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1. INTRODUCTION

A new field of physics, computational physics,
appeared in the mid-1960s and began to develop rap-
idly in relation to the automation of physical research
and computer processing of information. During these
years, new international journals, such as Computer
Physics Communications and Journal of Computa-
tional Physics, appeared and the first monographs in
this field of physics [1, 2] were published. Later, this
field became established in Russia. Chairs and labora-
tories of computational physics were organized in a
number of universities and scientific centers, such as
St. Petersburg State University, Saratov State Univer-
sity, Moscow Peoples Friendship University, Comput-
ing Centre of the Siberian Branch of the Academy of
Sciences, and Computing Centre of the Academy of
Sciences; textbooks in this discipline appeared [3].

It is especially underlined in many sources that the
methods of computational physics are aimed at investi-
gating mathematical models of physics and are closely
associated with their implementation in computers.
Analysis of the methods of computational physics
shows that the solution of practical problems, for which
known methods sometimes turn out to be inefficient
due to an original statement of the problem, plays a
decisive role in their development. The importance of
physical applications suggests that they should be
grouped into separate classes that deserve deeper inves-
tigation.

The relationship between the quality of a mathemat-
ical model of a complex physical process and an ade-
quate method of its examination is a fundamental issue
in computational physics. Indeed, only with a reliable
method of investigation of a mathematical model pro-
viding the required and controlled accuracy and pos-
sessing such “user-friendly” properties as simplicity of
program implementation and efficiency, can the degree
of agreement between the model and the process under

study be estimated. The value of the method is higher,
the wider the class of equations available for investiga-
tion using this method. This is especially important
both upon comparison of the properties of mathemati-
cal models used in different branches of physics, each
preferring its own customary approaches to the investi-
gation of similar equations, and in the modeling of pro-
cesses for interdisciplinary studies.

Computational physics as a direction of scientific
research became established at the Joint Institute for
Nuclear Research (JINR) by the beginning of the 90’s.
The rapid development of information technologies
over the last ten years posed new problems. One of
these is mastering and modernization of program pack-
ages which have become the common property of the
physical community, and introduction into them of
novel mathematical methods satisfying the require-
ments of modern physical research. At present, the main
task in this direction can be formulated as the algorithmic
and program support of theoretical and experimental
studies performed at the Joint Institute for Nuclear
Research, on the basis of the efficient application of
modern computer systems and high-speed networks.

In this overview, methods of computational physics
developed at JINR for the investigation of models of a
number of complex physical processes in different
fields of theoretical physics are considered. A general
mathematical statement of the problem, which is fur-
ther formulated as a nonlinear functional equation
depending on the model parameters, is given for the
models described. Several methods of investigation of
parametric dependences of the model characteristics
are considered. One of these is the continuation
method, which provides efficient transition through sin-
gular points in the parameter space. Another method is
based on formulation of the inverse problem for param-
eters at the singular point by imposing additional con-
ditions on them, which allows one to determine the
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model parameters at the singular point by solving the
appropriate inverse problem.

One of the basic methods in the framework of the
continuation concept is the generalized continuous ana-
logue of the Newton’s method (CANM) [4], for which
new iterative procedures of the solution of spectral
problems using variational functionals are presented in
this overview. We present brief descriptions of the pro-
gram packages developed and give references to the
JINR program library comprising these packages.

Models of complex physical processes are consid-
ered. In the framework of the quantum mechanical
three-particle system, the following problems are con-
sidered in the adiabatic representation: evolution of
quasistationary states into bound states of mesomole-
cules depending on the change of the effective mass
parameter, and application to the problem of scattering
of mesoatoms on nuclei of hydrogen isotopes; nonadi-
abatic coupling of channels of the antiproton helium
ion for minimum and maximum estimates of transition
energy levels; and ionization of the ground state of the
helium atom by fast electrons. Efficient two-particle
models of complex quantum mechanical systems
describing nuclear interactions in the framework of
high-energy approximations are studied. Wave pro-
cesses in nonlinear media, particle-like excitations in
models of condensed states, nonlinear optics, Joseph-
son junctions in superconductors, and astrophysical
problems are investigated.

The overview has two parts. The first part contains
the general mathematical formulation of the equations
of the models under study, description of numerical
methods applied, and information on program pack-
ages developed. The second part contains particular
models of physical processes and analysis of the
numerical results obtained upon their study.

2. MATHEMATICAL FORMULATION, 
NUMERICAL METHODS, ALGORITHMS 
AND SOFTWARE FOR INVESTIGATION 
OF MODELS OF PHYSICAL PROCESSES

 

2.1. General Characterization of Problems

 

In the general case, the class of equations occurring
in mathematical models of the complex physical pro-
cesses under study can be described using systems of
nonlinear integro-differential equations of the form

(1)
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domain of the coordinate space,  is the vector of the
model parameters, 

 

A

 

 is the external field, 

 

V

 

 and 

 

G

 

 are
the local and nonlocal interaction potentials, and 

 

Γ

 

, 

 

Θ

 

,

 

Π

 

 are operators defined depending on the model. For
each model, system (1) is complemented by initial and
boundary conditions and, possibly, by normalization
conditions of the sought solutions.

The general characteristics of the class of Eqs. (1)
are its multiparameter character with respect to the
model parameters, the multidimensionality of the coor-
dinate space and the presence of singular points in it,
and the possibility of a nonunique solution (a spectrum of
solutions). This class of nonlinear problems describes
the evolution of complex systems with possible bifur-
cation and critical modes.

Stationary problems (

 

Γ

 

 = 0) play a special role.
The problem of stability of solutions to system (1) is

solved in a special way in the models considered.
Namely, the stability of stationary solutions to system (1)
for 

 

Γ

 

 = 0 is investigated. For the calculation of station-
ary solutions, the problem of their evolution in a short
time interval under small perturbations of a special
form is formulated. As a result, a spectral problem is
formulated, and this spectral problem, together with
stationary boundary value problem (1), forms a new
system. A conclusion on the character of local stability
of the modeled process is drawn on the basis of proper-
ties of a part of the system spectrum.

Stationary problems can be reduced to a unified
statement in the form of the equation
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assumed that for each given vector 
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, Eq. (2) has an
enumerable (or finite) number of solutions { }, 

 

n

 

 = 0,

1, 2, …, and each solution  can correspond to the

vector of eigenvalues . The solution  = { , }
to Eq. (2) is a function of the parameter vector 

 

a

 

.
The method of dimensional reduction by expansion

of the sought solutions in special bases and reduction of
the original problem to systems of one-dimensional
equations (the Kantorovich method [5]) is widely used
for the solution of stationary problems.

The problems under study have the following spe-
cific features.

(1) There exists particular information on the exist-
ence and qualitative behavior of the sought solutions
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that can be obtained from the nature of the studied pro-
cesses or from investigation of simplified models, for
example, in regions of asymptotic variation of parame-
ters.

(2) In problems of low dimension, representing
approximations of more complex multidimensional
problems, and upon transfer of asymptotic conditions
for a solution to finite domains, problems in estimating
the accuracy of the applied approximations occur.

It is natural to extend the vector of physical param-
eters 

 

a

 

 in problem (2) by parameters of approximation
of the problem and the numerical scheme. Numerical
investigation of the model is usually reduced to mass
calculations in a wide parameter range, which simulta-
neously provides a possibility of investigation of the
properties of the models considered, i.e., the behavior
of solutions depending on the “physical” parameters,
and the accuracy of the obtained results depending on
the parameters of approximation of the original prob-
lems. Therefore, upon mass calculations, it is reason-
able to apply continuation methods with respect to a
parameter, and iterative methods providing the use of
all a priori information for refining the calculation
results.

Newton’s method, which is among the simplest one-
level iterative methods, under certain conditions has the
fastest quadratic convergence in the vicinity of an iso-
lated solution and provides the minimum linear part of
the residual at each step. Newton’s method has been
further developed on the basis of the generalization of
its continuous analogue [4].

 

2.2. Modified Newton Schemes

2.2.1. Generalized CANM and modified iterative
schemes. 

 

In [4], the systematic description of a class of
iterative schemes of numerical solution of boundary
value problems for differential, integro-differential, and
integral equations with additional conditions for the
sought solutions, is given. For all these problems, the
unified statement in the form of nonlinear equation (2),

is considered.

The basis for the construction of iterative schemes
of the class of problems under study is the continuous
analogue of Newton’s method (CANM) [5a] described
by the evolution equation

(3)

where 

 

t

 

 is the additional parameter and 

 

z

 

0

 

 is the initial
approximation of the sought solution 

 

z

 

* to Eq. (1).

The iterative scheme

(4)

ϕ z( ) 0=

d
dt
-----ϕ z( ) ϕ z( ), 0– t ∞, z 0( )≤ ≤ z0,= =

ϕ' zk( )∆zk ϕ zk( ), zk 1+– zk τk∆zk,+= =

with the additional parameter of optimization of con-
vergence τk obtained using the Euler method of solution
of Eq. (3), is substantiated.

Further generalization of the developed method is
based on parameterization of the initial function ϕ in
(2) with respect to the additional parameter t with an
explicit dependence of ϕ on t. Following the idea of
Davidenko [6], the continuous parameter 0 ≤ t < ∞ is
introduced into the function ϕ = ϕ(t, z(t)) in such a way
that for t = 0 the following simple equation is obtained:

(5)

and (t, z(t)) = ϕ(z). For the parameterized func-

tion, the generalized equation of the continuous ana-
logue of Newton’s method is considered,

(6)

Since the integral of Eq. (6) is ϕ(t, z(t)) = e–tϕ(0, z0),
we have ||ϕ(t, z(t))||  0 at t  ∞, and the asymptot-
ically stable convergence of z(t) to the sought solution
z* should be expected.

If z0 is the exact solution to Eq. (5), we obtain the
Cauchy problem defining the Davidenko method on the
half-axis 0 ≤ t < ∞,

(7)

If z0 is the approximate solution to Eq. (5), we obtain
from Eq. (6), by denoting A(t, z(t)) = (t, z(t)), the
modified CANM,

(8)

with the initial condition z(0) = z0.
If Eq. (8) is approximated by the Euler scheme, the

following sequence of iterations is obtained (zk = z(tk);
Bk = A(tk, zk)–1):

(9)

(10)

The following additive representation of the func-
tion ϕ(z) is often considered for parameterization of
ϕ(t, z(t)):

where ϕ0(z) is the regular part, and ϕ1(z) is its perturba-
tion. It is assumed that for the equation ϕ0(z) = 0 it is
easy to find the approximate solution z0, and the opera-
tor (z) is easily invertible.

The parameterization can be performed using the
scalar function g(t), the so-called function of inclusion
of perturbations, such that g(0) = g(∞) – 1 = g'(∞) = 0,

ϕ 0 z 0( ),( ) ϕ0 z0( )≡ 0,=

ϕ
t ∞→
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d
dt
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dz
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dz
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for example, g(t) = 1 – e–t, and the representation of the
function ϕ(t, z(t)) in the form of the sum

(11)

The advantage of this approach is in the construc-
tion of modified iterative schemes, where instead of
inversion of the operator ϕ'(z) at each iteration, it is nec-
essary to invert the derivative of the specially chosen
operator ϕ0 with a simple structure. Note that iterative
schemes on the basis of representation (11) are applied
for high order multiparameter difference approxima-
tions [7]. They preserve the three-diagonal structure of
the matrix of the operator ϕ' in Newton iterations. From
the point of view of computer implementation, the pres-
ervation of the relatively simple structure of this opera-
tor providing a high accuracy of the approximation of
the solved equation is of great importance. In the
framework of generalization of CANM, iterative
schemes with retardation for integro-differential equa-
tions can be given as another example.

The next step is the formulation of the functional–
operator equation (B is the unknown operator ϕ'(z)–1)

(12)

Application of the above approach to this equation
provides the construction of iterative schemes without
inverting the operator ϕ'(zk).

The following iterative formulas are used to deter-
mine B more precisely:

(13)

(14)

These formulas are the corollary of the application
of CANM to Eq. (12). The convergence of this process
was proved for τk = 1, for example, in [9].

Iterative scheme (9), (10), (13), (14) does not
include inversion of the operator , and in this scheme
the parameter τk minimizes the residual of the original
equation. Thus, for the initial approximation z0, B0, all
approximations zk and Bk can be found successively.
Practical calculations showed that B0 = A–1(z0) is the
best initial approximation for B (i.e., in this case the
inversion of the operator (t, z(t)) is performed only
once for t = 0). The advantage of this iterative scheme
is the absence of operations of division during all cal-
culations. This excludes cases of division by a small
number possible upon the inversion of poorly condi-
tioned matrices. Thus, the stability and accuracy of the
calculations are increased. Upon vectorization of oper-
ations [10], multiplication of matrices is more prefera-
ble than inversion of a matrix, and modified algorithm (9),
(10), (13), (14) provides a gain in time for a vector com-
puter system. However, this gain is obtained at the

ϕ t z t( ),( ) ϕ0 z t( )( ) g t( )ϕ1 z t( )( ).+=

φ B; z( )
ϕ z( )

ϕ' z( )B I–⎝ ⎠
⎛ ⎞ 0.= =

Wk Bk ϕz' tk zk,( )Bk I–[ ],–=

Bk 1+ Bk τkWk.+=

ϕz'

ϕz'

expense of the larger memory capacity required for
storage of the additional matrices.

Thus, modifications of CANM that increase its effi-
ciency for particular classes of problems and extend the
region of its applicability have been developed, and are
widely used at present. The problem of the choice of
initial approximations is in some sense solved in the
developed iterative schemes, and the solution of the lin-
ear problem with respect to iterative corrections is sim-
plified. It is also possible to construct an iterative pro-
cess without inversion of the linear Frechet operator in
this problem.

2.2.2. Estimates of accuracy of numerical results.
After reduction using the Kantorovich method, the
original multidimensional nonlinear stationary bound-
ary value problem

(15)

is transformed into the system of N (N  ∞) one-
dimensional equations

(16)

Taking into account that boundary conditions are set
at finite intervals characterized by the boundary points
γ, it has the form

(17)

After discretization with the parameter h, we obtain
the set of corresponding equations on a grid

(18)

Newton iterative process (4) is realized for Eq. (18)
until the following condition is satisfied:

(19)

where K is the number of the iteration at which con-
dition (19) is satisfied, and ε > 0 is the given small
number.

It is necessary to estimate the expression ||z* –
zN, γ, h, K ||h, where z* is the solution to Eq. (15).

If  is the exact solution to Eq. (18), the theo-
retical estimate for condition (19) has the form

(20)

For the exact solution  to Eq. (17), we have the
following theoretical estimate:

(21)

where p is the order of approximation for discretiza-
tion (18).

Then, the following inequality is satisfied:

(22)

If ε � h, the following estimate is valid:
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(23)

This relation should be verified on finer grids
(h  0), and extrapolation formulas should be used
to increase the accuracy of the results.

The contribution of the errors ||z* – ||h and ||  –

||h, where  and  are the solutions to Eqs. (16)
and (17), respectively, can be indirectly estimated by
calculations on sequences of expanding intervals
{γ  ∞} and for an increasing number N {N  ∞}
of equations of system (16).

If the values of shifts || || and  in the correspond-
ing sequences {γ} and {N} are sufficiently large, and
the values ||  – ||h and ||  –

||h are so small that relation (23) is satisfied,
it can be assumed that the parameters of approximation
N, γ, h are determined in an appropriate way. Naturally,
this practical procedure is based on the assumptions of
convergence of the corresponding methods of approxi-
mation of original equation (15) and serves as the proof
of these assumptions. This procedure is conveniently
implemented on the basis of the continuation method
with respect to parameters using already calculated
solutions for refining subsequent solutions during iter-
ations.

2.2.3. CANM in spectral problems. Let us consider
the modified Newton evolution process

(24)

where  is some fixed element in the vicinity of the
sought solution z*. This process yields iterative
schemes of the type (3) in which the operator ϕ'( (t))
should be inverted just once. In spectral problems, in
which the unknown z consists of two components λ and
Ψ (eigenvalue and eigenelement), either one or two of
these components can be fixed, depending on how well-
known the corresponding approximation to the sought
solution is.

For the classical spectral problem (H – λI)Ψ = 0
with respect to the pair z = {λ, Ψ} ∈ R × Y, nonlinear
equation (2) can be represented in the form

(25)

Here, H is the operator in the Hilbert space, which in
some cases can be represented in the form

(26)

where g is the formal parameter (the coupling con-
stant), and F(λ, Ψ) is the additional functional, for
example,

zN γ,* zN γ h, ,*– h C̃h
p
.∼

zN* zN*

zN γ,* zN* zN γ,*

γ N

zN γ h K, , ,* zN γ γ+ h K, , ,* zN γ h K, , ,*

zN N+ γ h K, , ,*

ϕ' z̃ t( )( )dz t( )
dt

------------ ϕ z t( )( ), z 0( )– z0,= =

z̃

z̃

ϕ λ Ψ,( )
H λI–( )Ψ
F λ Ψ,( )⎝ ⎠

⎛ ⎞ 0.= =

H H g( )≡ H0 gH1,+=

(27)

(28)

For solution of spectral problems (25), iterative
scheme (3) can be applied, which, for a fixed value of the
parameter vector a, at each step includes the following
system with respect to the residual ∆zk = {∆λk, ∆Ψk}:

(29)

The two-component structure of the function ϕ and
the possibility of modifying the form of the functional
F in iterations allow one to obtain a wide set of iterative
processes with controlled properties.

Depending on the method of solution of this system
and the choice of the form of the functional F, different
known iterative schemes of the solution of spectral
problems can be obtained.

If ∆Ψk is represented in the form

(30)

where Uk is the solution to the problem

(31)

we obtain the following expression for ∆λk:

(32)

For τk = 1, we obtain the following expression for
new approximations:

(33)

A known inverse iterative scheme is seen to be
obtained.

If the functional F in the form (28) is used, we
obtain the following system with respect to iterative
corrections:

Using the first equation of this system, we obtain
from the second equation

If H is self-conjugate,

(34)

By substituting the expression for ∆Ψk,

a( ) Ψ Ψ,( ) 0=

is the normalization condition;

b( ) Ψ H λI–( )Ψ,( ) 1– 0=

is the orthogonality condition.

H λk I–( )∆Ψk H λk I–( )Ψk– ∆λkΨk,+=

Fλ' λk Ψk,( )∆λk FΨ' λk Ψk,( )∆Ψk+ F λk Ψk,( ).–=

∆Ψk Ψk– ∆λkUk,+=

H λk I–( )Uk Ψk,=

∆λk

1 Ψk Ψk,( )+
2 Ψk Uk,( )

------------------------------.=

Ψk 1+ ∆λk H λk I–( ) 1– Ψk,=

λk 1+ λk

1 Ψk Ψk,( )+

2 Ψk H λk I–( ) 1– Ψk,( )
----------------------------------------------------.+=

H λk I–( )∆Ψk ∆λkΨk– H λk I–( )Ψk,–=

∆Ψk H λk I–( )Ψk,( ) Ψk H λk I–( )∆Ψk,( )+

– Ψk ∆λkΨk,( ) Ψk H λk I–( )Ψk,( ).–=

∆Ψk H λk I–( )Ψk,( ) 0.=

Ψk H λk I–( )∆Ψk,( ) 0.=
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(35)

into relation (34), we obtain the expression

This yields for τk = 1

or

(36)

This formula results in a known inverse iterative
scheme with a Rayleigh shift.

In particular, for the classical spectral problem with

the fixed value of λk =  and τk = 1, the known inverse
iterative scheme with a fixed shift providing the conver-

gence to the eigenvalue λ* closest to  is obtained. It is
reasonable to use the modified scheme with a fixed shift
in successive calculations of elements of the bound part
of spectrum of the operator H in combination with addi-
tional orthogonalization of the approximation Ψk + 1
found at the kth iteration with respect to all already-cal-
culated eigenelements , where n is the number of
the eigenelement and the shift between the already cal-
culated eigenvalue and the next eigenvalue after the ter-
mination of iterations.

2.2.4. Algorithms of choice of the iteration parame-
ter τk. In this section, we present five algorithms of cal-
culation of the parameters τk (0 < τ0 ≤ τk ≤ 1) minimiz-
ing the residual; these algorithms have proved to be
efficient in the solution of a number of problems.

(1) τk ≡ τ0. This algorithm for sufficiently small τ0
(~0.1; 0.05; 0.01) is usually applied for bad initial
approximations in order to verify the possibility of con-
vergence from these approximations. In this case, the
convergence is very slow.

For τk ≡ 1, the classical Newton scheme is obtained.
(2) τk = min(1, 2τk – 1), if δk < δk – 1; τk = max(τ0, τk – 1/2),

if δk ≥ δk – 1, where δk is defined by formula (19) in the
grid analogue of the norm in C. This algorithm is simi-
lar to the widespread way of choosing the integration
step in standard programs of solution of the Cauchy
problem and calculation of integrals. It is recom-
mended to apply this algorithm for good initial approx-
imations. It provides fast convergence but is not always
stable in the case of bad approximations.

(3) τk = min , if δk < δk – 1; τk =

max , if δk ≥ δk – 1, where δk is also calcu-

lated by formula (19) in the grid analogue of the norm
in C. This algorithm, minimizing the transition function
for two subsequent residuals [11], is more stable and

∆Ψk Ψk– ∆λk H λk I–( ) 1– Ψk+=

Ψk H λk I–( )Ψk,( )– ∆λk Ψk Ψk,( )+ 0.=

∆λk Ψk Ψk,( ) Ψk HΨk,( ) λk Ψk Ψk,( )–=

Ψk 1+  = ∆λk H λk I–( ) 1– Ψk, λk 1+  = 
Ψk HΨk,( )
Ψk Ψk,( )

--------------------------.

λ̃

λ̃

Ψn*

1 τk 1–

δk 1–

δk

----------,⎝ ⎠
⎛ ⎞

τ0 τk 1–

δk 1–

δk

----------,⎝ ⎠
⎛ ⎞

provides convergence in a sufficiently wide region of
initial approximations. However, both the region of ini-
tial approximations and the convergence rate depend on
the value of τ0. The smaller τ0, the wider the region of
convergence, and the slower the convergence far away
from the solution.

(4) τk = , where δk(1) is the residual at

the kth iteration for τk = 1. The value of δk is calculated
by formula (19) in the grid analogue of the norm in L2.
This is the algorithm of optimal choice of τk proposed
in [12]. It is based on the quadratic approximation of δ
as a function of τ. It should provide the minimum of the
residual at each iteration.

(5) The sequence of residuals δi is calculated by for-
mula (19) on the uniform grid ωτ of the interval [0, 1]
with the step ∆τ, and the value of τk corresponding to
the minimum residual is chosen. This algorithm is more
general than (4), but it requires a larger amount of cal-
culations. The accuracy of finding the optimal step τk
which provides the minimum residual at each step
depends on the choice of the grid ωτ. This grid can be
chosen in such a way that the accuracy of finding τk and
the processing speed of the algorithm are optimally
combined.

2.3. Method of Investigation of a Scattering Problem 
on the Basis of Combination of CANM 

and the Variational Approach

2.3.1. Multiparameter Newton iterative scheme.
The main idea of the construction of the generalized
iterative scheme formulated in [13] is to make use of the
dependence on physical parameters a of the original
problem (15). The required value of the component a =
a* for which it is necessary to find the sought z* is fixed
in the weak sense by the additional asymptotic condition

(37)

Thus re-formulated original problem (15)

(38)

is solved using the multiparameter Newton iterative
scheme

(39)

in which a  a* is provided by adding asymptotic
component (37) to (15). This scheme, unlike standard
scheme (4), allows one to find, along with the unknown z,
its derivative ∂z/∂a |a = a*. This circumstance will be used
further in calculation of the element z of the trajectory
z(a) at the point a = a* + ∆a, where we will apply a
good initial approximation z0(a) = z*(a)|a = a* +
∆a(∂z/∂a)|a = a*. This reduces the number of iterations in
process (39). If the Newton component –Φ(ak, zk) is
excluded from iterative scheme (39), we obtain the dis-

δk 1–

δk 1– δk 1( )+
------------------------------

F a* z,( ) 0.=

Φ a z,( ) ϕ a z,( ) F a* z,( ),{ } 0= =

Φa' ∆a Φz'∆zk+ Φ ak zk,( ),–=

ak 1+ ak τk∆ak, zk 1++ zk τk∆zk,+= =
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crete analogue of the evolution method with respect to
the coupling constant [14] or the Davidenko method [6].

For continuum problem (25), (26), (28), we can
choose, for example, the parameter q, which is the
value of momentum in the channel at some value of the
spectral parameter λ (or energy 2E = q2), as a. Then
condition (37) takes the form

(40)

similar to (28). In this case, iterations with respect to
the parameter q in the vicinity of q = q* serve for deter-
mination of derivatives with respect to this parameter of
interest. For illustration, we restrict ourselves to consid-
eration of the problem of elastic scattering for models
of quantum mechanical systems described by the radial
Schrödinger equation on the half-axis ρ ∈ (0, ∞) with
the short-range spherically symmetric potential V(ρ) ≡
V(ρ, g) (V(ρ) ≡ V(ρ, g = 0) ≡ 0) in the n-dimensional
space for the given coupling constant g ≥ 0, momentum
q ≥ 0, and angular momentum l (see [15]),

(41)

The corresponding boundary conditions for Eq. (41)
are obtained by the transfer of asymptotic conditions
for wave functions from the singular domain [0, ∞)

(42)

to the finite region of integration ρ ∈ [ρmin, ρmax], where
ν = (n – 1)/2, δl is the sought phase shift, and C is the
normalization coefficient. Problem (41) is considered
on the whole axis (–∞, ∞) in the one-dimensional space
(n = 1). Then, for the potentials with the asymptotic
V(ρ)  exp(±ρ), it is convenient to use the follow-
ing conditions instead of (42):

(43)

Problem (41)–(43) is reduced to the finite interval
[0, ρm] using the homogeneous boundary conditions

F q* ψ,( ) ψ H q*2–( )ψ,( ) 0,= =

1

ρn 1–
----------- d

dρ
------ρn 1– d

dρ
------ l l n 2–+( )

ρ2
--------------------------– q

2
+⎝ ⎠

⎛ ⎞ Ψl ρ( )

=  V ρ( )Ψl ρ( ).

Ψl ρ( ) ρl
,

Ψl ρ( ) Cρ ν–
qρ π l ν 1–+( )/2– δl+( )sin

ρ → 0

ρ → ∞

ρ → ±∞

Ψ ρ( )  0, Ψ ρ( ) C qρ δ+( ).sinρ → ∞ρ → –∞

(44)

where the functions bij , i, j = 1, 2, are defined by asymp-
totic conditions (42) or (43). For the Morse potential
(n = 1) with two bound states (v = δ(0)/π = 2), phase
shift δ and its derivative ∂δ/∂q as functions of squared
momentum are shown in Fig. 1a. The accuracy of cal-
culations and the quality of the functions ψ can be
checked with the help of the derivative ∂δ/∂q, using the
virial theorem [16]

Another possibility studied in detail in [13] is the
choice of the coupling constant g in (26) as a in (37).
Then, condition (37) has the form

(45)

and, according to the Hellmann–Feynman theorem, it
allows one to control the quantity

(46)

and, under certain constraints on the potential V, to
obtain one-sided estimates of elements of the K matrix
[17]. Iterative schemes (37)–(39) can be applied for
more precise determination of different variational cal-
culations in the scattering problem. Indeed, the scatter-
ing problem for the Schrödinger equation with the
above additional conditions can be reduced to calcula-
tion of the functional in the framework of different
Hulthen, Kohn, or Schwinger variational principles.
Thus, for example, for solution of the quantum problem
of a few particles with short-range pair potentials, the
Schwinger variational functional is used [18], and dif-
ferent iterative schemes have been developed on its
basis. At first sight, the integral formulation of the prob-
lem is much simpler than the differential formulation,
since it does not require detailed analysis of asymptotic
behavior of the sought solution at g ≠ 0 for calculation
of the functions bij , i, j = 1, 2 in (44), but uses only
known regular and irregular solutions for g = 0. How-
ever, such schemes for the multichannel scattering
problem do not provide stable calculation of the neces-
sary physical parameters in a number of cases. There-
fore, the development of stable variational–iterative
schemes on the basis of the combination of projection
methods, variational principles, and Newton iterative
schemes is a topical problem of numerical modeling of
quantum mechanical systems.

2.3.2. Multiparameter Newton iterative scheme with
Schwinger functional. Boundary value problems (41),
(42) are reduced to the spectral problem for the Fred-
holm equation [19]:

(47)

φ 2( )
b11∂ψ/∂r b12ψ+[ ]

r 0→
lim 0,= =

φ 3( )
b21∂ψ/∂r b22ψ+[ ]

r ∞→
lim 0,= =

C
2
q

2∂δ/∂q ψ 2V r∂V /∂r+( ),( ).=

F g* ψ,( ) ψ H g*( ) q
2

–( )ψ,( ) 0,= =

∂K /∂g ψ ∂V g( )/∂g( )ψ,( )–=

Al ρ ρ',( )Ψl ρ'( ) λlBl ρ ρ',( )Ψl ρ'( ),=
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Fig. 1. Phase shift δ and its derivative dδ/dq as functions of
squared momentum: (a) for the potential with two bound
states; (b) for the potential with one bound and one semi-
bound state.
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(48)

where λl = – /2 is the sought spectral parameter,
and the dependence on the normalization coefficient C
in the asymptotic of the unknown wave function Ψl(ρ)
is eliminated. The function yl(ρ) and the free Green’s
function Gl(ρ, ρ') are determined in terms of regular
and irregular at the point ρ = 0 solutions to Eq. (41) for
V(ρ) ≡ 0. The function yl(ρ) has the form

(49)

where Ji is the Bessel function of the first kind. The
additional condition of the type (37) is used for solution
of the problem (47), (48):

(50)

which implies the Schwinger variational functional

(51)

where the brackets (·, ·) denote a scalar product, i.e.,

( f, g) = . As a result, integral equation (47)

corresponds to the functional stable with respect to first
order variations in Ψl, and scattering problem (41), (42)
is formulated as the eigenvalue problem with respect to
the pair of unknown functions z = (λl, Ψl), the func-
tion of the phase shift λl and the wave function Ψl.
Discretization of problem (47), (50) on a grid of nodes
Ωh ∈ [ρmin, ρmax] (using known Bode’s quadrature for-
mulas) results in the algebraic generalized eigenvalue
problem

(52)

Then, the iterative scheme for finding the approxi-
mations λk + 1, Ψk + 1, using the corrections vk, uk, and µk,
is constructed:

(53)

Al ρ ρ',( )Ψl ρ'( )

=  Ψl ρ( ) Gl ρ ρ',( )V ρ'( )Ψl ρ'( )ρ'
n 1– ρ',d

0

∞

∫–

Bl ρ ρ',( )Ψl ρ'( ) yl ρ( ) yl ρ'( )V ρ'( )Ψl ρ'( )ρ'
n 1– ρ',d

0

∞

∫=

π δlcot

yl ρ( ) ρ µ–
Jl µ+ qρ( ), µ≡ n/2 1, n– 1,>=

V ρ( )Ψl ρ( ) Al ρ ρ',( ) λlBl ρ ρ',( )–( )Ψl ρ'( ),( ) = 0,

λl

V ρ( )Ψl ρ( ) Al ρ ρ',( )Ψl ρ'( ),( )
V ρ( )Ψl ρ( ) Bl ρ ρ',( )Ψl ρ'( ),( )

------------------------------------------------------------------------,=

f *gρn 1– ρd
0

∞∫

ϕ z( )
A λB–( )Ψ

VΨ A λB–( )Ψ,( )⎝ ⎠
⎛ ⎞ 0.= =

v k Ψk–=

A λkB–( )uk BΨk=

µk

ΨkV AΨk,( )
ΨkV BΨk,( )

----------------------------- λk–=

Ψk 1+ Ψk τk v k ukµk+( )+=

λk 1+ λk τkµk,+=⎩
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎧

where {λ0, Ψ0} is the initial approximation in the vicin-
ity of the sought solution, and the condition of minimi-
zation of residual [12] is used for the choice of the iter-
ation step τk, k = 0, 1, 2, …. The expression for µk coin-
cides with Schwinger variational functional (51). The
generalization of iterative scheme (53) for the multi-
channel scattering problem is given in [20].

In [21], the convergence of the proposed iterative
scheme was demonstrated for elastic scattering prob-
lem (41)–(43) with the Morse potential (n = 1), Woods–
Saxon potential, and the potential of the spherically
symmetric rectangular well (n = 3). However, the
scheme has the second order of accuracy with respect
to the step h of the uniform grid Ωh, since the first deriv-
ative with respect to the argument ρ of the Green’s
function Gl(ρ, ρ') has a singularity at ρ = ρ'. For the
potentials considered, the phase shift δ was calculated
to an accuracy within six decimal places.

It was also shown in [21] that the application of the
asymptotic Ψ(ρ) in the vicinity of the point ρmin for
approximation of solutions allows the construction of
schemes of a higher order of accuracy for calculation of
the phase shift δ. The efficiency of the implementation
of such sixth-order accuracy with respect to the step h
scheme on the uniform grid Ωh was demonstrated by
calculation of the phase shift δ to an accuracy of twelve
decimal places for the one-dimensional scattering prob-
lem with the Morse potential.

Corresponding algorithms are implemented in the
form of program packages in Fortran with double-accu-
racy real numbers.1

2.4. Methods of Investigation of Localized Structures 
and Critical Modes in Nonlinear Problems

Modern models of theoretical physics are described
by complex systems of nonlinear partial differential
equations allowing in some cases soliton or soliton-like
solutions (localized in space particle-like states with a
finite energy). Modeling of phenomena related to the
formation, propagation, and stability of solitons repre-
sents a fast-developing interdisciplinary field of mod-
ern computational physics. The reason for the interest
in this field is obvious—solitons and soliton-like for-
mations are important examples of stable states in a
very wide class of nonlinear unbounded and homoge-
neous models of physical systems (see, e.g., [22–25]).

However, real physical systems are bounded in
space and can have internal structural inhomogeneities
contributing to the generation of new physical effects.
The explanation of these effects is related, as a rule, to
the possible localization of solitons on inhomogeneities
and to their interaction with boundaries. If there is no
external energy source in the system, and there exists
damping related to energy dissipation, then an arbitrary

1 http://www.jinr.ru/programs/jinrlib/dll2; http:www.jinr.ru/programs/
jinrlib/scatterh6.
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initial soliton state transforms into some equilibrium
(static) solution, which is sometimes called [25] the
static attractor. Self-similar solutions to nonlinear equa-
tions, for example, solutions of the type of traveling
waves in a moving coordinate system related to the
wave, can also be formally considered as “static” solu-
tions. In the general case, homogeneous solutions mean
static or time-periodic and quasiperiodic solutions.

The considerable difficulties in the investigation of
the stability of equilibrium solutions with respect to
small space-time perturbations are determined by the
presence in the models of given or unknown geometric
and physical parameters—system dimensions and
inhomogeneities, the structure of inhomogeneities,
parameters defining the behavior of fields at the bound-
aries, the form and value of nonlinear interaction of ele-
ments of the system, and so on.

In many classical models of physical systems, grad-
ual change of a particular parameter corresponds to a
unique continuous solution, and the linear stability the-
ory describes the system states sufficiently well. How-
ever, there exist a large number of problems in which
the number and stability of solutions change sharply
upon the transition of a parameter through some critical
values. Such phenomena, usually called branchings or
bifurcations [26–28], can describe qualitative changes
in a physical system. The values of the parameters for
which bifurcation of solutions takes place are called
bifurcation or critical values, and the process of transi-
tion through critical values of the parameters is called
the critical, or bifurcation, mode. The geometric posi-
tion of the points in the parameter space that correspond
to the bifurcation of solutions defines in the general
case some hyperplane called the bifurcation surface or
the catastrophe surface [28].

In the theoretical aspect, the knowledge of bifurca-
tion dependences allows the determination of the num-
ber of equilibrium solutions and the understanding of
their structure, the estimation of the parameter ranges
in which stability or instability of the system can be
expected, and, possibly, the description of the physical
phenomena occurring in this case [25].

The possibility of experimental verification of bifur-
cation dependences, which is an essential source of
information for improvement of a model, is of special
importance for practical purposes. Methods of investi-
gation of vortex soliton-like structures of magnetic flux
in long Josephson junctions (LJJ) based on measure-
ment of (bifurcation) critical current as a function of
magnetic field [29, 30] is a particular example.

Unfortunately, analytical expressions for bifurca-
tion surfaces can be obtained only in quite simple mod-
els. For the most interesting problems of modern theo-
retical physics, only numerical investigation of bifurca-
tion dependences of parameters is possible.

The traditional instrument for investigating the
dependence of structural solutions on a parameter is
continuation methods that are based on numerical

methods of solution of the Cauchy problem. However,
in the vicinity of bifurcation surfaces, such methods are
hardly applicable, since on these surfaces the unique-
ness of solutions is violated. Therefore, the creation of
numerical methods allowing one to find and study the
behavior of solutions in the vicinity of bifurcations, and
the construction of corresponding program packages
implementing these methods is a very topical problem
of mathematical modeling.

2.4.1. Continuation schemes with respect to param-
eters through a turning point. In this section, we present
the general concept of numerical continuation with
respect to a parameter and two continuation schemes,
opening additional possibilities of numerical investiga-
tion.

Originally, continuation methods were developed as
a way of obtaining initial approximations in order to
extend the region of convergence of iterative methods
used for the solution of nonlinear problem (2) for a
fixed set of parameters (see [31] and references
therein). Modern developments in this field are aimed,
to a large degree, at the solution of problems related to
the analysis of bifurcations and critical modes in non-
linear problems (see, e.g., [32–34]).

Any numerical continuation scheme contains, in
some form, three obligatory components: (1) choice of
initial approximation; (2) a method of solution of the
problem for the given value of the parameter (the most
widespread methods are Newton iterative schemes);
(3) an algorithm of continuation with respect to the
parameter.

Note here that there exist algorithms uniting some of
the above components in one iterative scheme. Such
schemes include, for example, the method of parameter
evolution (see [35] and references therein).

The initial approximation is usually constructed
using numerical results obtained at previous steps. The
simplest and most widespread, and in many cases quite
efficient, version of the continuation scheme is an orga-
nization of calculations for which the solution from the
previous step is used as the initial approximation for the
next value of the parameter. In order to provide higher
stability and faster convergence of Newton iterations,
the initial approximation is constructed on the basis of
results calculated for 2–3 previous values of the param-
eter. Thus, the following Euler scheme is often used for
the initial approximation:

(54)

Here, αi is the element of the parameter vector a at the
ith continuation step. If the initial approximation is
constructed at the starting point of the numerical con-
tinuation (i = 0), either an analytical form of solution
known for some limiting values of parameters or qual-
itative information on its shape available for a majority
of physical problems are used. In the framework of gen-
eralization of CANM, in some cases this problem is

ϕ 0( ) αi 1+( ) = ϕ αi( ) αi 1+ αi–( )
ϕ αi( ) ϕ αi 1–( )–

αi αi 1––
---------------------------------------.+
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solved on the basis of representation of the function
ϕ(t, z(t)) in evolution problem (6) in the form of sum (11)

where the operator (z) is easily invertible, the solu-
tion to the equation ϕ0(z) = 0 is easily found, and the
inclusion function g(t) is such that g(0) = 0, g(∞) = 1.

Methods of choice of the step of continuation with
respect to a parameter are determined by the specific
features of particular problems and goals of investiga-
tion. One of the criteria of this choice is stable conver-
gence of Newton iterations. If the step with respect to
the parameter is sufficiently small, it is shown by corre-
sponding theoretical estimates that the initial approxi-
mation lies in the region of convergence of Newton iter-
ations. The step can be somewhat increased, and the
continuation procedure can thus be accelerated by the
choice of the iteration parameter τk in the Newton iter-
ative scheme.

The possible nonunique character of solutions and
the presence of bifurcations require the development of
special methods of numerical investigation.

Thus, one of the problems of numerical continuation
with respect to a parameter of solutions to nonlinear
problems related to the nonunique character of the solu-
tion is the organization of continuation with respect to
a parameter at the turning points where it is necessary
to change the direction of continuation with respect to
the parameter and pass over to a new unknown branch
of solutions (Fig. 2a).

The continuation algorithm presented in this section
provides the solution to this problem. The idea of the
proposed approach is as follows.

If the solution z to the stationary boundary value
problem

(55)

(where ϕ is the nonlinear operator, a is the element of
the parameter vector a with respect to which the solu-
tion is continued, and the other elements of the vector a
are fixed) is continued with respect to the parameter α,

ϕ t z t( ),( ) ϕ0 z t( )( ) g t( ) ϕ z t( )( ) ϕ0 z t( )( )–[ ],+=

ϕ0'

ϕ z α,( ) 0=

one usually calculates the norm or another scalar char-
acteristic of the solution S(z) (the so-called “measure of
bifurcation”), and constructs its dependence on the
parameter S(α). As a rule, quantities that have a physi-
cal meaning in the models considered are used as this
scalar characteristic.

In the continuation scheme proposed in [36], the
fact that the derivative dα/dS(z) vanishes at the turning
point is used. The position of the turning point at which
the motion along the bifurcation curve should change
direction can be found with the required accuracy by
numerical approximation of this derivative and verifica-
tion that the following relation is satisfied at each step
with respect to the parameter:

(56)

where � > 0 is the predefined small number, ∆αi = αi –
αi – 1 is the parameter step, and ∆Si = |S(z(αi)) – S(z(αi – 1))|.
This means that if condition (56) is satisfied, the sign of
the step of the continuation parameter should be
changed to the opposite. In this case, the construction of
the initial approximation by formula (54) using the
results obtained for two previous values of the parame-
ter excludes the return to the branch with the known
solutions.

The parameter step is calculated by the formula

(57)

which provides its reduction in the vicinity of the turn-
ing point, where the solution changes quickly, and its
increase on the “flat” interval of the bifurcation curve.
In this case, the initial (i = 0) parameter step should be
sufficiently small to provide stable and fast (in 3–5 iter-
ations) convergence of the Newton iterative scheme.
Note that on “flat” intervals of the bifurcation curve,
“classical” Newton iterations are efficient, while at
intervals near turning points it is necessary to pass over
to iterations on the basis of CANM, which is provided
by a corresponding choice of the iteration parameter τ.

∆αi

∆Si

----------- �,<

∆αi 1+ ∆αi

∆Si 1–

∆Si

-------------,=

α

S(α)
(a)

β
(b)

α

Fig. 2. (a) Continuation through the turning point with respect to parameter; (b) numerical continuation on the plane of parameters
(α, β).
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Thus, the presented approach provides a possibility
of passing over to new branches of solutions at turning
points, preserves the structure of the matrix approxi-
mating the operator of the Frechet derivative and does
not complicate, unlike other known recipes [32, 33], the
Newton iterative scheme.

On the other hand, the proposed algorithm of choice
of the parameter step provides control of its value, and
thus ensures fast convergence of Newton iterations and
a high rate of continuation.

In [37], another continuation scheme is presented.
The modified continuation scheme with respect to the
parameter with simultaneous calculation of another
parameter is intended for realizing numerical continua-
tion on the plane of two parameters, one of which is
unknown (see Fig. 2b). The scheme combines the
above continuation procedure with Newton iterations
for the nonlinear functional equation

(58)

where β is the unknown element of the parameter vec-
tor a, and continuation is performed with respect to the
parameter α, whereas other elements of the vector a are
fixed. The additional condition Γ is formulated taking
into account specific features of a particular problem,
for example, on the basis of the variational approach
[15], using the parametric dependence of solutions at
the asymptotic [38], taking into account the translation
invariance of solutions [37].

After the transition to the evolution equation and
subsequent discretization with respect to the continu-
ous parameter t, we obtain the iterative scheme of the
following form at each step of numerical continuation
with respect to the parameter α:

(59)

Here, s is the number of the Newton iteration, τs (0 <
τs ≤ 1) is the iteration parameter of the Newton scheme,
φs is defined as the linear combination

where

(60)

and the iterative correction µs is calculated by the for-
mula

The value of the parameter β serves as the measure
of bifurcation upon numerical continuation. The
motion through the turning point is simulated by the

F z α β, ,( )
ϕ z α β, ,( )
Γ z α β, ,( )⎩ ⎭

⎨ ⎬
⎧ ⎫

≡ 0,=

zs 1+ zs τsφs, βs 1++ βs τsµs.+= =

φs φs
1( ) µsφs

2( )
,+=

φs
1( ) ∂ϕ/∂z[ ]s

1– ϕ zs αi βs, ,( ),–=

φs
2( ) ∂ϕ/∂z[ ]s

1– ∂ϕ/∂β,–=

µs

Γ zs αi βs, ,( )– ∂Γ/∂z[ ]sφs
1( )

–

∂Γ/∂z[ ]sφs
2( ) ∂Γ/∂β[ ]s+

---------------------------------------------------------------------.=

algorithm described above. The initial approximation
and the parameter step are calculated by formulas (54)
and (57), respectively.

2.4.2. Linearization method in investigation of crit-
ical modes of nonlinear systems. In [39], the problem of
calculation of bifurcation curves for equilibrium solu-
tions of a wide class of nonlinear equations with the
operator depending on some set of parameters is formu-
lated. Let T be the interval on the real half-axis [0, ∞).
We consider the particular form of Eq. (1),

(61)

The real or complex-valued vector function u(t) (of
dimension M ≥ 1) is defined on T and takes values in the
Banach space � with the norm ||·||�. We denote by G
the nonlinear operator defined on some set � ⊂ � and
depending on the K-vector p ∈ � ⊂ �K of physical
parameters of the model.

Multiple examples of physical models whose equa-
tions are reduced to the form (61) can be found, for exam-
ple, in [22–25, 27]. Equations of physical models consid-
ered in this work can also be written in the form (61).

We assume that in some parameter range � ∈ �K,
Eq. (61) has the equilibrium solution us(p) with a
smooth dependence on the parameters, such that

(62)

Equilibrium solutions include static solutions result-
ing from, for example, dissipation in the model [25],
solutions of a wide class of problems in self-similar
variables [40, 41], solutions of field theory problems
with a time-oscillating phase and a static amplitude
[24], and some others.

Investigation of the local stability of equilibrium
solutions with respect to small perturbations in the lin-
ear approximation results in the eigenvalue problem

(63)

and the appropriate normalization condition is

(64)

Here, the linear operator A ≡  is the Frechet deriva-
tive of the nonlinear operator G(u) at the point us ∈ �,
and N[ψ] is the given Frechet-differentiable functional.
It will be assumed that in some region � of the param-
eter space the spectrum of the operator A(p) is discrete.
Let λ(p) = minReκi(p). Then, the stability condition of
the equilibrium solution us(p) has the form λ(p) > 0.
For λ(p) < 0, the equilibrium solution is unstable. The
equation

(65)

defines the bifurcation surface of the solution us in the
parameter space.

For calculation of the bifurcation points, the system
consisting of equation for equilibrium states (62), equa-

u̇ G u p,( )+ 0.=

G us p,( ) 0.=

A p( )ψ κψ,=

N ψ[ ] 0.=

Gu'

λ p( ) 0=
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tion of the linear eigenvalue problem (63), and normal-
ization condition (64), is considered as the unified non-
linear functional equation for the functions u(p), ψ(p),
and one of the K parameters p which will be denoted by
ξ (without losing generality, we choose ξ ≡ p1). The
other K – 1 parameters are assumed to be known. The
eigenvalue of linear problem (63) is also assumed to be
fixed (for example, equal to zero). Thus, this system
transforms into the inverse eigenvalue problem for the
parameter ξ.

The continuous analogue of Newton’s method is
used for solution of the nonlinear eigenvalue problem.
At each step of the iterative process, two pairs of linear
equations for the increments (U1, U2) and (Ψ1, Ψ2) of
eigenfunctions are solved,

(66)

(67)

The correction P for the eigenvalue is found from
the equation

(68)

implied by normalization condition (64). If (uk, ψk, ξk)
is the approximate solution to the problem at the kth
iteration (k = 0, 1, 2, …), the next approximation (uk + 1,
ψk + 1, ξk + 1) to the exact solution is calculated by the
formulas

(69a)

(69b)

The set of algorithms for determination of the opti-
mal step is presented in Section 2.2.4.

In special cases, when the solution to problem (62)
can be obtained analytically, calculation of the bifurca-
tion points corresponding to this solution is reduced to
the inverse eigenvalue problem, i.e., it is necessary to
find the value of the parameter ξ for which the condi-
tion λ(ξ) = 0 is satisfied. Basic equations of the Newton
iterative scheme for such problems have the form (67),
(68), and (69b).

In many models, Eqs. (66) and (67) represent
boundary value problems for second order differential
equations. A higher order spline collocation difference
scheme was developed in [39] for the numerical solu-
tion of such problems. This scheme is simple in imple-
mentation on uniform and non-uniform grids, and
allows a simple generalization to problems with discon-
tinuous derivatives. An efficient method of solution of
the occurring algebraic block diagonal system of equa-

A ξ( )U1 G u ξ,( ),–=

A ξ( )U2 Gξ' u ξ,( ),–=

A ξ( ) λI–[ ]Ψ1 Au' ξ( )ψU1– A ξ( ) λI–[ ]ψ,–=

A ξ( ) λI–[ ]Ψ2 Au' ξ( )ψU2– Aξ' ξ( ).–=

P N ' ψ[ ]Ψ2( ) 1–
N ψ[ ] N ' ψ[ ]Ψ1+( ),–=

u
k 1+

u
k τk U1

k
P

k
U2

k
+( ),+=

ψk 1+ ψk τk Ψ1
k

P
kΨ2

k
+( ),+=

ξk 1+ ξk τkP
k
.+=

tions is given. The capabilities of the scheme are dem-
onstrated on particular test examples.

2.5. Problem-Oriented Program Packages

Table 1 shows program packages developed for
numerical investigation of a number of problems. The
software that turned out to be widely applicable is
stored in the freeware electronic library JINRLIB (the
corresponding products are written in bold letters).

The majority of programs presented in Table 1 are
constructed on the basis of different versions of the
continuation method in combination with iterations by
CANM and its generalization.

2.5.1. Program packages for solution of eigenvalue
problems on the basis of CANM. (1) SLIP1 [42], for
solution of the eigenvalue problem for a second order
linear differential equation with boundary conditions
nonlinearly dependent on the spectral parameter, with
the finite-difference approximation O(h2).2

(2) SLIPH4 [43], a development of the SLIP1 pack-
age with a three-point approximation O(h4).3 Upon
construction of the initial approximation of the solu-
tion, an algorithm on the basis of Newton’s method for
finding roots of the polynomial with the exclusion of
already found roots and the sweep method for higher
stability of calculation of eigenfunctions was developed
in [43].

(3) SLIPS2 [44], for solution of the eigenvalue prob-
lem for a system of two second order differential equa-
tions.4

(4) SNIDE [45], for solution of the eigenvalue prob-
lem for an integro-differential equation.5

(5) SYSINT (SYSINTM) [46], for solution of the
eigenvalue problem for a system of integral equations.6

In the program, SYSINTM an iterative process is imple-
mented in which the generalization of the operator of
the derivative of a nonlinear function is replaced by two
multiplications of linear operators at each iteration.
The modified algorithm is more efficient for vector pro-
cessors.

For each package, a description of Newton iterative
schemes and parameters of subroutines is given, spe-
cific features of program implementation are discussed,
and examples of application of the package to the solu-
tion of physical problems are presented.

(6) CANM [47], for solution of systems of nonlinear
algebraic equations using CANM.

2.5.2. Program packages for investigation of non-
linear models of microprocesses. The program pack-
ages POLARON, DEUTERON, QUARKONIUM,

2 http://www.jinr.ru/programs/jinrlib/slip/#slip1.
3 http://www.jinr.ru/programs/jinrlib/slip/#sliph4.
4 http://www.jinr.ru/programs/jinrlib/slip/#slips2.
5 http://www.jinr.ru/programs/jinrlib/snide.
6 http://www.jinr.ru/programs/jinrlib/sysint.
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REL_SCHR for investigation of quantum field models
include the already-mentioned programs SLIP1,
SLIPH4, and SYSINT, in which CANM is implemented
for the solution of various eigenvalue problems.

In the CONTIN–NLIN7 and OSCILLON packages,
the procedure of continuation with respect to a param-
eter through turning points is implemented. The pack-
age CONTIN-NLIN_MOD is composed using a modi-
fied continuation scheme on a plane of two parameters.

The package GAP-EV is devoted to continuation
with respect to a parameter of eigenvalues of a system
of first order complex differential equations.

The programs PROGS2H4,8 PROGON4,9 and
MATPROG (CMATPROG)10 were developed for
numerical solution of linear problems in calculation of

7 http://www.jinr.ru/programs/jinrlib/contin-nlin.
8 http://www.jinr.ru/programs/jinrlib/progs2h4.
9 http://www.jinr.ru/programs/jinrlib/progon4.
10http://www.jinr.ru/programs/jinrlib/matprog.

Newton iteration corrections. Such problems can serve
as an object of investigation in various models. The
necessity of their solution occurs, for example, in the
framework of implicit schemes upon the solution of
partial differential equations. The programs PROGON4
and PROGS2H4 [48] are devoted to the solution of,
respectively, one and two ordinary differential equa-
tions with boundary conditions of the third kind. In
both programs, the Numerov fourth order finite-differ-
ence approximation is used. The programs MATPROG
and CMATPROG implement the matrix sweep method
for real and complex variables, respectively.

The program package HEA,11 including the pro-
grams HEA–CRS and HEA–TOTAL, is devoted to cal-
culation of the characteristics of nucleus–nucleus inter-
action in the framework of the high-energy approxima-
tion.

11http://www.jinr.ru/programs/jinrlib/hea.

Table 1.  Program packages for numerical investigation of nonlinear models of microprocesses described by wave equations

Package (program) Problem (model) Organization

TERM
MATR
TERM, MATR
SLIP1, SLIPH4
SLIPS2, SYSTEM
ITER, BAAP
BSMADM
SYSTEMQ

Solution of the two-center problem in 
quantum mechanics; calculation of 
binding energy levels and wave func-
tions of mesomolecules, mesomolecu-
lar complexes, quasistationary states, 
scattering on mesoatoms

Russian Research Centre Kurchatov Institute (Moscow), 
St. Petersburg State University (St. Petersburg), Institute 
of High Energy Physics (Protvino), Joint Institute for 
Nuclear Research (Dubna)

SLIPH4 Calculation of energy levels of the 

antiproton  molecule

Joint Institute for Nuclear Research (Dubna)

CONTIN–NLIN
CONTIN–NLIN–MOD
PROGS2H4

Nonlinear Schrödinger equation Joint Institute for Nuclear Research (Dubna), University 
of Cape Town (Republic of South Africa)

GAO–EV
CMATPROG

Stability of gap solitons Joint Institute for Nuclear Research (Dubna), University 
of Cape Town (Republic of South Africa)

OSCILLON
PROGON4

Oscillons in the nonlinear Faraday res-
onance model

Joint Institute for Nuclear Research (Dubna), University 
of Cape Town (Republic of South Africa)

POLARON
SLIPS2
SNIDE, SLIPH4

Calculation of characteristics of opti-
cal model of the polaron [4]

Joint Institute for Nuclear Research (Dubna), 
Institute of Mathematical Problems of Biology, RAS 
(Pushchino)

DEUTERON
MATPROG, SLIP1

Quantum-field model of the binucleon Joint Institute for Nuclear Research (Dubna), Institute 
of Mathematical Problems of Biology, RAS (Pushchino)

QUARKONIUM
SYSINT, SLIPS2

Quarkonium model on the basis of 
Schwinger–Dyson and Bethe–Sal-
peter equations [4]

Joint Institute for Nuclear Research (Dubna)

REL–SCHR
SLIPH4, SYSINT

Relativistic model of quarkonium Joint Institute for Nuclear Research (Dubna)

HEA–CRS
HEA–TOTAL

Calculation of characteristics of 
nuclear interactions in the framework 
of HEA

Joint Institute for Nuclear Research (Dubna), Institute 
of Atomic Energy (Poland), NCIAE (Egypt)

DIRAC Calculation of characteristics of elastic 
electron scattering

Joint Institute for Nuclear Research (Dubna), INPAE 
(Bulgaria)

pHe+
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The package DIRAC was developed for calculation
of cross sections of elastic electron–nucleus scattering
on the basis of the corresponding system of Dirac equa-
tions using the Message Passing Interface (MPI) tech-
nique for organization of parallel calculations.

3. NUMERICAL INVESTIGATION 
OF MATHEMATICAL MODELS

3.1. Energy Levels of Mesomolecules in Adiabatic 
Representation of the Three Body Problem

The problem of three quantum particles is a classical
problem, and it is used as the model for description of
physical processes in various fields: mesonic catalysis,
antiproton capture in a mixture of helium atoms and
hydrogen molecules, ionization of helium atoms by fast
electrons and protons, nuclear fragmentation, and so
on. Theoretical approaches to the investigation of these
processes are closely related to computer modeling.
Calculation with a required accuracy of energies and
wave functions of helium and helium-like atoms, cross
sections of the ionization reactions (e, 2e) and (e, 3e) of
the helium atom by fast electrons, and investigation of
reactions of simple proton capture p + He  H + He+

and proton capture with ionization of the helium atom
p + He  H + He++ + e are topical problems for inter-
pretation of new experiments in pulsed laser and elec-
tron spectroscopy in modern atomic physics. The
development of stable and efficient methods of numer-
ical analysis of the problem of three quantum particles
is one of the fundamental problems of mathematical
modeling of a wide class of physical processes.

This section is devoted to the description of algo-
rithms on the basis of the continuous analogue of New-
ton’s method and its generalization in the investigation
of mesonic catalysis models, and main results obtained
using these algorithms.

The basic ideas of mesonic catalysis are presented in
[49, 50]. The quantum mechanical three-body problem
with Coulomb interaction is considered as the basic
model. The parameters of such mesonic catalysis pro-
cesses as charge transfer reactions with mesonic atoms,
mesomolecule production rate, and attachment of
mesons to helium are calculated by computation of
characteristics of this system. It was noted that the
model considered includes all basic quantum mechani-
cal problems: the bound state problem, the scattering
problem, and the inverse problem of reconstruction of
nuclear interaction potentials from experimental data.

The first approach in the investigation of these prob-
lems was the adiabatic representation [51] based on
expansion of the wave function Ψ(r, R) of the original
Schrödinger equation for the three-body system

in the six-dimensional space (r, R) in a complete set of
solutions to the two-center problem

H ε–( )Ψ r R,( ) 0=

Here, R is the vector between the nuclei of mesomole-
cules a and b (with the masses Ma and Mb, respectively,
Ma ≥ Mb), r is the vector between the middle of the
interval R and the µ meson (with the mass mµ).

By applying the Kantorovich method to reduction of
the partial differential equation, the following infinite
system of ordinary integro-differential equations of the
type (1) was obtained for Γ = 0:

(70)

where M is the reduced mass of the system in meso-
atomic units and –εJv is the binding energy of the vibra-
tional state v of the system with the total angular
momentum J.

Thus, in this approach, it is necessary to implement
a numerical scheme that would simultaneously provide
an accuracy of calculation of the required characteris-
tics depending on the number of terms of expansion,
i.e., the number of equations of the system, and on the
parameters of numerical approximation.

It was shown in [52] that the Newton iterative
scheme in combination with the continuation method
with respect to particular parameters represents a prom-
ising and most optimal approach to the solution of this
problem.

The adiabatic representation includes expansion of
the wave function Ψ in the set of wave functions of the
two-center problem for the continuum and the discrete

spectra. This set and the effective potentials (R) are
found numerically. Control of the accuracy of calcula-
tions at each step is a complicated problem.

For solution of this problem, numerical construction
of the basis of the adiabatic representation of the three-
body problem is considered. Statement of the two-cen-
ter problem, algorithms of calculation of wave func-
tions of the discrete spectrum and the continuum, and
corresponding matrix elements are given in [53–56].
The concept of continuation with respect to parameters,
in particular the coupling constant and the number of
terms of expansion of the two-center wave functions in
special bases, were implemented in numerical schemes.
The asymptotic properties of wave functions and ener-
gies (terms) of the system at R  0 and R  ∞ (R is
a fixed distance between two centers) were used.
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Taking into account asymptotic expressions for the
sought wave functions of system (70), boundary condi-
tions for nonlinearly energy-dependent wave functions
of the discrete spectrum, the continuum, and the dis-
crete-continuum (in the scattering problem with closed
channels) spectra were formulated.

Numerical approximation of the problem for system
of radial equations (70) includes difference approxima-
tion of the differential operator in this equation and
application of quadrature formulas of the same order of
accuracy for the integral operator.

In the 1970s, the first obtained results were those for
the two-level approximation [54]. They were proved by
the Vesman model of resonance formation of the ddµ
mesomolecule [49, 50], and initiated investigations of
the dtµ mesomolecule more promising for mesonic
catalysis.

Solution of large systems and extrapolation of the
results with respect to the parameters of approximation
was implemented using CANM and the continuation
method.

In the final adiabatic calculation [57] using 844 equa-
tions of system (70), the following nonrelativistic val-
ues of energy levels of weakly bound rotational–oscil-
latory states J = v = 1 of ddµ and dtµ mesomolecules
were obtained: ε11(ddµ) = –1.956 eV, and ε11(dtµ) =
–0.656 eV.

3.2. New Effective Potentials of Two-Level 
Approximation and Solution of Scattering Problem 

in a Three-Body System

The adiabatic results stimulated direct variational
calculations [58], since the development of computer
power provided the possibility of carrying out complex
calculations with completely filled matrices. Later, the
more precise energy values –ε11(ddµ) = –1.97475 eV
and –ε11(dtµ) = –0.6600 eV were obtained in varia-
tional calculations [59]. In these calculations, about
2660 variational functions of the discrete spectrum were
used, and their form was chosen taking into account the
specific features of the adiabatic expansion in the spheroi-
dal coordinate system. Since the first results for the
energy of weakly bound states of mesomolecules were
obtained in the adiabatic representation, it was neces-
sary to explain the above deviations. This is also useful
for efficient application of adiabatic approximations in
the muon three-body scattering problem, since other
authors also solved it using an extended multichannel
scheme [60] without taking into account the results
obtained for bound states. The simple idea of construct-
ing effective potentials of the two-channel approxima-
tion with a correct asymptotic reproducing energy lev-
els of the discrete spectrum, which are at present
accepted as the standard levels, yields an efficient
scheme of calculation of the scattering problem and
two-level wave functions of the discrete spectrum with
the correct asymptotic behaviors [61].

The first adiabatic calculations were performed in
the two-level approximation. In 1975, the quasistation-
ary state of the dtµ molecule with the total angular
momentum J = 1 and M = 10.894 was calculated (in
these units, the reduced mass m* = 202.024me). For this

mass, the energy –ε = E = 0.68 eV (E ≡  – E1(∞)) and
the width Γ = 10.87 eV of this state were calculated.

The radial wave functions (R) for the open channel

and (R) for the closed channel in the case of elastic
scattering

(71)

are shown on the left-hand side of Fig. 3a. However,
these results were not published in [62]. In [63], the
transition of the quasistationary state of dtµ into the
weakly bound state, where the mass M increases as a
parameter, was reproduced.

The right-hand side of Fig. 3b shows the energy E
and width Γ as functions of this mass. For the mass M ~
11.01, we have the state with zero energy and zero
width, the so-called semi-bound state. The radial func-
tions for this case are shown on the left-hand side of
Fig. 4a. Function 1 of the open channel decreases
slowly compared to function 2 of the closed channel.
When the mass M increases, the system dtµ transfers
into the bound state. For the mass M ~ 11.12, the “sym-
metric” energy value E = –0.68 eV was obtained.
Therefore, it can be expected that the weakly bound
state (J = 1, v = 1) exists, and the value of the binding
energy is close to this value if we take into account all
non-adiabatic corrections. Actually, our adiabatic mul-
tichannel and variational results are close to this value.
If the function E is known, one can find for “exact”
value E = –0.66 eV a corresponding effective mass
value M ~ 11.11. Radial functions for this state are dis-
played in the right-hand side of Fig. 4b. These func-
tions, unlike variational functions [64, 65], have a correct
asymptotic behavior at R  ∞. Thus, the variational
energy level is reconstructed by the choice of the effective
mass M = M(E) in the two-level approximation.

The obtained results on modeling of the transition of
the quasistationary state into the bound state resulted in
the natural generalization of the effective mass M as the
variable operator Θ (see (1), Γ = 0, Π = 0) in the new
efficient two-level approximation [63]:

Here,  = 2M� is the momentum matrix, δM = M/M is
the correction matrix of the Jacoby M and adiabatic M

masses, (R, M) = Q(R) + (2M)–1∆Q(R), (R, M) =
VJ(R) + (2M)–1∆VJ(R) are the new effective potential
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matrices, and µ–1(R) = 1 + (2M)–1∆µ–1(R) is the inverse
effective mass matrix µ(R) depending on the distance
and satisfying the asymptotic conditions δMµ–1(R)  1
at R  ∞. In this case, the corrections ∆Q(R), ∆VJ(R),
and ∆µ–1(R) are determined by the matrix elements

Qij(R) and (R) and the eigenvalues Ej(R) of the Cou-
lomb two-center problem included in the definitions of
the effective potentials of system (70). For example, the

diagonal corrections (R) are determined in the
form of the sum

(72)

Vij
J

∆µii
1–

∆µii
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R( )– 4
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---------------------------------------
j i≠
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+ k
Qis kR( )Qsi kR( )

Ei R( ) k
2
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--------------------------------------.d∫
s 0=

∞

∑

If summation and integration in (72) is performed
with respect to the complete set of states of the discrete
spectrum and continuum of the Coulomb two-center
problem, the asymptotic relation is satisfied due to the
Thomas–Reiche–Kuhn sum rule. Since only a finite
number of terms are taken into account upon summa-
tion, the asymptotic relation is not satisfied exactly. On
the other hand, the following approximate relation is
valid: µ–1(∞) = 1 – (2M)–1 × 0.5 ≈ 0.973, for (2M)–1 ≈
0.05339 (exact value for ddµ). If only a finite number
of states of the continuum are used in (72), we have the

following value: (∞) ≈ 1 – (2M)–1 × 0.28 ≈ 0.985. This
fact is explained by the specific features of the behavior of
the matrix elements coupling the discrete spectrum and
the continuum of the two-center problem [55]. Indeed,
localization of matrix elements with increasing number l
of the angular momentum of the muon shifts towards
larger values of R [66]. Therefore, if we limit ourselves to
a finite number of terms lmax upon summation with respect
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to l in (72), the contribution of the continuum ≈44% for
l > lmax will be lost for R  ∞. As a result, we will

have |(µ–1(∞) – (∞))/µ–1(∞)| ≈ 1%. In particular, the
substitution of approximate values of effective masses
for the fixed number of basis functions lmax at the point
R0 < Rm (at the boundary of the region in which the
effective potential acts) was necessarily used for calcu-
lations of the scattering problem with closed channels
in [67]. It was shown in [63] that taking into account this
circumstance upon formulation of the boundary value
problem on the finite interval R ∈ [0, Rmax] for weakly
bound states of ddµ and dtµ explains the relative dif-
ference, on the order of 1% between the variational
and the adiabatic results. Thus, if an appropriate value
of effective mass M = M(E) is chosen, we may limit
ourselves to a finite number of terms upon summation
in (72).

Calculations of the cross section of reaction (71)
using the corresponding values of M were performed
[68] for verification of this approach. The radial wave

functions , , and , , corresponding to
the (tµ)1s + d  (tµ)1s + d and (dµ)1s + t  d + (tµ)1s

reactions, are shown in Fig. 5. The results of the calcu-

lation of the partial ( ) and total (σ11) cross sections
of the elastic reaction of the tµ atom on the deuterium
nucleus d (see Fig. 6) agree with other multichannel
calculations [69] and reproduce the known shape of the
resonance for J = 3 and E ~ 21 eV.

3.3. Structure of “Exotic” He+ System

In this section, the calculations of the structure of
energy levels of the “exotic” He+ system [70–73] are
described. The energy level diagrams are shown in Fig. 7.
Upon calculation of initial estimates of the energy of
this structure in a wide range of quantum numbers, the
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p

p

above idea of construction of new effective potentials
of the two-level approximation reproducing the spec-
trometric experimental data [74] known with good
accuracy due to the choice of fitting parameters [72]
was used. This approximation allowed us not only to
perform the required calculations efficiently, but also to
obtain first estimates of fine and hyperfine structure and
spin effects in the spectroscopy of the system [71, 73].

Experiments [74] using the effect of induced laser sat-
uration showed that metastable states of the He+ system
have the quantum numbers nmax ~ 40, lmax ~ nmax – 1, cor-
responding to orbits close to circular ones, and the main
initial population occurring at n ~ 38. However, an iso-
lated system has a number of other populated metasta-
ble states in addition to these states.

For explanation of the experiments, it was neces-
sary, first of all, to calculate the initial populations and
rotational–oscillatory states of the system. The charac-
teristics of these states can be determined if the scheme
of energy levels of the system is known.

Here, we present the calculations of energy levels of
the He+ system using an effective adiabatic represen-
tation taking into account the nonadiabatic coupling
[68, 70]. For investigation of the specific features of
metastable states of He+, different approximations
were used for the formation of effective potentials in
system (70). Here, we used standard definitions (see
[75]), and the program [76] for calculation of the states
of the discrete (D) spectrum and two types of approxi-
mations for determination of the states of the electron
continuum spectrum (C) of the Coulomb two-center
problem. The first approximation is the approximation
of the united atom (UA) on the whole half-axis R, and
the second approximation is the combination of the
approximation of the united atom at small R and the
approximation of the separated atom at large R. The
second scheme with the separated atom (see [75]) was
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implemented. It will be shown below that application of
these two approximations is sufficient for obtaining
upper and lower estimates of the three-particle energy

. The completeness of the chosen set of states corre-
sponds to the contribution of the second order of the

perturbation theory into ∆  =  – , which was
controlled by estimation of the corresponding Thomas–
Reiche–Kuhn sum rule for effective potentials with the
accuracy 10–5. In this case, 21 states of the discrete
spectrum and 42 states of the continuum define the
required effective potentials for system of radial equa-
tions (70). For the discrete spectrum, the corresponding
basis elements {i = 1, …, 21} are correlated with the set
of spherical quantum numbers (Nlm) of the united atom
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J
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JBO

{(m = 0, l = 0, N = 1), (m = 1, l = 1, N = 2), …, (m = 1,
l = 1, N = 11), (m = 0, l = 0, N = 11). For the continuum,
this sequence is complemented by the following subse-
quence: {i = 22, …, 63}: {(m = 1, l = 1, ε1), (m = 0, l =
0, ε1), …, (m = 1, l = 1, ε21), (m = 0, l = 0, ε21) with the
same values of m, l, and electron energy εk = 0.5 ,

k = 1, …, 21, taken on the uniform grid ωh(x): (x1 = 10–8,
xk + 1 = hk, k = 1, …, 20, h = 0.075, x21 = 1.5). Figure 8a

shows the sequence of effective potentials  for J = 34.
Note that the diagonal effective potentials with the
numbers 22 and 23 corresponding to states with the
zero energy (m = 1, l = 1, ε1) and (m = 0, l = 0, ε1) sep-
arate the continuum and the discrete electron spectrum
of the two-center problem.
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The eigenvalue problem for the system of 63 cou-
pled equations (21 states of the discrete spectrum and
42 states of the continuum) was solved using the New-
ton iterative scheme [58]. The sixth order finite-differ-
ence approximation of the boundary value problem
with respect to the step h = hR of the uniform grid ωh(R)
was used. This approximation was tested in [77] on an
appropriate Coulomb two-particle (α particle and anti-
proton) problem for J ~ 30, i.e., for the antiproton
helium atom in the final state after injection of the
Auger electron which has the exact solution. Calcula-
tions were performed for 28 < J < 42 on the uniform
grid ωh(R) = {R0 = 0.1; Ri = Ri – 1 + h, Rn = 1.5; i = 1, n}
with the accuracy O(h6) for the step h = 0.00625.

Figure 9 shows the differences ∆  =  – 

comprised of the values  of energies of the AD,
DSA, SA, UA approximations (70) and the VK varia-
tional calculation [78] with respect to the BO approxi-

mation  (chosen here as the initial one) depending
on the angular momentum J and the vibrational quan-
tum number v = 0, 1, 2, 3.

The DSA curves corresponding to calculations tak-
ing into account the discrete D electron spectrum only
show that the asymptotic behavior of the contribution
of the continuum C into the SA approximation is also
correct and yields the upper estimate with respect to a
more accurate curve VK representing the results of
variational calculations [78]. It is seen that the BO
approximation is satisfactory above JB = 37 and inade-
quate below this value. This is obvious, since for J < JB

the diagonal effective potentials  and  sep-
arating the discrete and continuum electron spectra of
the two-center problem are below the first SA threshold
of the separated helium atom He+.
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Another interesting point, JA = 32, corresponding to
the lower metastable state, separates the region J < JA,
where Auger processes prevail. It is seen that below this

point, the difference ∆  between the values of energy
in the DSA and BO approximations is negative. This
means that the BO approximation does not yield the
lower estimate if the contribution of the continuum cor-
responding to Auger processes is not taken into
account. This means that below JA the role of excitation
processes also increases, i.e., JA is the lower boundary
of the relatively long-lived metastable states.

Thus, we determined the region of existence of
metastable states JA < J < JB, inside which the BO
approximation is not valid, and in order to obtain the
adequate structure of levels and transitions between
them, it is necessary to take into account nonadiabatic
coupling. It can be concluded that taking into account
nonadiabatic coupling in Eqs. (70) yields the upper and

lower boundaries of the shift ∆  with respect to the
BO energy. This can be used for fitting experimental
data for construction of an appropriate effective
approximation of wave functions [79]. As an example,
let us compare the theoretical values of the wavelengths
corresponding to the UA approximation (without fit-
ting) with experiment [74]:

(3, 35)  (3, 34):

δE = 0.076288, λ = 597.255, exp. 597.259(2) nm,

(2, 35)  (2, 34):

δE = 0.086033, λ = 529.603, exp. 529.621(3) nm,

(2, 34)  (2, 33):

δE = 0.096794, λ = 470.724, exp. 470.724(2) nm.

Figure 8b shows the estimates Av 'J 'vJ of the radiation
transition rates similar to those obtained previously in
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BO approximation [80]. Estimates of energy levels and
the transition dipole momentum calculated by the
method presented here were used for construction of
theoretical models of measurement and control of pop-
ulation dynamics of metastable states by laser pulses
[81]. Note that this scheme of calculations taking into
account nonadiabatic rotational–vibrational coupling
of states with appropriate sets of electron quantum
numbers (lm) also provides the required estimates of

the radiation transition rates Av 'J 'vJ , energy levels ,

and widths  for metastable states of the He+ ion
with the electron not only in the ground, but in the
excited state as well [82, 83]. As an example, we men-
tion Rydberg states of the antiproton helium atom in the
so called Born–Oppenheimer approximation for the
terms WNlm(R) corresponding to diagonal effective

potentials (R) for J = 0 without the diagonal nona-
diabatic correction. For N = 6, l = 5, m = 0, this potential
represented in Fig. 10a has 14 almost equidistant qua-
sistationary states, whose energy levels are described
by the approximate formula Eapprox = Wmin + Cv(Wmax –

Ev
J

Γv
J

p

Uii
J

Wmin), Cv = 0.04 + 0.07v, v = 0, 1, …, 13, where Wmin =
–0.0635974 and Wmax = –0.0629946 are the local mini-
mum and local maximum of the potentials. The posi-
tions of the local minimum Rmin = 67.6 and local maxi-
mum Rmax = 47.6 are determined from the asymptotic
expansion of the Rydberg term WNlm(R) in inverse pow-
ers of R. The radial wave functions in the external well
corresponding to the minimum Ns = v + 1 = 1 and max-
imum Ns = 14 energy levels are shown in Fig. 10b.

3.4. Scattering Problem of Three Bosons 
on a Straight Line

In nuclear physics, methods of bipolar and hyper-
spherical harmonics and single-parameter surface func-
tions are widely used for correct solution of the prob-
lem of few particles with short-range pair interactions.
In these approaches, the original problem is reduced by
the Galerkin or Kantorovich method to spectral prob-
lems for systems of integro-differential or ordinary
differential equations with the hyper-radius as an
independent variable. Of special interest are prob-
lems with singular interactions, for example, centrifu-
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gal interactions, interactions of zero radius in the form
of δ functions, and problems with boundary conditions
of the third kind. The issue is that the differential for-
mulation of such problems causes difficulties. In order
to avoid them, the problem is formulated as a system of
integral equations, and in this formulation all difficul-
ties are overcome by the choice of the appropriate
parameter basis and approximation by the algebraic
problem with completely filled matrices. Therefore, it
is important to develop stable iterative schemes and
algorithms of solution of spectral problems for systems
of Fredholm integral equations.

In [84], the developed algorithms are analyzed and
tested on integrable models of three bosons on a
straight line with zero radius pair interactions, since for
these models the energy eigenvalues E of the bound and
semi-bound states, and the S matrix of the processes of
elastic scattering are known [86]. The phase shift and
its derivative as functions of the squared momentum for
the process of elastic scattering below the three-particle
threshold E ≤ 0 is shown in Fig. 1b. For this model, the
Schrödinger equation in polar coordinates ρ and θ for
the partial wave function Ψi(ρ, θ) has the form [86]

(73)

Here, Ψi is the sought wave function, E is the energy in
the center-of-mass system (in units � = m = 1, where m
is the boson mass), and hρ is the parametric Hamilto-
nian for each fixed value of ρ,

(74)

where g = 2c  is the coupling constant,  = π/6, and
c = –1 corresponds to the attraction of two particles and

1
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c = 1 to repulsion. The total wave function  is sought
in the form of Kantorovich expansion in the orthogonal
set of surface one-parameter functions Bj(ρ, θ) and

(θ) = Bj(ρ  ∞, θ) with unknown coefficients
χji(ρ),

(75)

The eigenfunctions Bj(ρ, θ) ∈ (Ω) and the
eigenvalues �j(ρ) of Hamiltonian (74) are found for

each fixed value of ρ ∈  from the boundary value
problem

(76)

By averaging Eq. (73) with respect to the basis Bj(ρ, θ),
we obtain the system of N ordinary differential equa-

tions on the half-axis ρ ∈  of the type (41) for n = 2.
The asymptotic boundary conditions with respect to the
radial variable depend on the type of physical pro-
cesses. For example, the asymptotic expression for the
radial functions χji(ρ) for ρ  ∞ above the three-par-
ticle threshold (E > 0) has the form
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(77)

where q = , 2E = k2, and Jj and Yi are the
Bessel and Neumann functions of the first kind; Wji =

 are the elements of the inverse matrix of the reac-
tion. The corresponding two-dimensional scattering
problem for Eq. (73) in the representation of one-
parameter surface functions (75) is formulated as mul-
tichannel spectral problem (2) with respect to the pair
of unknown variables z = (K, Ψ) for system of one-
dimensional integral equations (47) with matrix opera-
tors (48) and the additional Schwinger variational func-
tional (50). The convergence of expansion (75) in the
Kantorovich method and the efficiency of proposed
iterative schemes (53) were demonstrated for the model
considered below the three-particle threshold (E < 0) and
in the region above the three-particle threshold (E > 0). It
is seen from Figs. 11 and 12 that the wave functions
have maximums for attraction (c = –1) and minimums
for repulsion (c = 1) at the boundaries of six sections of
the circle Ω, where the first and second derivatives of

χ0i
as ρ( ) Y1/2 qρ( )δ0i– J1/2 qρ( )W0i+( )

χ ji
as ρ( ) J6 j 3– kρ( )δ ji Y6 j 3– kρ( )W ji+( )
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as ρ( ) J6 j 3+ kρ( )δ ji Y6 j 3+ kρ( )W ji+( )

for c 1,=

π2
/36 k

2
+

K ji
1–

the solutions have a discontinuity. The elements of the
K matrix below the three-particle threshold and in the
region above the three-particle threshold were calcu-
lated to four and three decimal places, respectively, in
the case N = 6. In [87], comparison with analytical
results was made.

Table 2 shows the comparison of the convergence
rate of Kantorovich (75) and Galerkin

(78)

expansions, as exemplified by the calculation of the
energy E(N) of the bound three-particle state for this
model (c = –1).

Slow convergence of ∆EG(N) with increasing num-
ber N of basis functions (78) is explained by the fact
that the sufficient conditions of convergence of the clas-
sical Galerkin method cannot be weakened here. More-
over, thus reduced problem for any finite N has a false
Coulomb spectrum with quantum defect and a qualita-
tively different threshold behavior of the phase shift
[85] on the half-axis. This circumstance should be
taken into account if the boundary value problem for
the system of three particles with pair interactions
allowing bound states is reduced by the Galerkin
method.
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Fig. 11. Wave functions Ψb of the ground state and Ψhb of the semibound state for 2Eb ≈ 2Eexat = –π2/9 and 2Ehb, exact = –(π/6)2
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Table 2.  Comparison of convergence rates of Kantorovich (K) (75) and Galerkin (G) (78) expansions for calculation of
energy E(N) of a bound three-particle state. The first row shows the number of equations N, the second and third rows show
the difference ∆E(N) = E(N) – Eexact of calculated E(N) and exact Eexact values of energy

N 1 2 3 4 5 6

∆EK 1.801(–4) 2.762(–6) 2.697(–7) 5.413(–8) 1.594(–8) 5.949(–9)

∆EG 9.662(–2) 4.116(–2) 2.573(–2) 1.866(–2) 1.462(–2) 1.201(–2)
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3.5. Electron Correlation in Processes 
of Ionization of the Helium Atom

Progress in the development of experimental meth-
ods of electron pulsed spectroscopy (EPS) (when at
least two fast electrons measured in coincidence are
produced in the reaction) achieved in recent years [88],
in particular, the development of cold target recoil-ion
momentum spectroscopy (COLTRIMS), allows precise
kinematically complete investigations of complex
atomic collisions [89].

Unique experiments on single and double ionization
of atoms and molecules by fast electrons, performed by
Japanese researchers in the EPS geometry, showed the
necessity of both revision of the theory of the dynami-
cal mechanisms of these processes, and the creation of
a new family of variational wave functions as close as
possible to the exact solution of the multiparticle
Schrödinger equation for an atom or a molecule [90].
For this purpose, instead of the Lippmann–Schwinger
equation with a noncompact singular kernel, resolvent-
type integral equations are formulated and investigated
for the system of few particles with Coulomb interac-
tion which have a connected kernel and in which all
necessary singularities—two-particle (cluster) singu-
larities and three-particle Coulomb singularities—are
expressed explicitly. On the basis of such an approach,
series of the perturbation theory are constructed in
which higher Born terms describing interaction mecha-
nisms are expressed by converging integrals and can be
calculated numerically. A new method of construction
of sample single-center wave functions of an atom with
correlation functions explicitly depending on the dis-
tance between the electrons which reproduce the
energy of the bound state with high accuracy and sat-
isfy additional conditions of Kato type [91, 92] has
been developed. This method is also applicable to mol-
ecules in the framework of the method of linear combi-
nation of atomic orbitals. The known two-center Cou-
lomb wave functions [93] are used in calculations for
the ion of the hydrogen molecule. The symmetry of

electron correlations of the molecular hydrogen ion and
two atomic systems with two active electrons in ioniza-
tion processes with excitation by fast electron impact
was studied in the Born approximation using the quasi-
exact solutions in the basis of two-center Coulomb
functions [94–96], which is necessary for adequate
description of second order effects in experiment [89].
It is planned to test the above approaches and methods
on the helium atom and hydrogen molecule and to use
it further for the water and carbon oxide molecules that
will be investigated by Japanese experimentalists.

For the investigation of electron correlations, a new
single-parameter basis of factorized correlated varia-
tional functions necessary for the calculation of ener-
gies and wave functions of bound states of helium-like
atoms with a predetermined accuracy was constructed
and examined in [97]. This problem, unlike the Cou-
lomb two-body problem, does not have an exact analyt-
ical solution, but is the basic three-body system for pre-
cision calculations and experiments in atomic physics.
For calculation of the energy of bound states, the varia-
tional Rayleigh–Ritz principle and an appropriate set of
parametric trial functions in the coordinate representa-
tion are used. The upper estimate of the energy of
helium atom in the ground state E = –2.903724377032 au
in the nonrelativistic approximation for the infinite
mass of the nucleus was obtained already in 1966 [98].
Recently, better estimates were obtained for the energy
of this state, E = –2.903724377034119593 au [99] and
E = –2.903724377034119597 au [100].

For explicit inclusion of the correlation of two
atomic electrons at the distance r12 from each other, and
at the distances r1 and r2 from the atomic nucleus, the
perimetric coordinates r1, r2, r12 are used in variational
calculations in [98]. In these coordinates, the radial part
of the element of the integration volume is not reduced
to a simple product of one-dimensional integrals; there-
fore, for transition to factorized correlated representa-
tion, it is necessary to use special projective coordi-
nates.
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In [97], an alternative version of optimization of
variational calculations was formulated, which pro-
vides a better stability and high accuracy of calculation
of energy values. In projective coordinates,

(79)

the three-dimensional integrals necessary for reduction
of the variational problem to the algebraic problem are
represented in the form of the product of one-dimen-
sional integrals

(80)

The main advantage of such a formulation of the
problem is achieved by the choice of the correlated rep-
resentation of the variational functions factorized with
respect to all three arguments (79),

(81)

where W2k(w) are even functions of w on the interval
[–1, 1] for the ground S state of helium-like atoms, in
which all matrix elements of the Hamiltonian of the
original problem with volume element (80) are calcu-
lated analytically. This problem, after variation of the
Rayleigh–Ritz functional, is reduced to the generalized
eigenvalue problem.

For energy calculation, the Newton iterative scheme
constructed on the basis of the variational Rayleigh–
Ritz functional with the functions (81) in the form

(82)

where Ni, , and  are the normalization constants,

 are the generalized Laguerre polynomials, 
are the Jacoby polynomials, and αi are the variational
parameters, was used. The orthonormal basis Ui with
the unique parameter α ≡ αi, whose value was determined
from the condition ∂E(α)/∂α = 0, was used in calculations.
In this approach, new upper estimates of the ground state
of the helium atom were obtained to twenty two decimal
places, E = –2.903724377034119598297 au, and new
energy estimates for helium atom isotopes were
obtained, E(He4) = –2.903304557733234397556 au,
E(He3) = –2.903167210703584120495 au, and isoelec-
tron states for Z = 3, …, 10. Note that calculations with
multiparameter correlated exponential variational func-
tions VK [101] for the ground state of the helium atom
E = –2.903724377034119598311159 au confirmed our
results.
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The corresponding program was written in Fortran,
with double precision real numbers (in order to obtain
up to thirteen decimal places accuracy in energy), and
with four-fold precision (in order to obtain up to twenty
two decimal places accuracy in energy).

The results of numerical analysis of the convergence
rate with respect to the number N in expansion (81) of
the solution in the one-parameter basis of trial func-
tions (82) were presented. Independent numerical cal-
culation was performed, and comparison was made
with the basis in projective coordinates not completely
factorized [99]

(83)

for which Kato conditions in the form of boundary con-
ditions at the point of pair electron collision are deter-
mined by the effective potential in the form of the δ
function included explicitly in the definition of the
Hamiltonian of the problem. In these coordinates, the
radial basis function cannot be represented as the prod-
uct of two radial hydrogen-like functions

(84)

i.e., cannot be reduced to the exactly factorized form
f( )g( ).

In [102, 103, 90], models of processes of ionization
of the S ground state of the helium atom by fast elec-
trons and protons in the impulse approximation were
investigated. Radial and angular electron correlations
were studied, using known variational functions pre-
sented in [90]: the single-component Hylleraas func-
tion (Hy), the twelve-parameter Bonham and Kohl func-
tion (BK), Hylleraas–Eckart–Chandrasekhar (HEC), Har-
tree–Fock (HF), configuration interaction (CI), and the
twelve-component (N = 12) single-parameter CVP
function (81) constructed in [102]. The CVP function
adequately takes into account electron correlation in the
atom and agrees with the leading exponential term (84) in
the asymptotic expansion of the formal solution of the
“exact” wave function of the target [104] (see Fig. 13).
Recently, the processes of double electron impact ion-
ization of the helium atom, single ionization with
simultaneous excitation, and double ionization were stud-
ied for a large value of the transferred momentum using
the energy- and momentum-dispersion binary (e, 2e)
spectrometer [90]. The experiment was performed for a
collision energy of 2080 eV in the symmetric non-
coplanar geometry. Thus, large momentum transfer,
9 au, i.e., a value that has never been achieved before in
investigations of double ionization of the helium atom,
was achieved. The measured cross sections of (e, 2e)
and (e, 3 – 1e) for transitions to the excited (n = 2) He+

state and to doubly ionized He2+ state were normalized
to the cross sections of transitions to the ground (n = 1)
state of He+. The corresponding numerical results for

u r>, v r</r>, w r12 r>–( )/r<,= = =

r> max r1 r2,( ), r< min r1 r2,( ),= =

αs( )exp α r1 r2+( )( )exp≡ α r> r<+( )( )exp=

=  αu 1 v+( )( ),exp

u v
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the normalized cross sections were obtained in the first
order plane-wave impulse approximation (PWIA) and
in the distorted-wave Born approximation (DWBA)
using various wave functions of the ground state of the
helium atom (with the purpose of investigation of mod-
els of the process dynamics and the structure of the
quantum correlation of two-electron states).

Figures 14a and 14b show the comparison of calcu-
lations of the (e, 2e) and (e, 3 – 1e) reaction cross sec-
tions with the variational functions Hy, HF, HEC, CPV,
CI, BK; Fig. 14c shows the comparison with correlated
exponential variational functions VK [101] taking into
account Kato conditions both in the weak and strong
sense [105], and experimental data. It is seen that the
shape of the dependence of experimental cross sections
of (e, 2e) and (e, 3 – 1e) on the transferred momentum
is well-reproduced by PWIA calculations only when
strongly correlated electron wave functions of the
helium atom are used [90].

In [103], different models of the capture reaction
were used, with ionization p + He  H + He++ + e at
very small hydrogen scattering angles θp = 0.1–0.5 mrad
and the proton energy Ep = 0.15–0.14 MeV. It was pro-
posed in [106] to use them in order to obtain new infor-
mation on the structure of the wave function of the tar-
get in the impulse approximation. An assumption was
made in [107] that upon construction of the theoretical
model, the requirement of resonance capture can be
omitted, and only the pole mechanism can be consid-
ered. However, in calculations with different variational
functions and calculations with exact functions for the
charge transfer reaction between the hydrogen atom
and fast protons, second order effects should be taken
into account for quantitative agreement with experi-
mental data [108].

3.6. Soliton Solutions to Nonlinear Schrödinger 
Equation with Dissipation and Pumping

The nonlinear Schrödinger equation describes the
amplitude of the quasi-monochromatic wave propagat-
ing in the nonlinear dispersion medium, and, as such,
has many physical applications (in various mathemati-
cal formulations) in different models of the theory of

condensed states and nonlinear optics (see, e.g., [22]
and references therein).

In the framework of these models, an important
problem is obtaining new information on the existence
of stable particle-like states (solitons) in systems under
study, on the conditions of occurrence of bifurcations
and critical modes, and on the mechanisms of occur-
rence of instabilities. In nonlinear optics, for example,
the occurrence of stable bound states of solitons is
interpreted as the stable distortion of the signal, result-
ing in the loss of information in transmission lines and
optical memory elements.

The statement of the problem represents different
versions of the complex-valued partial differential
equation with a cubic nonlinearity and terms modeling
dissipative energy losses and external energy pumping
into the system.

The following equations are considered.
The nonlinear Schrödinger equation with the para-

metric pumping and dissipation

(85)

Hereinafter, Ψ is the amplitude of the quasi-harmonic
stationary wave, h is the pumping amplitude, γ is the
dissipation coefficient, and the bar above Ψ means
complex conjugation. This equation is used in the
description of magnets in a rotating magnetic field, in
the theory of Josephson contacts, in hydrodynamics
models, and in the analysis of microwave propagation
in plasmas.

In the case of direct (external) pumping, the
Schrödinger equation has the form

(86)

This equation describes the effect of phase amplifi-
cation in optical fibers, convection in binary mixtures
and liquid crystals, and magnetization waves in ferro-
magnetic materials under the action of a combination of
a static and microwave fields, as well as having a num-
ber of other applications.

iΨt Ψxx 2 Ψ 2Ψ Ψ–+ + hΨ iγΨ,–=

Ψ x = ∞±( ) 0.=

iΨt Ψxx 2 Ψ 2Ψ Ψ–+ + h– iγΨ,–=

Ψx x = ∞±( ) 0.=
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Fig. 13. Partial components Φl of the factorized twelve-component correlated variational function CPV (81) for electron angular
momentum l = 0, 1, 2.



PHYSICS OF PARTICLES AND NUCLEI      Vol. 38      No. 1      2007

METHODS OF COMPUTATIONAL PHYSICS 95

Finally, for the case of nonlinearity of the defocus-
ing type, the following equation is considered:

(87)

which, in particular, models magnetization waves in
easy-axis ferromagnetic materials with additional weak
anisotropy. In gas dynamics, this equation is known as
the equation of the amplitude of oscillations of the sur-
face of a liquid in a vertically vibrating channel with
large width and small depth. In nonlinear optics,
Eq. (87) was obtained in the model of the optical para-
metric oscillator in a quadratic medium in the limit of
large second harmonic offset.

Numerical investigation of each of these three equa-
tions included: (1) continuation of stationary solutions
with respect to a parameter; (2) numerical solution of
the linearized eigenvalue problem for investigation of
the stability properties of stationary solutions (for the
above equations, this problem represents the system of
two second order differential equations in complex
variables); and finally, (3) numerical solution of the
original partial differential problem for determination
of the values of parameters.

Numerical continuation of stationary solutions with
respect to a parameter was performed using the pro-

iΨt
1
2
---Ψxx – Ψ 2Ψ Ψ+ + hΨ iγΨ,–=

Ψx x = ∞±( ) 0,=

gram CONTIN-NLIN. In most cases, numerical experi-
ments were performed on the interval x = [–100, 100]
with a step of the finite-difference approximation of
0.005. The linearized eigenvalue problem was solved
using the standard program in the EISPACK library.12

Eigenvalues were refined by using the Newton itera-
tions, if necessary. The original partial differential
problem was solved numerically on the basis of the
two-step conditionally stable algorithm with a Fourier
approximation in the spatial variable [109, 110] known
as the pseudo-spectral method.

The goal of the investigation was the search for new
classes of localized solutions in the form of multisoli-
ton complexes and moving solitons, the study of the
boundaries of the region of existence of localized
states, the study of bifurcation points, and the numeri-
cal analysis of stability of soliton solutions.

Two single-soliton solutions are known in the liter-
ature for each of Eqs. (85) and (86): for Eq. (85) they
are known explicitly, and for Eq. (86) they are found
numerically [111].

As regards multisoliton solutions to Eq. (85),
although the bound states of solitons were observed in
experiments on Faraday resonance on the surface of a
liquid [112], theoretical analysis [113, 114] did not

12http://www.netlib.org/eispack.
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reveal the existence of bound states even in the case of
strong overlapping of solitons.

Multisoliton solutions of Eq. (85) were first found
numerically and studied in [115]. In this work, an ana-
lytical approximation of two-soliton solutions was con-
structed on the basis of the variational approach.

Two- and three-soliton complexes of Eq. (86) were
first discovered in [116]. Unlike in Eq. (85), in (86)
solitons can be coupled at different distances (“quan-
tum orbits”), which is explained by their oscillating
asymptotic behavior [117].

Numerical investigation of multisoliton complexes
of Eq. (86) as functions of parameters was performed in
[36]; in particular, stable two-soliton solutions were
found for the first time. The region of existence of soli-
tons of Eq. (86) was studied in [118].

Figure 15 shows stable two-soliton complexes first
discovered for Eqs. (85) and (86).

In [119], solitons of Eq. (85), where ψ(ξ)  0 at
|ξ |  ∞, moving with constant velocity, were investi-
gated. Such solutions satisfy the ordinary differential
equation

(88)

in which V plays the role of the additional parameter.
The stability of moving solitons to small perturba-

tions of the amplitude

(89)

is studied by numerical solution of the linearized eigen-
value problem, which in this case has the form

(90)

(91)

The stability criterion is the absence of eigenvalues
λ with a positive real part.

In the case of the zero dissipation, numerical inves-
tigation of moving solitons is performed by the same
scheme which is used for immobile solitons, using the
package CONTIN-NLIN.

The case of nonzero velocity and nonzero dissipa-
tion is more complicated. For this case, necessary and
sufficient conditions for bifurcation points, where
branches of moving dissipative solitons originate,
were formulated in [120]. These conditions were ver-
ified numerically. Soliton solutions were continued
numerically from the found bifurcation points on the
parameter plane (γ, V) and (h, V) using the package

CONTIN-NLIN-MOD. It was shown that in the pres-
ence of parametric pumping, two or more dissipative
solitons can form a complex moving with the zero
momentum but nonzero velocity. Some results of
numerical continuation are shown in Fig. 16.

Localized states of Eq. (87) are called “dark soli-
tons” in models of nonlinear optics and “domain walls”
in models of the theory of ferromagnetism. As in the
previous cases, localized solutions to this equation of a
kink-like form—“Néel wall” and “Bloch wall”—are
known explicitly in literature.

One more known type of localized solutions to the
equation with the defocusing nonlinearity is “bubbles.”
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In [121], the inverse spectral problem generated by
the family of analytic “bubble solitons” of the nonlinear
Schrödinger equation is studied. A particular solution
from this family is defined by two parameters A and V.
The first parameter characterizes the medium in which
the soliton moves, and the second parameter is the
velocity of the soliton. The soliton is stable if its veloc-
ity is larger than some critical value depending on the
parameters of the medium. The mathematical formula-
tion of the problem is reduced to determination of the
velocity of the soliton for which the eigenvalue of the
corresponding linearized eigenvalue problem vanishes.
The numerical investigation was performed on the basis of
the two-dimensional approach described in Section 2.4.2.
It was shown that the critical velocity of the soliton
increases monotonically with increasing parameter of
the medium.

In [122, 123], new stable dissipative multisoliton
complexes of Eq. (87) and, for the case of zero dissipa-
tion, branches of stable moving dark solitons were
obtained. The effect of “multistability,” i.e., the co-
existence of different types of stable states for the same
sets of parameters was discovered. An example of the
stable complex of two dark solitons is given in Fig. 17a.
Figure 17b demonstrates the region of existence and
stability of such solutions on the parameter plane (h, γ).

In [124, 125], the lattice model of the nonlinear
Faraday resonance is considered. The nonlinear equa-
tion with parametric pumping and dissipation for the
amplitude of oscillating objects (oscillons) experimen-
tally observed on the surface of a liquid and granulated
materials was formulated in the framework of this
model. The equation has the form

(92)

Here, γ and h are the dissipation coefficient and the
pumping amplitude, respectively (in the one-dimen-
sional case we obtain (85)). Radially symmetric local-

iψt ∇2ψ 2 ψ 2ψ ψ–+ + hψ iγψ.–=

ized solutions to this equation in the two-dimensional
and three-dimensional cases are considered. Two lin-
earized eigenvalue problems were formulated for inves-
tigation of the stability of stationary oscillons to radial
and azimuthal amplitude perturbations. Numerical
investigation was performed using the package OSCIL-
LON. As a result of numerical analysis, the parameter
range in which two-dimensional oscillons are stable
was found, and the corresponding diagram was con-
structed in [124]. The numerical results agree with theo-
retical investigations in the framework of the variational
approach and with the results of direct computer modeling
of the original partial differential equation (92) [125].

3.7. Optical Fiber Model 
with Periodic Refractive Index

The propagation of a traveling wave in optical fibers
with periodic refractive index is described by the sys-
tem of amplitude equations

(93)

Here, x is the coordinate along the lattice, t is time, and
ρ is the parameter taking values from zero to infinity in
different models. (Note that system (93) has many other
applications in different models of elementary particle
physics and physics of condensed states.)

Stationary soliton solutions to this systems (gap
solitons) with the boundary conditions u(x = ±∞) =
v(x = ±∞) = 0 have an explicit form and depend on the
velocity V and angle θ (0 < θ < π) parameterizing the
soliton frequency in the spectral range Ω = cosθ.

The problem of stability of localized solutions to
system (93) has been open for a long time, although
many publications from the late 1970s, were devoted to
it. Since the mid-1990s, interest in this problem has
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increased due to the development of new technologies
of information transfer and the investigation of corre-
sponding nonlinear-optical models [126, 127]. An
answer to this question was obtained in [128, 129].

In order to investigate the stability of slit solitons by
linearization of the original system (93), the following
eigenvalue problem for the system of four first-order
differential equations in complex variables is formu-
lated:

(94)

(95)

Here, σ0, σ1, and σ3 are the Pauli matrices. The indica-
tion of stability is the absence of eigenvalues with a
positive imaginary part.

The following methods were used for numerical
investigation:
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(1) Expansion of solutions in the Fourier basis and
solution of the obtained eigenvalue problem using stan-
dard programs from the EISPACK library.

(2) Refining and continuation with respect to a
parameter of the eigenvalues most interesting from the
point of view of stability. For this purpose, the program
package GAP-EV was developed. In this package, the
Newton iterative scheme using the finite-difference
fourth-order Numerov approximation is implemented
in the framework of continuation with respect to a
parameter.

(3) Numerical solution of the nonlinear algebraic
system formulated in the framework of the perturbation
theory for analysis of oscillatory instability in a partic-
ular parameter range, using Newton iterations.

The results of numerical continuation of eigenvalues
of problem (94) with respect to the parameter θ for
fixed ρ and V are shown in Fig. 18.

As a result of numerical investigation, the diagram
of regions of instability in the whole parameter range
was constructed (Fig. 19). The results obtained in [128,
129] agree with theoretical analysis and results of com-
puter modeling for separate values of parameters in
[130, 131]. Further, these results were corroborated in
theoretical and numerical investigations of other
authors (see, e.g., [132]).

3.8. Nuclear Interactions 
in High-Energy Approximation

The motion of an incident nucleus with the kinetic
energy E in the field of the complex nucleus–nucleus
potential U is described by the Schrödinger wave equa-
tion

(96)
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Here, m is the reduced mass, Ψ(r) is the wave function
of relative motion of the nuclei, and � is the Planck con-
stant. In the general case, the potential U depends on Ψ,
and the problem is essentially nonlinear.

One of the important problems in the investigation
of Eq. (96) is the problem of construction of the poten-
tial U. Knowledge of the potential as the basic charac-
teristic of nuclear interaction is necessary for the calcu-
lation of differential cross sections of elastic and inelas-
tic scattering, and for the modeling of reactions of
nucleon transfer. Of special importance is the method
of construction of the imaginary part of the potential,
since, to date, the basic theoretical works have been
devoted to microscopic calculations of the real part of
the functional, whereas its imaginary part is tradition-
ally reconstructed by fitting free parameters.

In order to provide the possibility of predictive cal-
culations on the basis of numerical analysis of the avail-
able experimental data, generalized dependences of the
parameters of the potentials on energy and the physical
parameters defining the structure of colliding nuclei are

constructed. Such calculations were performed, for
example, in [133].

Another known approach is based on construction
of the dependence of nucleus–nucleus potential on the
distribution function of the density of nuclear matter in
nuclei. Information on this distribution function can be
obtained from independent experiments. For construc-
tion of the real part of potentials, the double folding
model (DF) is most widely used (see, [134] and refer-
ences therein). In the framework of this approach, a
nonlinear problem for an integral equation is formu-
lated and solved by iterative methods for construction
of the potential.

As regards the construction of the imaginary part of
the potential, one of the most efficient approaches is
based on application of the high-energy approximation
[135–137].

In the framework of the high-energy approach
(HEA), when E � |U | and the motion of the incident
nucleus is close to free motion, the solution Ψ is
approximated using functions of a special form called
eikonal functions. This provides analytical expressions
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for the differential cross section of elastic nucleus–
nucleus scattering and for the total reaction cross sec-
tion [138, 139],

(97)

where the elastic scattering amplitude f(q) and phase
Φ(b) have the form

(98)

Here, q = 2ksin(θ/2) is the transferred momentum, θ is
the scattering angle, k is the momentum, v is the veloc-
ity of the incident nucleus, J0 is the cylindrical Bessel
function, and U(r) = Uc(r) + UN(r) is the potential
including the Coulomb Uc(r) and the nuclear UN(r) =
V(r) + iW(r) components. Thus, calculation of the basic
physical characteristics is reduced either to numerical
solution of Eq. (96), or to numerical or analytic integra-
tion of expressions (98), whose particular form depends
on the way of construction of the potential U.

The model on the basis of the high-energy approxi-
mation using approximate analytical expressions reduc-
ing the dimension of the original integrals and funda-
mentally simplifying the calculations, is implemented in
the program package HEA-CRS and HEA-TOTAL. The
numerical investigation proved the applicability of this
approach to the modeling of nucleus–nucleus interac-
tions at energies from 10 to 100 MeV per nucleon of the
incident nucleus. At present, the program package is
used for the processing of experiments performed at the
Laboratory of Nuclear Reactions of the Joint Institute
for Nuclear Research [140].

In [141], an approximate analytic method was pro-
posed, and on the basis of this method an explicit
expression for the phase Φ(b) was obtained for a phe-
nomenological potential that is typical in nuclear phys-
ics; it is in the symmetrized Woods–Saxon form

(99)

with given parameters R and a. By replacement of typ-
ical integrals with specially fitted parametric expres-
sions, explicit expressions for the differential cross sec-
tion of elastic scattering taking into account the Cou-
lomb distortion of the trajectory were obtained. It was
shown that the numerical results obtained in this
approach agree, in the domain of applicability of HEA,
with calculations on the basis of numerical integration
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of the original equation (96), and with experimental
results in a wide range of atomic masses and energies.

In [142, 143], methods of calculation of total cross
sections of reactions were developed. In the framework
of the microscopic approach, the imaginary part of the
nuclear phase ΦN(b) in formula (97) is determined as
follows:

(100)

Here, (q) (i = p, t) are the Fourier images of the point

densities of colliding nuclei, fN(q) = exp(–q2 /6), r0 =

 fm, and  is the known value [144] of iso-
topically averaged cross section of nucleon–nucleon
interaction. It was shown that using the realistic density
of nuclear matter distribution in the form of the symme-
trized Fermi function

(101)

with the parameters a and R known from independent
experiments, the developed approach provides ade-
quate description of experimental data on total cross
sections and does not require the introduction of free
parameters (see Fig. 20; experimental data were taken
from [145]). In this case, the corresponding Fourier
images can be obtained in an explicit form.

Figure 21 shows total cross sections of the reactions
of light 6, 8He nuclei with the halo neutrons on the stable
28Si nucleus calculated in the framework of the above
approach using density distribution functions (solid
line) from [146] and (dashed line) from [147].

The imaginary part of the potential W(r) in the
framework of the microscopic approach [148] is recon-
structed from phase (100) and has the form

(102)

The real part of the potential can be determined by
the formula V = , where  is the known value
[149] of the isotopically averaged ratio of the real and
imaginary parts of the NN forward scattering ampli-
tude. The thus-constructed microscopic complex
potential does not contain free parameters, and calcula-
tions show that it satisfactorily describes experimental
data on the differential cross sections of elastic scatter-
ing of heavy ions (Fig. 22; experimental data were
taken from [150]) and total cross sections of reactions.

Numerical analysis [151, 152] showed the effi-
ciency of combination of the DF and HEA methods for
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construction of microscopic nucleus–nucleus poten-
tials. In the recent work [153], this approach was gen-
eralized to the case of inelastic nuclear scattering.

In [154–156], various theoretical models of nuclear
matter density were analyzed numerically and com-
pared by investigation of form factors of the 12C
nucleus. Form factors calculated in the framework of
the microscopic approach on the basis of HEA were
compared both with experimental data and with calcu-
lations in the framework of other approaches—a less
refined, but widely used Born approximation and
numerical solution of the system of Dirac equations.

3.9. Bifurcation of Static Solutions 
in Models of Josephson Contacts

On the basis of the modified Ginzburg–Landau
equation (GL), the construction of dependences of the
form of supercurrent–phase difference for Josephson con-
tacts were considered in [157, 158]. Let z ∈ (–L, –d) ∪
(d, L) and z ∈ (–d, d), 0 < d � L < ∞ be the regions
occupied by superconductors and the barrier layer of
the contact, respectively. Then the basic system of
equations in the amplitude R(z)–phase ϕ(z) variables of
the order parameter has the form
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Fig. 20. Comparison of calculated and experimental total cross sections. Nuclear density distribution functions are determined from
the data analysis of experiments on eA scattering.

6He + 28Si

(a)

2500

2000

1500

1000

500
605040302010

σtot, mb

E/A, MeV
605040302010

(b)

8He + 28Si

Fig. 21. Comparison of total cross sections of 6, 8He + 28Si reactions calculated in the framework of HEA with experimental data.
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(103a)

(103b)

(103c)
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where the potential of the Sturm–Liouville problem
(SLP) (103b), (103c) is defined by the formula q(z, p) =
a(z) + 3b(z)R2(z, p) – 3m(z)J2/R4(z, p). It is assumed
that the physical properties of separate layers of the
contact can differ essentially, which is modeled by the
piecewise-constant functions a(z), b(z), and m(z).

If R(z) is some solution to (103a), the corresponding
current J is calculated using the first integral J =
R2ϕ'/m(z).

It was shown that for fixed values of the parameters,
the problem has several different solutions with differ-
ent energies. The curves of the form current J–phase
difference ∆ϕ corresponding to each solution were con-
structed. Particular examples are shown in Fig. 23 (the
parameters g1, g2, and g3 are determined in terms of GL
coefficients). Each curve consists of three branches cor-
responding (BB in Fig. 23) to the stable and unstable
states of the amplitude of the order parameter R(z). The
critical current in the Josephson contact corresponds to
the bifurcation points B of the solutions (common
points of branches). Examples of bifurcation depen-
dences coupling the critical current and the phenome-
nological coefficients of the GL equation were con-
structed.

The ideal Josephson dependence J = jcsin∆ϕ, where
jc is the maximum (critical) Josephson current, is satis-
fied for g2 = 0, g3 = 0, and large values of g1. For inves-
tigation of the influence of GL coefficients on current–
phase dependences, numerical Fourier expansion is
used. It was shown that in the case of unequal effective
masses of carriers in the contact layers (m(z) � 1), the
amplitude of the second harmonic j2 cannot be
neglected, as compared to the main amplitude j1 (see
Fig. 24). Physically, this result points to the region of
applicability of the double sine–Gordon equation for
description of the processes in LJJ.
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Fig. 22. Comparison of differential cross sections for elastic scattering calculated in the framework of HEA with experimental data.
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In [159, 160], boundary value problems and gener-
ated SLP for static distributions of magnetic flux ϕ(x)
in LJJ with inhomogeneities depending on the contact
geometry were formulated. In particular, for the contact
with the length 2L in the case of the overlap geometry,
system of equations (62)–(64) takes the following form
in dimensionless variables:

(104a)

(104b)

(104c)

Here, 0 ≤ jC(x) ≤ 1 is the continuous function modeling
the distribution of Josephson current amplitude, and γ
and he denote the bias current and the boundary mag-
netic field, respectively. The potential in Eq. (104b) is
determined by the formula q(x, p) = jC(x, p)cosϕ(x, p),
where p is the set of the model parameters. Since
|q(x, p)| ≤ 1, Sturm–Liouville problem (104b), (104c)
has a discrete nondegenerate spectrum bounded from
above: –1 ≤ λmin(p) ≡ λ0(p) < λ1(p) < … < λn(p) < ….

The simplest model of a micro-inhomogeneity in
the form of a narrow rectangular bump (well) in the bar-
rier layer is characterized by the width ∆ < 2L, center ζ,
and the fraction of the Josephson current κ through the
inhomogeneity. In the presence of an inhomogeneity, the
following local change of the Josephson current takes
place: jC(x) = 1 + κ for x ∈ ∆, and jC(x) = 1 for x ∉ ∆. The
choice κ = 0 means that the thickness of the barrier
layer of the contact is constant (homogeneous contact).
For κ ∈ [–1, 0), the inhomogeneity is a microresistor,
and for κ > 0 it is a shunt (a micro-short-circuit).

Newton schemes of calculation of bifurcation curves
of the form current–boundary magnetic field for LJJ

(105)

for the given current γ or given boundary magnetic field
he were proposed in [161, 162]. The generalizations to

–ϕ'' jC x( ) ϕsin γ+ + 0, ϕ' L±( ) he,= =

–ψ'' q x p,( )ψ+ λψ, ψ' L±( ) 0,= =

ψ2
x( ) xd

0

L

∫ 1– 0.=

λmin γ he,( ) 0=

the case of two-layered Josephson contacts were con-
sidered in [163].

The hierarchy of magnetic flux vortices in LJJ was
studied. It was shown that in LJJ of a finite length with
a resistive inhomogeneity (RJJ) in the center ζ = 0, the
following sets of vortices can be stable.

(1) Pure arrays of vortices, which are the result of
nonlinear interaction of fluxons or antifluxons only
(further, the notation Φn, n = ±1, ±2, …, is used). Par-
ticular examples of solutions of the form Φ1, Φ3, and Φ5

in the vicinity of the bifurcation point (λ = 10–4) are
shown in Fig. 25. The curve M of stable Meissner dis-
tribution (the solution ϕ(x) = 0 for he = 0 and γ = 0) is
given for comparison.

(2) Mixed arrays of vortices which represent nonlin-
ear formations from fluxons and antifluxons, for exam-
ple, ΦnΦm, n, m ≠ 0. Such vortices exist in pairs corre-
sponding to transmutation of the indices n and m. Fig-
ure 26 shows the arrays Φ1Φ–1 and Φ2Φ–2 for
illustration.

The magnetic flux distribution in LJJ is character-
ized by the functional of the average magnetic flux
through the contact,

(106)

defined on the set of solutions to problem (104a). Geo-
metrically, (106) is proportional to the ratio of the vor-
tex area and the contact length. For an “infinite” LJJ,
expression (106) should be interpreted in the sense of
the limiting transition at L  ∞.

Since any solution ϕ(x) to problem (104a) is defined
to 2kπ, k = 0, ±1, ±2, …, the value of N[ϕ] is defined to
2k as well. The uncertainty in the choice of the integer k
should be used for correlation of the number N[ϕ] with the
value and sign (direction of the magnetic field) of the total
magnetic flux of the distribution ∆ϕ = ϕ(L) – ϕ(–L).
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In the symmetric case, jC(x) – jC(–x), for any mag-
netic flux distribution ϕ(x) the value of N[ϕ] is indepen-
dent of the magnetic field he in all linear static LJJ mod-
els (overlap and in-line) in the absence of an additional
current due to, for example, variable geometry of the
contact [164–167] in the plane of the barrier layer. In
particular, for the current γ = 0, for a stable M solution
and pure n-fluxon (antifluxon) distributions Φn, we
have N[M] = 0 and N[Φn] = n. For mixed arrays of vor-
tices, the sum of values of (106) on the solutions of the
pair is an integer, N[ΦnΦm] + N[ΦmΦn] = 2(|n | + |m |). If
γ ≠ 0, the number N[ϕ] is not an integer even for pure
arrays of vortices, due to the shift of the distribution by
the current. Let Φ(γ) be the solution to (104a) (pure or
mixed) for the fixed he and γ > 0, and let Φ(–γ) be the
symmetric solution with the same total flux for the cur-
rent –γ, i.e., ∆Φ(γ) = ∆Φ(–γ). Then the sum N[Φ(γ)] +
N[Φ(–γ)] is also an integer.

The above properties allow one to interpret func-
tional (106) as the number of vortices (quanta of mag-
netic flux) in the solution ϕ(x) [39].

For the time-dependent solutions φ(t, x) of the cor-
responding nonstationary problem of the form (61), the
function N[φ](t) and the mean voltage at the contact

(t) are obviously related as follows:

Thus, the fact that the number of fluxons at the con-
tact is independent of time t (i.e., Nt = 0) is equivalent
to the zero mean voltage at the contact.

Figure 27 shows the critical dependences λmin(he) of
the minimum eigenvalue of the Sturm–Liouville prob-
lem (104b), (104c) on the boundary magnetic field for
some stable magnetic flux distributions in LJJ with an
inhomogeneity in the center. Due to the symmetry with
respect to the vertical axis, only one half of the whole
picture he ≥ 0 is shown. The points of intersection of the

V

V t( ) 1
2L
------ φt t x,( ) xd

L–

L

∫≡ πNt φ[ ] t( ).=

curves with the horizontal axis correspond to the bifur-
cation points of the solutions. In particular, the point B0
is the bifurcation point of the M solution and B1 denote
the bifurcation points of the fluxon Φ1 and antifluxon
Φ–1. The points B3 and B5 in Fig. 27 correspond to pure
arrays of three (Φ3) and five (Φ5) fluxons in LJJ, and the
points B2 to mixed fluxon–antifluxon states of the form
Φ–1Φ1 and Φ1Φ–1. Similarly, the points B4 correspond
to bifurcations of the mixed vortices Φ2Φ–2 and Φ–2Φ2.

Bifurcation curves (105) for basic vortices of the
magnetic flux in RJJ contact have been constructed (see
Fig. 28). A new physical effect due to the presence of
resistive inhomogeneity was predicted numerically
[160]: in the zero magnetic field (i.e., for he = 0), the
curves of the dependence γc(he) corresponding to the
basic fluxon Φ1 and antifluxon Φ–1 in LJJ intersect,
forming the fluxon–antifluxon cross (the point CO in
Fig. 28). The critical curves for the basic fluxon Φ1 and
antifluxon Φ–1 in the homogeneous LJJ are shown in
Fig. 28 by dot–dashed lines for comparison. This effect
was experimentally verified in [29].

The slope (he) of critical curves at the points of
intersection is essentially defined by the geometric
parameters of the contact—with increasing length of LJJ,
the slope drops rapidly, and the point of intersection CO

shifts upwards. This effect is demonstrated in Fig. 28
by (E) the calculated critical curve for the basic fluxon
Φ1, which corresponds to the length 2L = 15 of the sam-
ple in experiment [29].

The critical curve for LJJ “on the whole” for the
given geometric parameters is constructed as an enve-
lope of bifurcation curves of separate stable solutions.
In other words, critical curves consist of pieces of bifur-
cation curves corresponding to different distributions with
the maximum critical current γ for the given field he.
A particular example of modeling of the critical curve
of RJJ contact with the overlap geometry is shown in
Fig. 29. It is clearly seen that local extrema decrease
nonmonotonically with increasing field |he |, which is
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typical of experimental critical curves of contacts with
resistive inhomogeneities [30]. This important feature
is due to attraction (pinning) of static magnetic flux dis-
tributions by the inhomogeneity. Due to pinning, the
contribution into the critical curve of the contact can be
made by bifurcation curves of weakly stable mixed dis-
tributions. In this case, the peaks of critical current for
the array of vortices of a particular type are, as a rule,
higher than for the mixed array. For example, in Fig. 29
the peaks of critical current of the curves Φ1Φ–1, Φ2Φ–2,
and Φ3Φ–3 are lower than the peaks of critical currents
of adjacent pure vortices Φ1, Φ3, and Φ5.

In [164, 165], critical curves in LJJ, whose width
W(x) in the plane of the barrier layer changes exponen-
tially (EJJ), W(x) = W0e–σx, x ∈ [0, L], 0 ≤ σ � 1, were
modeled numerically. The nonlinear boundary value
problem for the static distributions ϕ(x) in the in-line
EJJ and the corresponding SLP in this case have the
form

(107a)

(107b)

(107c)

(107d)

(107e)

Figure 31 shows the numerically obtained bifurca-
tion curves of the form (105) for EJJ contact with in-
line geometry. Solid lines correspond to the critical cur-
rent γ ≥ 0, dashed lines to γ < 0. Points correspond to
experimental data from [166]. Note that results of
numerical and physical experiments agree well both
qualitatively and quantitatively. Note also that EJJ crit-
ical curves are comprised of pieces of bifurcation
curves for the Meissner distribution (M) and pure n-
fluxon vortices Φn only, which is a result of the absence
of stable mixed distributions at such contacts due to an
additional “geometric” current σ(ϕ' – he). This, in turn,
provides monotonic decrease of the extrema of the crit-
ical curve of EJJ contact. The absence of weakly stable
mixed distributions in EJJ contacts possibly explains
the better radiation spectrum of such LJJ as compared
to rectangular ones [166].

In [167], using the transformation of the indepen-
dent variable x = ln(1 + σξ)/σ, Eq. (107a) is reduced to
the self-conjugate form

(108)

From the formal point of view, Eq. (108) describes
the magnetic flux distribution ϕ(ξ) in the homogeneous
LJJ rectangle with the length l = (eσL – 1)/σ with the
variable Josephson current amplitude jC(ξ) = (1 + σξ)–2 in
the presence of the additional distributed current g(ξ) =
–σhe/(1 + aξ)–2. Physically, the variable amplitude can

–ϕ'' σ ϕ' he–( ) ϕsin+ + 0,=

ϕ' 0( ) he Lγ , ϕ' L( )– he,= =

–ψ'' σψ' ϕ x( )ψcos+ + λψ,=

ψ' 0( ) 0, ψ' l( ) 0,= =

ψ2
x( ) xd

0

L

∫ 1.=

–ϕ'' jC ξ( ) ϕsin g ξ( )+ + 0.=

be identified with the variable thickness of the barrier
layer along the contact. In this case, the amplitude is
maximal (the thickness of the barrier layer is minimal)
at the left edge of the contact, and minimal (the thick-
ness of the layer is maximal) at the right edge of the
contact. Such resistive inhomogeneity is an attractor
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[25] for magnetic flux distributions in the contact,
attracting the latter to the right edge. Thus, by the above
transformation, the correlation between LJJ classes of
variable thickness and quasi-one-dimensional rectan-
gular contacts with variable thickness of the barrier
layer is established.

Figure 32 shows the comparison of critical curves
for EJJ and RJJ contacts with the inhomogeneity in the
vicinity of the right edge. It is seen clearly that the pres-
ence of resistive inhomogeneity at the right edge of the
rectangular LJJ does not change the critical “current–
magnetic field” curves qualitatively, as compared to the
case of the EJJ model. A simple generalization shows
that a similar conclusion can be made for the contact
with a bridge inhomogeneity at the left edge. Thus, the
results of numerical experiments demonstrate that it is
possible to replace an inhomogeneity distributed along
the contact with a localized inhomogeneity, which may
have some advantages from the technical point of view.

In [168, 169], the problem of calculation of the min-
imum LJJ length providing the preservation of stability
of a given magnetic flux distribution was considered.
By changing the variables, the original problem of the
form (104) with unknown boundaries was reduced to
the nonlinear eigenvalue problem with respect to the
pair (ϕ, L), where the half-length of the contact L is the
spectral parameter.

It was shown numerically that stable (unstable)
static magnetic flux distributions in LJJ correspond to
the minimum contact length for which the distribution
preserves its stability (instability). In particular, for the
current γ = 0 and the external magnetic field he = 0, the
calculated minimum length of the RJJ contact with the
inhomogeneity in the center for the basic fluxon Φ1 is
2L � 4.24, which agrees with the remark in [170] (see
Fig. 30). The influence of the model parameters on the
minimum length of vortices in LJJ was studied in detail
(see also [164]).

3.10. Critical Modes in Astrophysical Models

The object of numerical investigation in [171–175]
is models of scalar–tensor gravity theories with a mas-
sive dilaton; these models are considered to be natural
and promising generalizations of the theory of general
relativity (GR). In these theories, gravity is described
not only by the tensor field of the space–time metrics,
but also by the scalar dilaton field.

In [171], the influence of the dilaton with a nonzero
mass on the stability of the equilibrium configurations
of a boson star was studied. The mathematical model
was reduced to the nonlinear eigenvalue problem in
which the frequency of the boson field Ω is the spectral
parameter
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Here, ν(r) is a metric function, ϕ(r) is the dilaton field,
V(ϕ) is an input potential, γ is the dilaton mass, σ(r) is
the boson field, Ω is the boson field frequency, W(σ2) is
the given function (the boson field potential), and α is
the parameter. The components of the energy–momen-

tum tensor , its spur �, and eλ depend in a complex
way on the coordinate r ∈ (0, ∞), unknown functions
ν(r), ϕ(r), σ(r), unknown parameter Ω, and given
potentials and parameters. The following boundary
conditions are imposed on the unknown functions:

(110)

The additional “normalization” condition σ(0) = σc,
where the parameter σc is the density of boson matter in
the center of the star, is set for closing the problem.

It was shown that boson stars with a massive dilaton
can exist in a wide range of dilaton masses γ. However,
for sufficiently large values of γ, the configuration of
the star from GR is reconstructed. The mass of the dila-
ton star is always smaller than the mass in GR. Figure 34
shows an example of the bifurcation of solutions if the
rest mass of the star varies.

In [171–173], models of static boson–fermion
spherically symmetric stars were numerically investi-
gated on the basis of scalar–tensor gravity theories tak-
ing into account a massive dilaton.

The basic variables of the model are the metric func-
tions λ(r) and ν(x), the dilaton field ϕ(x), and the densi-
ties of the boson σ(x) and the fermion µ(x) matter satis-
fying the system of equations

(111a)

�ν
µ

ν' 0( ) 0, ϕ' 0( ) 0, σ' 0( ) 0,= = =

ν ∞( ) 0, ϕ ∞( ) 0, σ ∞( ) 0.= = =

dλ
dr
------ F1

1 λ( )exp–
r

--------------------------≡=

+ r λ( ) T0
0

T0
0 1

2
---γ 2

V ϕ( )+ +exp
dϕ
dr
------⎝ ⎠

⎛ ⎞
2

+
⎩ ⎭
⎨ ⎬
⎧ ⎫

,
F B

(111b)

(111c)

(111d)

(111e)

The independent variable is r ∈ [0, Rs] ∪ [Rs, ∞),
where Rs is the unknown radius of the fermion part of
the star. The parameter Ω is the unknown frequency of

oscillations of the boson matter. The quantities  and

, n = 0, 1, are the diagonal components of the

energy–momentum tensors, and  and  are the corre-
sponding traces. The quantities α(ϕ), A(ϕ), V(ϕ), W(σ),
f(µ), and g(µ) are the given functions, and γ is the dila-
ton mass.

The boundary conditions are set as follows:

(112a)

dν
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---F2 α ϕ( )dϕ
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------+ .–≡=
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dϕ
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dσ
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------ 0( ) 0,= = =
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Fig. 33. Mass of the star vs. the radius.
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(112b)

(112c)

Here, σc and µc are the central densities of the boson
and fermion matter, respectively.

Since the fermion matter µ(r) is distributed only
inside the star (for r < Rs), system (111) consists of a
finite number of equations for r < Rs and r > Rs.

Two methods were proposed and implemented for
numerical solution of the problem. In the first method
[172], by changing the variables x = r/Rs, x ∈ [0, ∞), the
radius Rs is included explicitly in Eqs. (111) and condi-
tions (112), and the position of the unknown boundary
of the fermion star is fixed at the point x = 1. The thus-
formulated problem is the two-parameter nonlinear
eigenvalue problem with respect to Rs and Ω.

The second method [173] is based on satisfaction of
the continuity conditions for the sought functions at the
point x = 1. Two boundary value problems for
Eqs. (111) are solved consecutively in the internal and
external regions of the star, and an additional paramet-
ric condition is set for one of the unknown functions for
closing the problem for x ∈ (0, 1) (in this work, the con-
dition ϕ(1) = ϕs is used). In the external region the solu-
tion is found using three continuity conditions coupling
this solution with the already known internal solution.
The other three continuity conditions form the nonlin-
ear algebraic system for the unknown parameters Rs, Ω,
and ϕs.

In the framework of a particular model, the influ-
ence of the physical parameters on the stability of the
star was considered. In particular, Fig. 35 shows the
dilaton field ϕ(x) as a function of distance for four val-
ues of the central density of boson matter σc. The dila-
ton field decreases with increasing σc in the vicinity of

the center of the star. After some critical value 
depending on the model parameters, the function ϕ(x)
begins to grow with increasing σc. The reason for such

µ Rs( ) 0,=

ν r( ) 0, ϕ r( ) 0, σ r( ) 0.r → ∞ r → ∞ r → ∞

σc*

behavior is the presence of the term  on the right-hand
side of Eq. (111c). For sufficiently small values of σc,

the term  < 0, and its contribution prevails over the

contribution of . For large σc (σc ≥ ), the term 

changes sign and enhances the contribution of ,
which results in the growth of ϕ(x). The star is stable
only if 0 < σc < . For the values of parameters cor-

responding to Fig. 35, the critical value  ≈ 0.55.

It was shown that for some critical value of the fer-
mion rest mass, the star loses stability. This proposition
is demonstrated by the plot of the dimensionless mass
of the star

as a function of fermion rest mass

where the given continuous function n(µ) models the
fermion density (see Fig. 36).

In [174, 175], the spherically symmetric model of a
black hole (BH) with a massive dilaton was studied.
The physical model was described by the multipoint
boundary value problem for the third order system for
the metric function f(r) in the dilaton field ϕ(r)

(113a)

(113b)

Here, f(r) is the metric function, r ∈ [Rl , ∞) is the radial
coordinate, and Rl > 0 is a constant. Two physical
parameters are included in Eqs. (113)—the BH charge
q and the dilaton mass γ. The right-hand sides F and Φ
are determined by the expressions

Here, the given continuous function V(ϕ) is the dilaton
potential, and α = ±1 is the coupling coefficient.
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Fig. 35. Dilaton potential ϕ(x) as a function of boson den-
sity σc).
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It was shown in [175] that the mathematical formu-
lation of the problem for system of differential equa-
tions (113) depends on the form and number of BH
horizons. In the simplest case of the unique regular
horizon Rh, the boundary conditions for γ > 0 are set in
the form

(114)

The point Rh partitions the interval [Rl, ∞) into the
internal Dint ≡ (Rl, Rh) and external Dext ≡ (Rh, ∞) regions
of the black hole, and Rh is the degeneration point for
(113b). The boundary value problem for Eqs. (113) is
solved in Dext. If the horizon is found, the BH mass M∞
is found from the asymptotic expression for the metric
function. For further solution of the problem in the
region Dext, it is necessary to set an additional condition
on the left boundary Rl > 0.

Note that the traditional formulation of the problem,
when the BH mass is assumed to be set (see, for exam-
ple, [176]), results in a much more cumbersome bound-

f Rh( ) 0, Φ Rh 0 ϕh ϕh', , ,( ) 0,= =

ϕ r( ) –
αq

2

γ 2
r

4
----------.

r → ∞

ary value problem with an unknown left boundary of
the region Dint.

The formulation of the problem for the case of extre-
mal horizons in which the derivative of the metric func-
tion f '(Rh) = 0 is given in [175]. It was shown there that
the dilaton field ϕe on the horizon satisfies some nonlin-
ear algebraic equation, which has the following form
for the dilaton potential V(ϕ) = ϕ2 and the parameter
α = –1:

(115)

For fixed q and γ, Eq. (115) has not more than two real
roots in the interval (0, ∞). This is illustrated in Fig. 37.
The case denoted by ∇ in Fig. 37, when the equation has
no roots, corresponds to the unique regular BH horizon.

For some ratio between the charge qd and the mass γd
of the dilaton, Eq. (115) has the unique root 0 < ϕd(γ) < 1
corresponding to the triply degenerate solution f(r), i.e.,
with the vanishing function, its first and second deriva-
tive, f ''(Rd) = 0. The boundary value problem for
Eqs. (113) in this case is the problem with the known
left boundary Rd.

For sufficiently large values of q > qd(γ) (or γ > γd(q)),
algebraic equation (115) has two different roots ϕh < ϕe

(curve ∆ in Fig. 37)—the model defines the pair of

black holes with extremal horizons Re = 1/ .
The smaller root ϕh < 1 corresponds to the black hole
with the outer extremal horizon Rh, whereas the larger
root ϕe(q, γ) corresponds to the black hole with the inner
extremal horizon Re. The process of “production” and
“annihilation” of horizons is demonstrated in Fig. 38.

Examples of solutions with one and two regular
horizons and with extremal horizons are shown in
Figs. 39, 40.

In [177–179], the system of Yang–Mills equations
with a dilaton (YMd) in the Minkowski spacetime of
dimension 3 + 1 was examined numerically. This prob-

C ϕ q γ, ,( ) C1 ϕ γ,( ) C2 ϕ q γ, ,( )–≡ 0,=

C1 1
γ 2ϕe
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4
----------------, C2 q
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Fig. 36. Bifurcation at changing rest mass.
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lem is a convenient mathematical model providing
investigation of the general properties of a wide class of
above-critical systems of nonlinear evolution equa-
tions, up to the formation of singularities.

It was shown in [177] that after separation of the
scale-invariant part of the dilaton function, the system
of YMd equations can be reduced to the system of ordi-
nary differential equations

(116)

with respect to the functions f(ξ) and φ(ξ) of the self-
similar variable ξ = (T – t)/r, T > 0. Here, t is the time
and r is the radial coordinate.

System (116) has four singular points ξ = –∞, –1,
+1, +∞. In the half-infinite interval ξ ∈ [1, +∞), the
family of self-similar solutions which can be parame-
terized in terms of the number of zeros of the YM func-
tion f(ξ) were obtained numerically.

Analysis of the stability of self-similar solutions in
the linear approximation using the phase function
method shows that the set of self-similar solutions con-
tains only one stable solution (N = 0).

f ξξ f ξφξ–
f f

2
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ξ2
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-----------------------,+=

φξξ
2
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--------------– e
φ

f ξ
2 f

2
1–( )

2

2 ξ2
1–( )

----------------------+
⎩ ⎭
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⎧ ⎫

,+=

It is known [180] that the system of YMd equations
has a countable set of unstable stationary solutions
parameterized by the number N of zeros of the YM
function. The number of unstable modes of the station-
ary solution with N zeros of the YM function is equal
to N. In [178], the unstable eigen-modes were obtained
numerically as the solutions to the matrix Sturm–Liou-
ville problem on the half-axis 0 < r < ∞,

(117a)

(117b)

(117c)

where the vector of eigenfunctions Ψ = (Ψ1, Ψ2)T, and
the elements of the 2-matrix U are expressed in terms
of the stationary solution whose unstable modes are
sought.

The eigenvalues , j = 1, …, N, corresponding to
stationary solutions with N = 1, 2, 3, 4, zeros, are pre-
sented in Table 3. It is seen that eigenvalues tend to zero
from below fast with increasing j. Therefore, for sta-
tionary solutions with N > 4, only principal eigenfunc-

tions and eigenvalues  were calculated in [178, 179].

CONCLUSIONS

The overview covers a class of methods of compu-
tational physics for investigation of functional depen-
dences on parameters of characteristics of mathemati-
cal models describing transition processes in complex
physical systems. This class unites new continuation
schemes with iterative schemes obtained on the basis of
further development of the generalized continuous ana-
logue of Newton’s method. The program implementa-
tion of the above numerical schemes is considered.

–Ψ'' U r( )Ψ λΨ–+ 0,=

Ψ1 0( ) 0, Ψ2' 0( ) 0, Ψ1 ∞( ) 0,= = =
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Fig. 39. Solution with external extremal horizon.
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Table 3.  Eigenvalues 

N

1 –9.0566 × 10–2

2 –7.5382 × 10–2 –2.0742 × 10–4

3 –4.9346 × 10–2 –1.4957 × 10–4 –1.9622 × 10–7

4 –4.3455 × 10–2 –5.9905 × 10–5 –1.3278 × 10–7 ~–10–9

λN
j{ } j 1=

N

λN
1 λN

2 λN
3 λN

4
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The development of this class of methods of compu-
tational physics is the result of numerical investigation
of various mathematical models of theoretical physics,
which are of great importance both for theory and for
various experimental programs. It is the practical value
of the studies that was the argument in favor of the
search for general mathematical formulations and com-
mon methods of numerical analysis for this class of
methods.
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