a convenient
scheme of calculating higher terms of a Born series.

Thus, an estimate of a higher Born terms’ contribu�
tion to the amplitudes and differential cross sections of
multiple ionization processes seems extremely urgent,
inasmuch as without it the real value of the method,
based on the domination of the first term of a perturba�
tive series, becomes questionable. It should be noted
that there is still no consistent investigation into an
applicability area of EMS theory. Therefore, simple
specific examples of application of the general formal�
ism are considered in this work, in particular, the quasi�
elastic reaction of hydrogen atom ionization.

Below, where not otherwise stated, the following
atomic units e = me = � = 1 are used when writing for�
mulas.

1. DETERMINATION OF WAVE FUNCTIONS 
AND TRANSITION AMPLITUDES 

IN MULTIPARTICLE SYSTEMS 
WITH COULOMB INTERACTION

The notations, customary in the scattering theory
and adopted in, e.g., [3, 25], are used. Specifically,
H denotes the Hamiltonian of a multiparticle quan�
tum system (with a centroidal motion already sepa�
rated); its resolvent, or the full Green’s function of a
system, is denoted by G(z) = (z – H)–1 and satisfies the
LS equation (the second resolvent identity):

where Gα(z) = (z – Hα)–1 is the Green’s function for
the channel α, Hα is the corresponding channel
Hamiltonian, and Vα = H – Hα is a sum of the inter�
action pair potentials between particles that belong to
different fragments colliding in the α channel.

A set of relative momenta pβγ defining motion of nα

fragments colliding in the α channel is denoted by pα,
whereas a set of spatial variables conjugate to pα are
denoted by �α. In this case, the relative coordinate of
particles i and j is written as rij, while their relative
momentum as kij. Finally, the vector |φα〉 denotes a
product of fragments’ bound state wave functions,
which define the α channel, with a total binding

energy of .

In the notations used the unnormalized in� and
out�asymptotes of the α channel have the form |φα, pα〉
so that Hα|φα, pα〉 = Eα|φα, pα〉, where Eα is the respec�
tive energy of the channel.

1.1. General Theory of the Wave Operators

As is known, in the case of multiparticle systems
with short�range interaction pair potentials, the

G z( ) Gα z( ) Gα z( )V
α

G z( ),+=

κα

2
–

asymptotic condition (see, for example, [1, 4, 25]),
ensuring the existence of the wave operators Ω±α

(1.1)

where s – lim denotes a strong limit (a norm limit) and
has the form

(1.2)

where | fα〉 belongs to the Hilbert functional space

�2( ) of the channel, does not hold for the
potentials decreasing at infinity like r–γ, γ ≤ 1, in par�
ticular, for Coulomb interaction. This is related to the
long�range nature of the Coulomb forces, under
which the motion never becomes asymptotically free.

A necessary modification to the definition of the
wave functions given in Eq. (1.1) was proposed by
Dollard [26, 27],

(1.3)

The operator function  commutes with the
Hamiltonian Hα and in the momentum representation
is the operator of multiplication by the function

(1.4)

In Eq. (1.4) the quantity

(1.5.1)

denotes the Coulomb parameter (Coulomb number,
Sommerfeld parameter) of the α channel equal to the
sum of Coulomb parameters of the fragment pair β
and γ, μβγ is the reduced mass of these fragments, and

(1.5.2)

stands for the so�called Dollard phase needed for
matching, in the case of two charged particles, the
wave function 〈r|Ω+|k〉 given by Eq. (1.3) and the two�
particle Coulomb wave function

(1.6)

Another possible representation of the wave func�
tions Ωα may be derived from Eq. (1.3) by substituting

the Dollard operator  for the Muhlerin–

Zinnes operator  [28–30],

(1.7)

Ω α± s e
iHt

e
iHαt–

φα| 〉,
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lim–=

t V
α

e
iHαt–

φα fα,| 〉d

0

∞+−

∫ ∞,<

�
3nα 3–
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iHt

e
iHαt– iχα

±
t( )–
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χα

±
t( )

χα

±
pα t,( ) t( ) ηα tln Aα+( ).sgn=
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2

μβγ
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ψc
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ikr
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× F1 1 iη– 1; ikr ikr–,( ).

e
iHαt– iχα
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t( )–

�α

±
e
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Ω α± s e
iHt

�α

±
e

iHαt–
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The operators  in Eq. (1.7) add a corresponding
logarithmic phase to the relative motion plane wave of
the charged fragment pair,

(1.8)

where the symbol  denotes the relative motion
plane wave in the channel chosen.

Note that, besides the Muhlerin–Zinnes operator,
there are as well other time�independent operators,

denoted in what follows as , which are asymptoti�
cally equivalent to the Dollard operator [28, 31]. This
means that

(1.9)

hence,

(1.10)

1.2. Stationary Theory of Coulomb Scattering

Relations (1.6), (1.7), and (1.10), defining the wave
operators of multiparticle Coulomb scattering within
the framework of the nonstationary theory, can be used
to construct the stationary theory of Coulomb scatter�
ing. Here, one of the following methods is used: the
method of Abel limits [1, 26], Cook’s method [26], or
the two�Hilbert�space scattering theory [32]. Let us
briefly describe these approaches.

The method of Abel limits is based on the following
statement [1, 26]: let v(t) be a finite operator function
for t ∈ [0, ∞] with the limit v+ = . Then,

(1.11)

Applying this statement to the operator

, we obtain

(1.12)

Because of the complex power of the Green’s func�
tion found in Eq. (1.12), it is inconvenient for practical
calculation. However [1, 6], the complex power can be
transferred to the parameter ε in front of the Green’s

�α

±

ρα〈 |�α

±
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pαd

2π( )
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× iεG
1 iηα±

Eα iε±( ) φα pα,| 〉.±
ε 0→
lim

function in Eq. (1.12), so that the wave operator is
directly expressed through the first power of the full
Green’s function. To derive a corresponding expres�

sion [33] we define the operators  with the
help of the relation

(1.13)

This expression can be rewritten in the integral
form

(1.14.1)

so that

(1.14.2)

Taking the limit ε  0 in Eq. (1.14.2) and keeping
in mind that the expression in square brackets con�
verges to Ω±α, we obtain

(1.15)

As a result, the following chain of equalities is
derived:

(1.16)

For the limit in (1.16) to exist, it is necessary to
demand that the structure of the primary (pole or clus�
ter) singularities of the full Green’s function be
described by [1, 8, 9, 28]

(1.17)

and the choice of the sign in front of iηβ be fixed by the
sign of Imz (a minus sign for Imz > 0 and vice versa).
The β indices in (1.17) are in fact channel indices with

β = 0 (  = 0) and φ0(k0) ≡ 1 for the channel of a sys�
tem breakup to N initial particles. The operators uβ(z)
are called in�components of the full Green’s function,
while the function g(z) is known to be free of singular�

ities  on the energy shell (though, perhaps,
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possesses other types of singularities). Comparison of
(1.16) and (1.17) shows that there is a relation,

(1.18)

This result (1.18) is consistent with the definition of
the wave operators given in (1.12). To prove this state�
ment by the example with the operator Ω+α, let us
consider the identity

(1.19)

with ε1, 2 > 0 and ε = ε1 + ε2. From (1.16), (1.17), and
(1.19) it follows that

(1.20)

In (1.20)

(1.21)

from which it is easily seen that formula (1.20) is
directly transformed into (1.18).

The operators  are assumed to be finite while
formulating the scattering theory in a pair of Hilbert
spaces. Then, the following relation holds for the wave
operators [31]:

(1.22)

With the help of the second resolvent identity and
the relation

(1.23)

expression (1.22) can be rewritten in the form of the
modified LS representation

(1.24)

The transition operators in the form of the commu�

tators [Hα, ] were first introduced to scattering
theory in [34, 35]. In particular, if the channel α cor�
responds to the collision of two charged fragments, the
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operators  can be chosen as ω±α; these new
wave operators correspond to purely Coulomb scatter�

ing on the potential  = . In this case, the fol�

lowing expression holds true:

(1.25)

which corresponds to the representations of the multi�
channel scattering wave operators in the distorted
wave method [3, 28, 36].

In Cook’s method, the question of existence of the
limit of a function at t  ∞, defined and continu�
ously differentiable for t ≥ 0, reduces to that of deriva�
tive integrability of this function, since

As comes to the wave operators, the integrability of
the respective operator function’s norm on the half�
open interval [0, ∞) is exactly the asymptotic condi�
tion of their existence [3, 25, 26, 31] and, in the case of
short�range pair potentials, this condition has the
form given in (1.2). In [31] Cook’s method was applied
to the wave operator representation of Coulomb scat�
tering in the formulation by Muhlerin–Zinnes, and it
was shown that the wave operators Ω±α|pα〉 satisfy LS

representation (1.24) with the operators  replaced

by the asymptotic operators .

1.3. Transition Amplitudes

By employing the formalism presented above one
can describe the singularity structure of the transition
operator matrix elements. There are two ways to write
the latter:

post

(1.26.1)

and prior

(1.26.2)

with the difference between their matrix elements

〈pβ|Tβα(z) – (z)|pα〉 on the energy shell z = Eα + i0 =
Eβ + i0 equal to zero, which is easily verifiable (see,
e.g., [25]). The transition operator (in what follows,
we consider post�form for convenience) by definition
is connected to the full Green’s function of the prob�
lem at hand in the following manner:

where the function  does not possess cluster sin�
gularities of the channels α and β simultaneously (for
details, see [3]). The matrix elements (1.26) in the case

�α

±
φα| 〉

vc
α Z1αZ2α

ρα

�������������

Ω α± pα| 〉 = ω α± pα| 〉

+ G Eα i0±( ) V
α

vc
α

–( )ω α± pα| 〉,

f t( )
t ∞→
lim f 0( ) τf ' τ( ).d

0

t

∫t ∞→
lim+=

�α

±

�α

±

Tβα z( ) φβ〈 |Vβ
V
β
G z( )V

α φα| 〉+=

T̃βα z( ) φβ〈 |Vα
V
β
G z( )V

α φα| 〉,+=

T̃βα

G z( ) z Hβ–( ) 1– φβ| 〉Tβα z( ) φα〈 | z Hα–( ) 1–
G̃ z( ),+=

G̃ z( )
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of short�range pair potentials define a finite transition
amplitude between α and β channels on the energy
shell [3, 25], whereas in the case of Coulomb interac�
tion between particles, when pole singularities of the
Green’s function has the form (1.17), the matrix elements

considered possess singularities of the types (z – 

and (z –  (see also [37]). This means that when
the parameter z is on the energy shell in both channels
(Eα = Eβ = E), the expression of the type

(1.27)

is finite. With the help of formulas (1.13) and (1.26), it
can be represented in the following way:

(1.28)

Indeed, expression (1.13), with the help of the sec�
ond resolvent identity, can be brought to the form

so that

(1.29.1)

Analogously,

(1.29.2)

If, for example, the entrance channel of the reac�
tion contains no more than a single charged fragment
(ηα = 0), the amplitude of such a process, taking into
account (1.16), can be written in a more customary

form via the full wave function (pβ) of the prob�
lem’s exit channel,

(1.30)

We now express the S�matrix elements, which by
definition are

(1.31)

in terms of the quantities tβα,

(1.32)

To derive formulas (1.32), let us proceed as follows.
In the S�matrix elements (1.31), we write down each
of the wave operators in the form of the time limit (1.3)

Eα)
iηα

Eβ)
iηβ

tβα pβ pα; E i0+,( ) e
π/2 ηβ ηα+( )–

e
i Aβ Aα+( )

Γ 1 iηα–( )Γ 1 iηβ–( )
������������������������������������������=

× e
i ηβ ηα+( ) z E–( )ln–

pβ〈 |Tβα z( ) pα| 〉
z E i0+→

lim

tβα pβ pα; E i0+,( ) e
π/2 ηβ ηα+( )–

e
i Aβ Aα+( )

Γ 1 iηα–( )Γ 1 iηβ–( )
������������������������������������������=

× iε( )
i ηα ηβ+( ) pβ φβ,〈 |VβΩ+α

0( ) ε( ) pα| 〉

pβ〈 |Ω β–
0( )+ ε( )V

α
pα φα,| 〉.⎩

⎨
⎧

ε 0→
lim

Ω α±

0( ) ε( ) pα| 〉 I G Eα iε±( )V
α

+[ ] φα pα,| 〉,=

pβ φβ,〈 |VβΩ+α

0( ) ε( ) pα| 〉 pβ〈 |Tβα E iε+( ) pα| 〉.=

pβ〈 |Ω β–
0( )+ ε( )V

α
pα φα,| 〉 pβ〈 |T̃βα E iε+( ) pα| 〉.=

Ψβ

–

t pβ pα; E i0+,( ) Ψβ

–
pβ( )〈 |Vα φα pα,| 〉.=

Sβα pβ pα,( ) pβ〈 |Ω β–
+ Ω+α pα| 〉,=

pβ〈 |Sβα pα| 〉 = 2πiδ Eα Eβ–( )tβα pβ pα; E i0+,( ).–

and the products of limits with for the limit of prod�
ucts. As a result, we obtain

(1.33)

Now, we cast the matrix element in the right hand
side of (1.33) down to the integral representation via
the Green’s function,

(1.34)

and then twice apply to it the second resolvent identity.
In this case, from (1.34), it follows that

(1.35)

(1.36)

(1.37)

By applying to I2 the limit relations for the asymp�
tote of the Fourier transformations of generalized
functions [1, 38],

(1.38)

we find

(1.39)

The term I1 in the case of short�range pair poten�
tials is equal to δαβ. In the case at hand, when at least
one of the Coulomb parameters ηα or ηβ does not
equal zero, this term equals zero for α = β by virtue of
the Riemann–Lebesgue lemma (in a weak sense) [1,
3, 26, 39, 40]. From the latter and (1.35), the result
given by (1.32) follows.

1.4. Distorted Wave Method

By analogy with (1.13), let us introduce into con�
sideration the following operator:

(1.40)

pβ〈 |Sβα pα| 〉 e
i Aα Aβ+( )

t
i ηα ηβ+( )

t +∞→
lim=

× e
i Eα Eβ+( )t

φβ pβ,〈 |e 2iHt–
pα φα,| 〉.

φβ pβ,〈 |e 2iHt–
pα φα,| 〉 Ed

2πi–( )
�������������e

2iEt–

∞–

∞

∫ε 0→
lim=

× φβ pβ,〈 |G E iε+( ) pα φα,| 〉,

pβ〈 |Sβα pα| 〉 e
i Aα Aβ+( )

I1 I2+( ),=

I1 t
i ηα ηβ+( )

e
i Eα Eβ+( )t

φβ pβ, pα φα,〈 | 〉,
t +∞→
lim=

I2
Ed

2πi–( )
������������� t

iηβe
i E Eβ–( ) t–

E Eβ– iε+( )
1 iηβ–

�����������������������������������

∞–

∞

∫ε 0→
lim

t +∞→
lim=

× t
iηαe

i E Eα–( )t–

E Eα– iε+( )
1 iηα–

����������������������������������� E Eβ– iε+( )
iηβ–

[

× pβ〈 |Tβα E iε+( ) pα| 〉 E Eα– iε+( )
iηα–

].

t
iη

e
ixt–

x i0±( )1 iη–
�����������������������

t +∞→
lim  = 

2πiδ x( ) e
πη/2–

Γ 1 iη–( )
������������������, for +i0;–

0, for –i0,⎩
⎪
⎨
⎪
⎧

I2 2πie
i Aα Aβ+( )–

δ Eα Eβ–( )–=

× tβα pβ pα; Eα i0+,( ).

Ω̃ α± ε( ) pα| 〉 iεG Eα iε±( )ω α± pα| 〉.±=
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In (1.40) the wave operators ω±α give rise to dis�
torted waves, which are eigenfunctions of the Hamil�
tonian Hα = Hα + Uα (cf. (1.25)). They can be written
by using definition (1.3):

(1.41)

The operators  are defined by the distorting

potentials Uα, with

The following relation holds:

(1.42)

this is a generalization of (1.16). Let us prove this rela�
tion for the case of the operator Ω+α. Since

and

  0

in a strong sense, then

(1.43)

Following the same logic, while deriving formulas
(1.14)–(1.16), we obtain

(1.44)

Taking the limit ε  0 in (1.44) and considering
that the expression in square brackets converges to
Ω+α, we come to the relation

(1.45)

ω α± s e
iH

α
t
e

iHαt– iχα

0( )±
t( )–

φα| 〉.
t ∞+−→
lim–=
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0( )±
t( )
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t( ) pα| 〉 t( ) ηα

0( )
tln Aα

0( )
+( ) φα| 〉.sgn=

Ω α± pα| 〉 ε
i ηα ηα
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–( )+−

Γ 1 i ηα ηα

0( )
–( )+−( )

��������������������������������������
ε 0→
lim=

× e
i Aα Aα

0( )
–( )±

Ω̃ α± ε( ) pα| 〉;

Ω̃+α ε( ) pα| 〉 ε te
iHt–

e
iH

α
tω+α pα| 〉d

0

∞

∫=

e
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α
tω+α e

iHαt iχα

0( )+
t–( )+

φα| 〉–⎝ ⎠
⎛ ⎞

t +∞→
lim

Ω̃+α ε( ) pα| 〉 ε te
iHt–

e
iHαt iχα

0( )+
pα t–,( )+

φα pα,| 〉d

0

∞

∫=

+ R ε( ) pα| 〉.

ε
i ηα ηα

0( )
–( )–

Ω̃+α ε( ) pα| 〉 te
t– i ηα ηα

0( )
–( ) tln– i Aα Aα

o( )
–( )–

d

0

∞

∫=

× e
iHt/ε–

e
iHαt/ε iηα t/εln iAα+ +

φα| 〉[ ] pα| 〉

+ ε
i ηα ηα

0( )
–( )–

R ε( ) pα| 〉.

ε
i ηα ηα

0( )
–( )–

Ω̃+α ε( ) pα| 〉
ε 0→
lim Γ 1 i ηα ηα

0( )
–( )–( )=

× e
i Aα Aα

0( )
–( )–

Ω+α pα| 〉 ε
i ηα ηα

0( )
–( )–

R ε( ) pα| 〉.
ε 0→
lim+

The operator R(0)|pα〉 can be written in terms of the
Abel limit

(1.46)

The integrand in (1.46) is bounded with its limit
equal to zero for t  ∞. Because of general properties
of the Abel limits R(0)|pα〉 = 0 and, consequently,
expression (1.45) is equivalent to (1.42).

Result (1.42) allows the amplitude given in (1.30)
to be rewritten to take a form analogous to (1.28) and
(1.27),

(1.47)

where  = ω–β|pβ〉. Result (1.47) shows that, if
there is a wave function of some set of charged parti�
cles in the exit (entrance) channel with the right Cou�
lomb asymptotic form, then their (total) Sommerfeld
parameter does not contribute to the general (total)
one of the channel during a regularization procedure.
An equation of type (1.47) was obtained in [41] in the
case of hydrogen atom ionization by a fast electron.

1.5. Conclusions to Section 1

Summarizing Section 1 it can be said that the spe�
cific asymptotic form of the Coulomb interaction for
large distances between charged fragments gives rise to
additional singularities in the scattering amplitudes,
which are solutions to the LS equations, when these
solutions tend to the energy shell. Outside of this
domain these solutions to the LS equations (nonphys�
ical amplitudes) can be dealt with just as in the case of
short�range pair potentials.

In order to obtain physical observables, it is
required to remove the singularities of the transition
amplitudes according to specific prescriptions. Such
rules are deduced from representations (1.27) and
(1.47). We will below consider an example of how to
do that.

R 0( ) pα| 〉 ε te
iHt–

d

0

∞

∫ε 0→
lim=
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2. GENERAL THEORY APPLICATION 
TO THE PROBLEM OF HYDROGEN ATOM 

IONIZATION BY A FAST ELECTRON

In what follows we will be mainly concerned with a
system of three particles. For its description the Jacobi
coordinates rγ, �γ are used, where rγ is the relative
coordinate of a pair γ and �γ stands for the radius�vec�
tor of a third particle relative to the center of mass of
this pair. The momenta conjugate to these coordinates
will be denoted as kγ and pγ. The free Hamiltonian of a
three�particle system can be written as

where μγ is the reduced mass of particles in a pair γ and
nγ is the reduced mass of a pair γ and a third particle.

In such a system, four scattering channels are pos�
sible—a bound pair and a free third particle (three
channels)—and all three particles are free. A typical
example of such a system is the interaction of a
charged particle (electron, positron, proton, and so
on) with a hydrogen atom. The problem of atomic par�
ticle scattering, when there is only Coulomb interac�
tion between particles, is extremely important from
the methodological point of view. Firstly, any two�par�
ticle problem can here be exactly solved, and in some
cases there is a chance to compare approximate result
with exact one. Second, according to conventional
approaches, a nuclear problem of charged particle
scattering can be dealt with once an atomic one is
solved [42]. Third, most of the atomic physics’ prob�
lems (e.g., electron scattering off an atom, or even
proton scattering at very small angles) can further be
simplified by using a large (infinitely large) nucleus
mass. Usually, the nucleus momentum K is not large in
such collisions, and its energy K2/2M  0. In the lat�
ter case it is possible to consider a problem of two par�
ticles scattered in the field of a third (static) particle,
where there exists a preferable coordinate system
[1, 43, 44]. Here, instead of the coordinates ( , ) it

is convenient to introduce the coordinates ( , ) that
characterize the positions of light particles relative to a
static heavy one, located at the center of coordinates.

2.1. Definitions

In this subsection we mainly adhere to the
approach given in [5]. Let us give basic definitions.
The hydrogen atom wave function in the initial state is
denoted as ϕ0, its binding energy is ε0. The Hamilto�
nian of a system (e + H) has the form

(2.1)

where W = v1N + v2N + v12 is the overall system poten�
tial, and viN, v12 are the potentials of electron interac�
tions with static nucleus (proton) and with each other,

H0
1

2μγ

�������Δrγ
– 1

2nγ

������Δργ
,–=

rγ ργ

r1 r2

H h01 h02 W+ + H0 W,+= =

respectively. The total energy of a system is E = ε0 +  =

 + , where p0 is the momentum of an incoming

electron, ps, pe are the momenta of scattered and emit�
ted electrons (this division is conventional, its mean�
ing will shortly become clear).

We apply now the general mathematical provisions
stated above to some specific scattering process. The
expression for a physical amplitude of the hydrogen
atom ionization process from a neutral channel to that
of three free charged particles, the so�called (e, 2e)
reaction, here is of key value. This amplitude is writ�
ten, according to (1.27), in the form

(2.2)

In (2.2) η is the full Coulomb parameter (1.5.1)

(2.3)

While the Dollard phase A is equal in accordance
with (1.5.2)

(2.4)

The triple differential cross section of (e, 2e) pro�
cess is written as

Here the momenta directions of outgoing electrons
are specified by the solid angles Ωs and Ωe. The ampli�
tude tdir (texch) corresponds to the case of a scattered
electron having the momentum ps (pe), i.e., the
momenta are simply interchanged in Eq. (2.2)
describing an exchange process.

Take the transition amplitude t in the form given in
(1.30) (further we will be considering only tdir omitting
an index)

(2.5)

In (2.5) Vi = v1N + v12 is the interaction potential
between an incoming electron and an atom. The initial
state of a system is taken to be |p0, ϕ0〉 and satisfies the
Schrödinger equation

(2.6)

with the Hamiltonian H defined in (2.1). A hydrogen
atom is electrically neutral; therefore, the matrix ele�
ment is regular on the energy shell of the entrance
channel despite the presence of the incoming electron

p0
2

2
����
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2

2
����

p2
2

2
����

t ps pe p0; E i0+, ,( )

=  e

π

2
��η– iA+

Γ 1 iη–( )
������������������� z E–( ) iη–

ps pe,〈 |T z( ) p0 ϕ0,| 〉.
z E i0+→
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η ηs ηe ηse; ηs+ + ps
1–
,–= =

ηe pe
1–
, ηse– ps pe–

1–
,= =

A ηs 2ps
2( )ln ηe 2pe

2( )ln ηse ps pe–
2
.ln+ +=

d
3σ

dEsdΩsdΩe

����������������������� 2π( ) 5– pspe

p0

�������=

× 1
4
�� t

dir
t

exch
+

2 3
4
�� t

dir
t

exch
–

2

+⎝ ⎠
⎛ ⎞ .

t ps pe p0; E i0+, ,( ) Ψf
–

ps pe,( )〈 |Vi p0 ϕ0,| 〉.=

H Vi– E–( ) p0 ϕ0,| 〉 0,=
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plane wave. The scattered wave in the final state

〈 (ps, pe)| = 〈ps, pe|  includes all interactions
between fragments of the final state and satisfies the
Schrödinger equation

(2.7)

The final function possesses the right Coulomb
asymptotic form, which follows from the long�range
nature of interaction between reaction’s final prod�
ucts. That is why representation (2.5) does not have
singularities on the energy shell, corresponds to the
physical amplitude and does not need further manip�
ulations like regularization to be done.

The method of successive approximations in the
scattering theory is based on the LS integral equation
for the operator T(z), and in the case of several charged
particles it has a number of distinctive features. First,
it is a choice of potentials in the initial and final states
which we treat as a perturbation. This choice is dic�
tated, as a rule, by physical conditions of the scattering
problem and, to some extent, by intuition of a
researcher. For example, in our case this is Vi, though,
if we would have considered a problem of ionization of
a singly charged hydrogen�like ion, then the scheme
based on expression (1.25) should have to be chosen:
thereby, we would have considered the Coulomb wave
of an incoming particle instead of the plane one in the
initial state, avoiding regularization of the entrance
channel. Second, the higher Born terms are described
by divergent integrals for z  E + i0 as a result of the
long�range nature of Coulomb forces. Physically, the
divergences mean that the plane waves of scattered
particles are not their asymptotical states. Let us elab�
orate a bit on this point.

Off the energy shell, the final three�particle state is
sought as a solution to the equation

(2.8)

or

which follows from (1.13). The free Green’s operator

 is taken in the form

(2.9)

with the plus or minus sign fixed by the sign of imagi�
nary part of z parameter. Expression (2.8) can be rep�
resented in the equivalent form

(2.10)

where G± = (z – H)–1 is the full Green’s operator.

Ψf
– Ω f–

†

H E–( ) Ψf
–

ps pe,( )| 〉 0.=

Ψf
–

ps pe; z,( )| 〉 ps pe,| 〉=

+ G0
–

z( )W Ψf
–

ps pe; z,( )| 〉,

z H–( ) Ψf
–

ps pe; z,( )| 〉 z H–( ) ps pe,| 〉,=

G0
±

z( )

G0
±

z( ) z H0–( ) 1–
,=

Ψf
–

ps pe; z,( )| 〉 1 G
–

z( )W+[ ] ps pe,| 〉,=

From (2.5) and (2.8), a plane�wave Born perturba�
tive series follows:

(2.11)

The term with index n = 0 corresponds to the first
Born approximation (FBA)

(2.12)

In formulas (2.11) and (2.12), the symbol T is deliber�
ately used instead of t, since now all the terms of a Born
series for n ≥ 1 contain singularities at z  E + i0. An
interesting question arises as to at which step the regu�
lar expression given in (2.5) is replaced by a singular
one (2.11)? The answer to this is that it happens
exactly when we start replacing the exact three�point
wave function in (2.8) by the sum of successive plane�
wave terms. It should be recalled that the scattering
theory in the case of short�range pair potentials is con�
structed out of a quite physical assumption, that entire
space can be considered as a sum of well separated
domains: small ones where particles, in fact, interact,
and a vast one where they move freely between colli�
sions, including motion at (infinitely) large mutual
distances (see, e.g. [25]). An incoming wave packet is
always much larger than an atom, thus permitting con�
sideration of a small part of that packet within a range,
set by the atom size, as a plane wave. Whereas in the
case of Coulomb potentials everything is exactly oppo�
site: the sizes of any wave packet are always less than
the interaction region, and the packet itself is to enter
boundary conditions of a stationary problem, which is
inconvenient. Thus, the singularities of the scattering
amplitude are the price to pay for fitting the well devel�
oped scattering theory with short�range pair potentials
to the problems of scattering of charged particles. This
situation somehow resembles renormalizations in
quantum electrodynamics, although there the singu�
larities are related with the hypothesis of point�like
relativistic particles and, apparently, with unjustified
application of the interaction representation to
describing the processes of their scattering. Even there
the basis of plane waves is inadequate for to the posed
problem.

2.2. Regularization of the Singular Matrix Elements

Now we will show how the calculation scheme
based on expression (2.2) can be applied to the regu�
larization procedure (removal of the singularities) of
the Born series’ terms. Let us consider one of the pos�
sible ways of extracting the exponent eiηln(z – E) out of a
series (2.11) that is meant to compensate for the same

T ps pe; z,( ) Tn ps pe; z,( ),

n 0=

∞

∑=

Tn ps pe; z,( ) ps pe,〈 | WG0
+

z( )[ ]
n
Vi p0 ϕ0,| 〉.=

T0 ps pe,( ) FBA≡ ps pe,〈 |Vi p0 ϕ0,| 〉.=
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exponent in (2.2). Consider the term T1( ). The
following relation is then valid:

(2.13)

where

(2.14)

(2.15)

By analogy,

(2.16)

where

(2.17)

(2.18)

and so forth. By induction it can be shown that

(2.19)

(2.20)

Summing up the Born terms, we obtain from (2.11)

(2.21)
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T̃0 ps pe; z,( ) T0 ps pe,( ).≡

T ps pe; z,( ) R ps pe; z,( )T̃ ps pe; z,( ).=

Here the function R( ) satisfies the equation

(2.22)

and is singular on the energy shell, that is, for z 
E + i0.

The function R( ) is closely related to the
full Green’s function of the scattering problem,
namely,

(2.23)

and for z ~ E has a structure of the type [5, 45]

(2.24)

with the function r( ) being regular on the

energy shell, and the function  = 0.
Proof of the statement given in (2.24) is given in the
Appendix (see also [46]).

2.3. First Born Approximations 
in the Distorted Wave Method

The specific forms of writing LS equations are
numerous, which is connected with the introduction of
different distorting potentials into the potential groups
of the initial and final states (see the general theory in
subsection 1.4). Let us dwell on this point in more
detail. The matrix element of the operator t(E + i0) in
(2.2) can be written in two equivalent forms. The first
representation is expressed through the proper three�
particle Hamiltonian function (1.33) Ψ–(ps, r1; pe, r2),
which is asymptotically characterized by two electrons
in the continuum with the features of a converging
spherical wave

(2.25)

and the second one via the analogous function (p0,
r1; r2) that describes asymptotically electron 2 in the
initial state and electron 1 in the continuous spectrum
with the features of a diverging spherical wave

(2.26)

The wave functions of the final (ps, r1; pe, r2) and

initial (p0, r1; r2) states satisfy the Schrödinger
equation

(2.27)
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+
p0( )| 〉,–=

Ψ0
+

t ps pe; E i0+,( ) ψf
–

ps pe,( )〈 |W Vf Ψ0
+

p0( )| 〉.–=
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The choice for the initial Vi and final Vf potentials,
as well as an approximation for the three�particle wave
function |Ψ〉, defines in both cases the model of calcu�
lating the amplitude. Various models and calculations
can be found in [47–50 and others]. Most of those
works use the formulas presented in (2.25) and (2.26),
which help, as a rule, to obtain various approximations
of the distorted waves. In this approximation the first
thing to be accounted for is the probable distortions of
the plane waves corresponding to fast initial and final
electrons. For this, it is convenient to divide the poten�

tial v12 to internal short�range  and peripheral 
parts either by introducing some cutoff radius R or
proceed in the way proposed in, e.g., [1]. Let us set

Vi =  + v1N + v2N. To simplify description of the
interaction between an incoming electron and an

atom, we replace v1N +    and consider the
motion of the incident electron in the field with a

short�range potential . Taking into account such a
substitution, the expression in (2.25) is transformed to
take the following form:

(2.28)

where ϕ0(r2) is the ground state wave function of a

hydrogen atom and (p0, r1) stands for the distorted
wave of an incoming electron. Note that the effective

short�range potential  tends to zero at sufficiently
large distances between an electron and an atom and,
therefore, the distorted wave asymptotically trans�
formes to the plane one, as it should be for a charged
particle scattered off a neutral system.

As it follows from (2.28), while replacing the real

potential v1N +  with the effective central poten�
tial, we neglect possible transformations of the atom
wave function, for instance, polarization. More
refined models can be constructed within a framework
set by formula (2.26).

We consider now the total wave function of a sys�
tem |Ψ–( )〉, which is an eigenfunction of the
Hamiltonian given in (2.7). We divide all the potentials
to internal and peripheral parts and introduce the
asymptotic Green’s function,

This is done in order to correctly apply the Faddeev
reduction of the total wave function,

(2.29)

which is impossible to consistently carry out for the
Coulomb potentials, because of the noncompactness
of the kernels of integral equations obtained [1]. Now,

v12
in

v12
out

v12
out

v12
out

ṽ0

ṽ0

t ps pe; z,( ) Ψ–
ps pe,( )〈 |v12

in χ0
+

p0( ) ϕ0,| 〉,≈

χ0
+

ṽ0

v12
out

ps pe,

Gas
±

z( ) z H0– v12
out

– v1N
out

– v2N
out

–[ ]
1–
.=

Ψ–| 〉 Ψ1 2,
–| 〉 Ψ12

–| 〉,+=

the following system of equations can formally be
written for its components:

(2.30)

By using the operator equation  =  +

 and taking into account only one com�
plete pair collision between incoming and target elec�
trons, we obtain from (2.28), (2.29), and (2.30) for the
direct amplitude of (e, 2e) reaction the approximate
expression

(2.31)

The function |ψ–( )〉 in (2.31) satisfies the
wave equation

(2.32)

and turns into a product of two Coulomb waves only if

a peripheral interaction  is neglected. In this case
we get the so�called off�shell impulse approximation
of distorted waves (off�shell DWIA [24]),

(2.33)

where |ϕ–(pi)〉 is the Coulomb function of a continu�
ous spectrum.

Once again, we pay attention to the replacement of
t by T in (2.33). They coincide for z  E + i0 only to

a zero order approximation in the potential .
Their complete relation should be found in the context
of general formula (1.47).

The majority of used approximations follow from
formula (2.31). Among them are the one discussed
above, the half�off�shell factorized impulse approxi�
mation of distorted waves (see [51]), and its variant
called the eikonal impulse approximation (EWIA [22,
52]). If, on the other hand, only peripheral parts of all

the potentials  are left in (2.32), we obtain the so�
called quasi�classical eikonal impulse approximation
(EWIA�SC [53, 54]). This model is sufficiently simple
for the distortion effect to be estimated if the total
energy is not asymptotically large.

Finally, neglecting in (2.32) all the potentials and

also taking  = 0, the plane�wave impulse approxi�
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mation (PWIA) is obtained. The differential cross sec�
tion is proportional to the square of the absolute value
of the hydrogen wave function in the impulse approx�
imation (this quantity is also called a momentum dis�
tribution)

(2.34)

Despite the apparent simplicity of representation
(2.31), its usefulness in real calculations is rather lim�
ited. First, it is almost impossible to evaluate an

“internal” pair amplitude , since there is a Green’s

function  in the LS equation that cannot be
written in any sensible way without further simplifica�
tions. Second, there is considerable uncertainty in the

definition of the potential . Third, even if these
complexities are somehow overcome, the matrix ele�
ment in (2.31) is still a nine�dimensional integral.

In the first two subsections of this section, we were
mainly concerned with a Born series; however, in the
scattering theory with short�range potentials, the so�
called iterations of the Faddeev equations (also known
as the Watson or Born–Faddeev series) can be consid�

d
3σ

dEsdΩedΩs

����������������������� ϕ0 q( ) 2
, q∝ ps pe p0.–+=

t12
in

Gas
+

E( )

ṽ0

ered, in which each term includes different particles
consecutively interacting by means of pair amplitudes
[1, 2]. We have already referred in this subsection to
this representation of the scattering amplitude. In par�
ticular, a customary plane�wave impulse approxima�
tion widespread in the calculations

(2.35)

is exactly the first term of such a series. Another exam�
ple is expression (2.31), which can also be viewed as
the first term of a series of such type. As a matter of
fact, this is the distorted wave method, which appears
to be more informative regarding the scattering mech�
anisms.

So why do we devote the primary attention to a
Born series that involves potentials in the knots of a
diagrammatical representation (Fig. 1) rather than
pair amplitudes? A diagram of the term of a Born–
Faddeev series contains consecutive blocks, in which
two particles interact via a pair amplitude, with a third
particle being free. Such a situation is never realized in
the scattering theory of particles with Coulomb inter�

PWIA e

π

2
��ηse– iAse+

Γ 1 iηse–( )
���������������������� z E–( )

iηse–

z E i0+→
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× ps pe,〈 |t12 z( ) p0 ϕ0,| 〉
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Fig. 1. Nonrelativistic diagrams visualizing the first� and second�order processes for the reaction H(e, 2e)H+: (a) FBA, (b) TS1,
(c) TS221, (d) TS222, and (e) TS21.
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action because of the absence of asymptotic freedom.
Of course, the successive iterations of a system of Fad�
deev equations can formally be written off the energy
shell, followed by extracting singular and regular parts
in each pair amplitude, owing to the fact that the pair
Coulomb amplitudes have analytic expressions off the
energy shell (see, e.g., [55–57]), and then proceed to
work with this expansion. However, even in the second
order, the numerical implications of such a program
look quite problematic.

Indeed, the properties of the solutions to the resol�
vent�type equations, which include also Faddeev
equations, allow one to formulate a procedure of cal�
culating the square of the absolute value of physical
transition amplitude (1.27),

Since, for Imz > 0, the Faddeev equations possess
unique solution, the limiting procedure allows, at least
formally, evaluating a physically observable cross sec�
tion of the process, proportional to the square of the
absolute value of the amplitude. However, this proce�
dure is not suitable for the case of approximating the
amplitude T by its iterations within a frame of a Wat�
son series. Let us show this by an example demonstrat�
ing the second order iteration. The matrix elements of
the type Iβα = 〈pβ|tβ(z)G0(z)tα(z)|pα〉, with the variable z
on the energy shell, are represented as

(see, e.g., [12, 13]). Summing up the first and second
iterations we can easily verify that compensation of
these singularities with the help of (1.27) is impossible
and, calculating the cross section in this way, reveal
that it diverges on the energy shell (?!).

From this point of view, the approximation PWIA
also seems an inadequate theoretical tool. Indeed, as is
shown in [58], even if in (2.2) we succeed in extracting
a pair amplitude t12(z) out of T(z) as a separate term and

regularize it, i.e., extract the singularity (z – , we
will not obtain the standard PWIA because of three�
particle factors, including singular ones, emerging
before the matrix element (cf. (2.2) and (2.35)). Thus,
in order to formally obtain PWIA, we have to neglect
the Sommerfeld electron–ion parameters in the fac�
tors before the matrix element after extracting t12(z)
out of T(z), i.e., to assume ηs = ηe = 0 in (2.2). Leaving
aside the question of justifying such a procedure from
the mathematical point of view, note that, in the case
of a quasi�elastic (e, 2e) reaction, a kinematics in
which a pair of Sommerfeld parameters—ηse, ηe and
ηs—are quantities of the same order is realized. Evi�
dently, the latter does not permit an approximation
ηs = ηe = 0 to be justified by any physical reasoning.

tβα pβ pα; E i0+,( ) 2

=  e
π/2 ηβ ηα+( )–

Γ 1 iηα–( )Γ 1 iηβ–( )
������������������������������������������

2

pβ〈 |Tβα z( ) pα| 〉 2
.

z E i0+→
lim

Iβα z E–( )
iηαAβα z E–( )

ηiβBβα+≈

E)
iηse

The discussion above shows that if, from the very
beginning, the required Coulomb singularities are not
extracted in the amplitude defined by the LS equation,
then all the attempts at constructing approximate
expressions for the charged particle scattering ampli�
tudes are doomed to failure. One feasible procedure is
discussed in the next section, and another, based on
the method of effective charges, is given in [46, 59, 60].

2.4. Second Plane�Wave Born Approximation 
for the Amplitude of Quasi�Elastic (e, 2e) Reaction 

on a Hydrogen Atom

The results of subsection 2.2 show that the role of a
small parameter while expanding the amplitude in a
Born series is practically played by the channel Som�
merfeld parameters, which are unambiguously related
to the Coulomb potentials. Leaving terms of no higher
than the first order in the expansion of expression (2.2)
in a series over parameters ηi, we obtain the expression
for the physical amplitude in the second plane�wave
Born approximation (since the potentials are already
included in the term T0),

(2.36)

where C = 0.577215… is the Euler constant. For the
operator T(z), we choose its prior�form (1.26.2) (here�
inafter, we omit a tilde sign for convenience), in which
we choose Vα = v1N + v12. Then, the following chain
of computations is valid:

From the first equality, it follows that

or

(2.37)

Using the known representation of the full Green’s
function in the form of expansion over a spectrum of
eigenfunctions of the total Hamiltonian H, let us write
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+ v1N v12+( )G
+

z( ) v1N v12+( ) ].
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the matrix element 〈 |T(z)| 〉 ≡ T( ) of
the operator T(z) in (2.37) in the form

(2.38)

In (2.38)  is a three�particle wave function of
the problem (with the features of a converging spheri�
cal wave in the case of at least one electron being in a
continuous spectrum), while 〈ϕ–( )| = 〈pe|[1 –

]–1.

At this point the meaning behind the terms “first
plane�wave Born approximation,” “second plane�
wave Born approximation,” etc., when considering
the three�body problem in which there are both bound
states and free electrons should be discussed. Only
processes with only one or two consecutive potential
interaction of free electrons are taken into consider�
ation. Since in what follows we consider the case with
all the momenta p0, ps, and pe being sufficiently large,
as well as the transferred momentum Q = p0 – ps (so�
called quasi�elastic (e, 2e) processes or the method of
electron momentum spectroscopy, which was men�
tioned in the Introduction, the details of this method
are also given in reviews [61, 62]), the following
assumptions and approximations are put forward:

—we neglect the terms in which coordinates corre�
sponding to fast particles enter intermediate bound
states, since the probability of a fast particle “residing”
for some time in a bound state is rather small; and

—we leave only those elementary processes of the
second order that decrease with increasing energy no

faster than  (i = 0, s, e).

We consider now the function |ϕ–( )〉 = [1 –

]–1|pe〉. It satisfies the equation (z' – h02 –

v2N)|ϕ–(pe; z')〉 = (z' – )|pe〉 (cf. (2.8)) and for z' =

 or z = E turns into the equation for the Coulomb
function with the features of a converging spherical
wave. It is easy to show that 〈ϕ0|ϕ–(pe; z')〉  0 for
z  E, as required for the eigenfunctions that belong
to different parts of the two�particle Hamiltonian’s
spectrum. Thus, in the first term of the sum given in
(2.38), we can omit the term corresponding to the
interaction v1N even in spite of the regularization rep�
resented by Eq. (2.2). Now the physical meaning of
choosing the initial potential Vα is clear. This matrix

ps pe, p0 ϕ0, ps pe; z,
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z'( )v2N

pe
2
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2
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element should be zero, as there is no energy transfer
through an infinitely massive body.

Next, we represent formally the Coulomb function
of the continuous part of a spectrum 〈ϕ–(pe; z')| in
terms of the expansion in a series over potential v2N

and keep only two terms. Then it can be written as

(2.39)

Substituting into a part of the first term left in (2.38)
only the vector 〈ps, pe| from (2.39), we obtain FBA

(2.40)

FBA is graphically presented as a diagram in
Fig. 1a. Recall that the normalized wave function of the

hydrogen atom ground state is ϕ0(q) = /(q2 + 1)2.

The second term in (2.39), after being substituted
in (2.38), describes the so�called two�step (TS1)
mechanism, in which atomic electron 2, after collision
with incoming electron 1, returns to an ion and a sec�
ondary interaction takes place (Fig. 1b). This is a part
of the second Born approximation and corresponds to
the atomic electron wave distortion to the second
order inclusively,

(2.41)

Integral (2.41) has a logarithmic singularity at x ~ 0,
if z  E + i0.

The second term in (2.38) is an obvious candidate
for the second Born approximation. In the literature it
is called the TS2 mechanism, and it describes two con�
secutive interactions of incoming electron 1 with a sys�
tem. Let us analyze the sum in (2.38). First of all, we
exclude from consideration the intermediate bound
states of an ion H–, since such matrix elements will be
negligibly small in the case of quasi�elastic (e, 2e) pro�
cesses. Then, in the sum, we single out the group of

functions | 〉 with one asymptotically free electron

and another one being bound. As in the SBA term
considered we already have two consecutive interac�
tions, the free electron is assumed to be a plane wave.
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In other words, | 〉 = |p, ϕg〉, g  (n, l, m). We
denote this sum as TS21 (Fig. 1e). Then

(2.42)

In (2.42),

(2.43)

Note that this integral does not diverge for arbitrary
number g at z  E + i0, due to the mutual compen�
sation of zeros in the numerator and denominator at
x = 0.

Furthermore, in sum (2.38) the intermediate states
with two asymptotically free electrons (continuum)

should be isolated. Analogously, we assign | 〉 =

|p, ϕ–(p')〉 with subsequent replacement of the Cou�
lomb wave for the plane one. As a result, we obtain

TS22 = TS221 + TS222,
where

(2.44)

and

(2.45)

The terms TS221 and TS222 are shown in the form
of diagrams in Figs. 1c and 1d. Both integrals (2.44)
and (2.45) diverge on the energy shell.

Thus, we constructed the amplitude T1(ps, pe; z) in
formula (2.36) and it equals

(2.46)

Note that the terms TS1, TS221, and TS222 are
responsible for the final electron plane wave distortion
up to the second order and enter in a symmetrical
manner with respect to all three channels. The term
TS21 bears some information about processes related
to indirect Coulomb distortions in the atom itself
under the influence of an incoming electron (which is
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T1 ps pe; z,( ) SBA≡

=  FBA TS1 TS21 TS221 TS222.+ + + +

connected with χ+(p0)). As expected, SBA provides
information equivalent to formula (2.31). This
amount of information may be less than that con�
tained in (2.31); nonetheless, it is more specific and
leaves no ambiguity in treating distorted waves.

Closely related transformations were carried out in
[49]; however, the authors did not encounter a diver�
gence problem by using the so�called closure approxi�
mation, which substantially alters the asymptotic con�
dition. This approximation allows estimation of the
average contribution of intermediate excitations into
the cross section of the process under consideration.
For this, we proceed with replacing Eα   > –0.5 in
the sum given in (2.38) and account for the complete�

ness condition of the eigenfunctions | 〉

As a result of these manipulations, the sum in
(2.38) is reduced to the expression

(2.47)

(the tilde sign here stands for the coordinate represen�
tation of the Coulomb function). Keeping in mind
that the momentum pe is large, we assume in (2.47)
that the Coulomb wave is approximately a plane one
with simultaneous substitution x  (pe – x). Finally,
we obtain

(2.48)

In integral (2.48) there is already no divergence
problem, if, for example,  lies somewhere within a
discrete part of the Coulomb spectrum, or even is a
small and positive quantity. The first two terms in
square brackets in (2.48) correspond to the sum of
mechanisms TS21 + TS222, whereas the third one cor�
responds to the mechanism TS221.

In the closure approximation, only the term TS1(z)
needs to be regularized,

(2.49)
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where

2.5. Calculation of Differential Cross Sections. 
Discussion

The kinematics of ionization experiments with a
helium target carried out recently by a Japanese group
[63] has been chosen for the calculations and esti�
mates. In these experiments the angle of each electron
is fixed at 45° with respect to an incoming electron.
One of the detectors registering secondary electrons

Re z( ) iηe z E–( )ln ηe
π
2
�� iC+⎝ ⎠

⎛ ⎞ iηe 2pe
2( ).ln–+=

was circled in the direction transverse to the plane
made up of velocity vectors of the incident and another

secondary electron. In this kinematics  =  = 2Es,

 = 2(2Es + ε0) and Φ is the angle between the vectors
ps and pe. Here

(2.50)

The angle Φ is related to the polar angle α of the
electron momentum relative to the scattering plane by
the relation cosΦ = 0.5(1 – cosα) with the phase cho�
sen so that the minimal value q is realized under the
condition thot all the electrons are in the same plane.
This value tends to zero for Es  ∞, but for finite Es it
is finite as well. For example, if Es � ε0, then qmin ≈

ε0/( ). Equality (2.50) provides the relation
between the angles and momentum q, which is used in
calculations of various matrix elements while deriving
momentum profiles in the variable q.

In Figs. 2–5 and 9–12 [64], the calculation results
for contributions coming from both the separate SBA
mechanisms of a hydrogen atom ionization reaction
and the SBA in general are shown. The calculations
were carried out at the energy E = 2013.6 eV (1 keV per
each final electron). Such a choice of final electron
energies is governed by the experiments [63].

In Figs. 2 and 3, the main approximations of
the first order, FBA and PWIA, are presented. Since
the ground state of a hydrogen atom is the 1s state, the
cross section is a finite quantity for q  0. In the case
of higher angular states—p, d, f—the cross section

ps
2
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2
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2

q
2
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Fig. 2. Triple differential cross section of the quasi�elastic
reaction H(e,2e)H+ as a function of recoil momentum q
within FBA (solid curve) and PWIA (dashed curve), on a
linear scale. E0 = 2013.6 eV.
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Fig. 4. Triple differential cross section of the quasi�elastic
reaction H(e,2e)H+ as a function of recoil momentum q
within FBA (dashed curve) and SBAsimple = FBA +
TS1 + TS221 + TS222 (solid curve) on a linear scale. E0 =
2013.6 eV.
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will tend to zero at small q. It is this visual difference in
the angular profiles of electron momentum distribu�
tions in a target that endows the electron momentum
spectroscopy with methodological power.

In Figs. 4 and 5, the results of the cross section cal�
culations, which include, along with FBA, contribu�
tions coming from some mechanisms of the second
order—TS1, TS221, TS222 (their sum with FBA is
denoted as SBAsimple)—are shown. They noticeably
overestimate FBA calculations at both small and large
q values, though there is a range of 1.5 ≤ q ≤ 2.5, in
which the curves practically coincide. Recall that
these mechanisms give rise to the fast electron plane
wave distortions in the final state. The mechanisms
TS221 and TS1 are responsible for the distortion of one
of the secondary electron plane waves by the nuclear
field, whereas TS222 corresponds to wave distortion
caused by their Coulomb repulsion. A contribution
from this mechanism reduces the cross section com�
pared to FBA calculations, while the Coulomb inter�
action of proton and electrons considerably increases
it. This is surprising, since the energies of electrons are
sufficiently large (ps = pe ~ 10) for the Coulomb
parameters (or Sommerfeld parameters) ηi to be con�
sidered rather small.

It should be noted that, in the case of a hydrogen
atom, there are a number of analytical tests allowing
one not only to check the quality of numerical calcu�
lations but also to draw definite conclusions about the
quality of the second Born approximation in the case
of Coulomb interactions between particles. Let us turn
back to the first term in (2.38). This matrix element
can be evaluated analytically (we denote it as the
CWBA—Coulomb wave Born approximation):

(2.51)

In formula (2.40) ηe = –1/pe. The matrix element
PWIA is also calculated analytically:

(2.52)

where Pse = ps + pe, pse = (ps – pe)/2, and ηse = 1/2pse.

The second order plane�wave approximations to
expressions (2.51) and (2.52) are obtained from their
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expansion in a Taylor series over Sommerfeld parame�
ters ηe and ηse, respectively:

(2.53)

(2.54)

Note that absolutely the same results are obtained
in the case of applying a regularization procedure for
z  E + i0:

(2.55)

(2.56)

Recall that the Dollard phases are Ae = ηe ln( )

and Ase = ηse ln( ). The integrals TS1(z) and
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Fig. 5. The same as in Fig. 4 on a logarithmic scale.
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TS222(z) are related to the so�called Lewis�type inte�
grals [65] and calculated analytically,

(2.57)

(2.58)

By further expanding expressions (2.51) and (2.52)
in terms of Sommerfeld parameters, the higher Born
approximations can be derived. The results of calcula�
tion in the framework of these approximations are
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demonstrated in Figs. 6 and 7 [66]. The curves show�
ing the differential cross section in the FBA and
CWBA approximations almost coincide within a suffi�
ciently wide range of recoil momentum q. The same
can be said about approximations beginning from the
third order one. Only the second Born approximation
is notably different (!). The same picture is reproduced
in the case of the impulse approximation. From this, a
paradoxical conclusion follows that accounting for the
wave distortion mechanisms within the SBA frame�
work only leads to worsening, rather than improve�
ment, of the results. This negative effect should
entirely be attributed to the quality of the continuous
spectrum Coulomb function’s approximation by the
plane wave: for this, taking into account only two
terms of a Taylor series is obviously insufficient.

It is curious that a similar result is obtained by using
in (2.25) the so�called BBK function (or 3C) [15] for
the final state,

(2.59)

When expanded in a series over Coulomb numbers
up to the first order inclusive, the function in (2.59)
gives exactly (FBA + SBAsimple). Corresponding calcu�
lations are presented in Fig. 8 (done by C. Dal
Capello). As can be seen, the results of application of
the BBK function practically coincide with those
using FBA.

The contributions coming from intermediate excita�
tions n = 1, 2 (Figs. 9, 10) almost do not change the cross
section for small q. At the same time, the effect of 2s and
2p waves is clearly noticeable at medium momenta q.
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Fig. 7. Triple differential cross section of the quasi�elastic
reaction H(e,2e)H+ as a function of recoil momentum q
within the following approximations: second order to
PWIA (upper dashed curve), third and higher orders to
PWIA (lower dotted curve), and exact PWIA (lower curves,
almost indiscernible in the picture). E0 = 2013.6 eV.
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Fig. 6. Triple differential cross section of the quasi�elastic
reaction H(e,2e)H+ as a function of recoil momentum q
within the following approximations: second order to
CWBA (upper dashed curve), third and higher orders to
CWBA (lower dotted curve), and exact CWBA (lower curves,
almost indiscernible in the picture). E0 = 2013.6 eV.
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Remember that the contributions from intermediate
states are usually related to the reaction of a neutral atom
to an incoming electron, first of all, to the atom polariza�
tion, which is described exactly by 2p excited state. It is
the transition 1s  2p that dominates in the photoion�
ization reaction. In the case of the (e, 2e) reaction at large
initial energies, the transitions 1s  ns (n ≥ 2) are not
forbidden. However, as calculations reveal, in the case of
quasi�symmetric geometry chosen, they do not make a
noticeable contribution to SBA within almost the entire
range of variation of momentum q, just as the transition
1s  2p. Only an elastic channel in the intermediate
state makes an appreciable contribution for q > 3, which
is usually connected with a distortion of the incoming
electron plane wave in the initial state due to multiparti�
cle effects [48].

In Figs. 11 and 12, the results of SBA calculations in
the closure approximation are presented. In this version
of the latter, an incoming electron plane wave distortion
by a proton field in the final state is considered, along
with the averaged effect of the intermediate states

according to (2.36). The quantity  may vary in atomic
units from –0.5 to +∞. As it follows from the calcula�
tions, the cross section curves almost coincide at small q
within a wide range  of variation of parameter  and are
located closer to FBA than to SBA. At the same time, dif�
ferences at large values of q become increasingly appre�
ciable. While moving an “average point”  around a
spectrum of intermediate excitations, the cross section
tends to shift toward FBA, which fact is, from our stand�
point, positive for this rather rough approximation. It
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Fig. 9. Triple differential cross section of the quasi�elastic
reaction H(e,2e)H+ as a function of recoil momentum q
within the following approximations: FBA (lower dashed
curve), FBA + 1s (lower dash�dotted curve), SBAsimple

(upper solid curve), and SBAsimple + 1s + 2s + 2p (upper
dotted curve) on a linear scale. E0 = 2013.6 eV.
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should also not be forgotten that the cross section itself,
at the end of the range of momentum q, is almost four
orders of magnitude smaller than at the beginning of that
diapason. Overall, the closure approximation is closer to
FBA than to (FBA + SBAsimple) at small q, which finding
suggests that it is useful for practical calculations. More�
over, if one takes into account the negative effect caused
by the TS1 contribution (see Fig. 6) to the total distortion
of an incoming electron plane wave, then, apparently, a
rather less contribution from the CA term to the cross
section at small q is to be expected, what is consistent
with the calculations presented in Fig. 9.

2.6. Conclusions to Section 2

Let us briefly formulate the results obtained in this
section.

(1) Using the specific example of quasi�elastic
reaction H + e  H+ + 2e, the possibility to regular�
ize singular integrals, describing higher Born terms,
which is provided by the general theory of few charged
particle scattering, is shown to exist. A numerical cal�
culation of the cross section of this reaction is carried
out in the second order of perturbation theory.

(2) The regularization theory of divergent integrals
of a perturbative series yields a result that coincides
with expansion in a Taylor series over Sommerfeld
parameters in those cases in which analytical solutions
are possible.

(3) Taking into account the intermediate contin�
uum while carrying out computations of the second

order effects reduces the quality of the approximation
in the case of quasi�elastic knockout processes at col�
lision energies that are not asymptotically large,what is
demonstrated with the test examples. It is necessary to
take into account at least the third order effects, or to
do calculations with distorted waves, or not to take
into account the mechanisms TS1, TS221, and TS222

at small momenta q. The latter hypothesis served as a
basis for choosing the calculation scheme in [67].

(4) At an initial energy of ~2 keV, taking into
account the intermediate excitations of atomic dis�
crete states weakly affects the shape of the curve for the
differential cross section at small recoil momenta q.
However, when increasing q, it becomes more notice�
able, mainly due to elastic rescattering against a back�
ground of considerable decrease of the cross section
itself calculated in FBA. This confirms the validity of
the “frozen core” model at large collision energies and
small recoil momenta.

(5) The closure approximation gets us closer to
FBA, rather than simply SBA, within a wide range of

momenta q and  parameters .

Yet another important conclusion can be drawn—
that 1 keV per one outgoing electron is enough, at least
for hydrogen, to speak of the overwhelming domi�
nance of the first Born approximation FBA, which
carries basic information about a target wave function,
up to q ≈ 2. At higher momenta q, it is necessary to take
into account the wave distortions, including elastic
rescattering of a projectile electron off a target (FBA
curve + 1s in Fig. 10), though this is what is usually
done in the most distorted wave method calculations.
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Fig. 11. Triple differential cross section of the quasi�elastic
reaction H(e,2e)H+ as a function of recoil momentum q
within the following approximations: FBA (lower dashed
curve), closure approximation with  = –0.2 (middle

curve with short strokes),  = 3 (middle dash�dotted curve),

 = 10 (middle dotted curve), and SBAsimple + 1s + 2s + 2p
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APPENDIX

Let us substitute representation (2.24) in (2.22) and
rewrite the equation in the form

(A.1)

The matrix element  includes a sum
of three terms of the same type. Let us consider one of
them,

(A.2)

and calculate the master integral,

(A.3)

We proceed with replacing ks = ps – x, and, by eval�
uating a trivial integral over angular variables, we
obtain

(A.4)
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Then

(A.5)

The integral over x is equal to (1/2, 3/2; it)
and (A.5) turns to

(A.6)

The integral over t is a textbook one,

and, as a result of calculations,

(A.7)

Using the formula for the hypergeometric function
transformation under an argument inversion, we
finally obtain

(A.8)

Carrying out analogous calculations for other
potentials in the sum W, for z  E + i0, we derive

(A.9)

where

which needs to be proved.
Note that it is necessary to ensure convergence of

all the integrals in (A.1) at infinitely large values of
integration variables. This is achieved by the formal
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replacement η  η + iλ, λ  +0 and demanding

that the functions r and  are sufficiently fast decay�
ing. In the final expressions, it is possible to take λ = 0,
as was done while calculating integral (A.5). More�

over, from (A.1) it follows that (ps, pe; E + i0) = 0,
since the last integral found in the sum in the right
hand side of the equality is regular by definition.
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