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Operator-difference multilayer schemes for solving the time-dependent Schrödinger equation up to sixth
order of accuracy in the time step are presented. Reduced schemes for solving a set of coupled time-dependent
Schrödinger equations with respect to the hyper-radial variable are devised using expansion of a wave packet
over the set of appropriate basis angular functions. Further discretization of the resulting problem is realized by
means of the finite-element method. The convergence of the expansion with respect to the number of basis
functions and the efficiency of the numerical schemes are demonstrated in the exactly solvable model of an
electric-field-driven two-dimensional oscillator �or a charged particle in a constant uniform magnetic field�, in
which we explicitly observed an effect of the periodical focusing and defocusing of the probability density flux.
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Numerical solution of the time-dependent Schrödinger
equation �TDSE� with prescribed accuracy is necessary for
solving control problems in finite-dimensional quantum sys-
tems �1�, decay problems in nuclear physics �2�, deexcitation
of antihydrogen atoms �3�, problems of ionization of atoms
and molecules by short-pulse fields, or impact collisions be-
yond the dipole approximation �4�. For solving the TDSE in
a finite-dimensional spatial domain it is common to seek a
wave-packet solution expanded over an appropriate angular
basis and then apply a certain discrete numerical scheme to
the resulting hyper-radial equations, for example, finite-
difference �4,5�, finite-element �6,7�, spline �8–10� methods,
etc.

Usually the rate of convergence with respect to the num-
ber of angular basis functions is controlled by solving the
corresponding stationary Schrödinger equation �SSE� �11�.
However, some special cases of long-range potentials acting
in asymptotic regions, like confinement potentials, require
additional analysis �5,12�, which is the key problem. Numeri-
cal solution of TDSEs describing exactly solvable models
can provide useful information for such analysis.

In this Brief Report, a computational method is applied to
solve the TDSE, in which the unitary splitting algorithm with
uniform time grids �13� is combined with the Kantorovich or
Galerkin reduction to a set of hyper-radial TDSEs �7�, the
finite-element method �FEM� �14�, and interpolation on non-
uniform spatial grids �7�. The efficiency, convergence, and
accuracy of the numerical schemes developed are confirmed
by benchmark calculations of an exactly solvable model,
namely, the driven two-dimensional oscillator �1�.

The d-dimensional TDSE with the self-adjoint Hamil-
tonian H�r , t� and the governing function f�r , t� in the time
interval t� �t0 ,T� has the form

i���r,t�/�t = H�r,t���r,t�, ��r,t0� = �0�r� ,

H�r,t� = − 1
2�r

2 + F�r,t�, F�r,t� = U�r� + f�r,t� . �1�

We require continuity of derivatives of F�r , t� and the solu-
tions ��r , t��W2

1�Rd � �t0 ,T�� and �0�r��W2
1�Rd�. The

normalization condition is

���2 =� ���r,t��2dr = 1. �2�

The Cauchy problem �1� is solved on the uniform grid
���t0 ,T�= �t0 , tk+1= tk+� , tK=T	 with time step � in the time
interval �t0 ,T� by means of the operator-difference multilayer
calculation scheme �13�. Using the factorization of the addi-

tional gauge transformation operator exp��ıS̃k
�M��, we calcu-

late the required operators S̃k
�M� and arrive at a new symmet-

ric �M +2L�-layer scheme for transforming ��r , tk� �k
=0,K−1� into ��r , tk+1�:

�k
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0 = �̃k

1, 
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�̄�
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�M�

2L
��k

�/L = 
I +
��

�L�S̃k
�M�

2L
��k

�−1/L,

��r,tk+1� = �k
1, �3�

where I is the unit operator, the overbar denotes the complex
conjugate, 	=1,M, and �=1,L. The auxiliary functions

�̃k
	/M, 	=1,M −1, in Eq. �3� can be treated as a kind of ap-

proximate solution on a set of fractional time steps tk+	/M
= tk+�	 /M, in the time interval �tk , tk+1�. The additional func-
tions �k

�/M, �=1,L−1, will provide an approximation of the

above gauge transformation operator exp��ıS̃k
�M�� at points tk

and tk+1, respectively. The coefficients �	
�M� are the roots of

the polynomial equation 1F1�−M ,−2M ,2Mi /��=0, where

1F1 is the confluent hypergeometric function, and have the
following properties: Im �	

�M�
0 and 0.6
 ��	
�M��
�−1,

where ��0.28 is the root of the equation � exp��+1�=1
�15�. This scheme has accuracy O��2M� with respect to the
time step � if we choose L= � M

2 �, where �x� is the integer part
of x. Below we consider the scheme with M �3 sufficient for
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practical utilization. For the Hamiltonian in Eq. �1� the op-

erators Ãk
�M� and S̃k

�M� are given by

Ãk
�1� = H�r,tc�, S̃k

�1� = 0,

Ãk
�2� = Ãk

�1� + ��2/24�F̈, S̃k
�2� = S̃k

�1� + ��2/12�Ḟ ,

Ãk
�3� = Ãk

�2� + ��4/1920�Ḟ̇̇̇ + ��4/1440���rḞ�2 − ��4/2880���r
4F̈�

− ��4/720���rF̈���rF� − ��4/720��r��r
2F̈��r,

S̃k
�3� = S̃k

�2� + ��4/480�F� + ��4/720���rḞ���rF�

+ ��4/2880���r
4Ḟ� + ��4/720��r��r

2Ḟ��r, �4�

where F
F�r , t�, Ḟ
��F�r , t� /�t��t=tc
, . . ., and tc= tk+� /2.

The condition �
2M��Ãk
�M��−1 guarantees the validity of the

scheme �3� for any bounded operator Ãk
�M�. From the condi-

tion Im �	
�M��0 it follows that the auxiliary and additional

functions �̃k
	/M and �k

�/L have equal norms. In the case M
=1, the scheme �3� corresponds to the well-known Crank-
Nicolson scheme �16�.

Let us consider a formal adiabatic expansion of the partial
solution ��r , t� of Eq. �1� over one-parametric basis func-
tions �Bj�� ;r�	 j=1

N ,

��r,t� = �
j=1

N

Bj��;r�
 j�r,t� . �5�

The vector function ��r , t�= (
1�r , t� , . . . ,
N�r , t�)T is un-
known; the orthonormal basis surface functions Bj�� ;r�
�Fr�L2(Sd−1���) and the potential curves Ej�r� are solu-
tions of the one-parametric eigenvalue problem �11,17� with
respect to angular variables �,

�− �1/2r2��̂�
2 + U�r��Bj��;r� = Ej�r�Bj��;r� . �6�

Here �̂�
2 is the generalized self-adjoint angular momentum

operator corresponding to the d-dimensional Laplace opera-
tor �r

2. The eigenfunctions satisfy the same angular boundary
conditions as ��r , t� and are normalized as follows:

�Bi��;r��Bj��;r��� =� B̄i��;r�Bj��;r�d� = �ij , �7�

where �ij is the Kronecker symbol.
By using the expansion �5� we reduce the initial problem

�1� to a boundary problem for a set of N coupled second-
order ordinary differential equations that determine the vec-
tor function ��r , t� of the expansion �6� in the finite interval
r� �0,rmax�:

iI��
�r,t�/�t� = H�r,t���r,t�, ��r,t0� = �0�r� ,

H�r,t� = − �1/2rd−1�I��/�r�rd−1��/�r� + V�r,t� + Q�r���/�r�

+ �1/rd−1���rd−1Q�r�/�r� . �8�

Here V�r , t�, Q�r�, and I are N�N matrices with the ele-
ments

Vij�r,t� = Ej�r��ij + 1
2 ���Bi��;r�/�r����Bj��;r�/�r���

+ �Bi��;r��f�r,t��Bj��;r���,

Qij�r� = − 1
2 �Bi��;r����Bj��;r�/�r���, Iij = �ij . �9�

The boundary and normalization conditions have the form

��0,t� = 0 if min
1�j�N

lim
r→0

rd−1�Vjj�r,t�� = � ,

lim
r→0

rd−1�I � /�r − Q�r��
�r,t� = 0

if min
1�j�N

lim
r→0

rd−1�Vjj�r,t�� 
 � , �10�

lim
r→�

��r,t� = 0 � ��rmax,t� = 0,

�
0

rmax

„��r,t�…T��r,t�rd−1dr = 1. �11�

In this case we arrive at the finite N�N matrix operator-
difference scheme for the unknown vector function ��r , t�
analogous to �3�,

I � I, Ãk
�M� � Ãk

�M�, S̃k
�M� � S̃k

�M�, �12�

where Ãk
�M� and S̃k

�M� are N�N matrix operators given by

Ãk;ij
�M� = �Bi��;r��Ãk

�M��Bj��;r���,

S̃k;ij
�M� = �Bi��;r��S̃k

�M��Bj��;r���. �13�

Moreover, Ãk
�1�=H�r , tc� , S̃k

�1�=0.
In the dipole approximation and atomic units the TDSE

for a two-dimensional charged oscillator �or a charged par-
ticle in a constant uniform magnetic field� driven by an ex-
ternal electric field with the components E1�t� and E2�t� in the
time interval t� �0,T� has the form �1�

i
���x1,y1,t�

�t
= �−

1

2

 �2

�x1
2 +

�2

�y1
2� +

i�

2

x1

�

�y1
− y1

�

�x1
�

+
�2

8
�x1

2 + y1
2� − �x1E1�t� + y1E2�t�����x1,y1,t� .

�14�

The transformation to the coordinate system rotating with the
angular frequency � /2,


x1

y1
� = 
 cos��t/2� sin��t/2�

− sin��t/2� cos��t/2�
�
x

y
� , �15�

and polar coordinates x=r cos���, y=r sin��� yields the
equation

i���r,�,t�/�t = �− 1
2 �1/r���/�r�r��/�r� − 1

2 �1/r2���2/��2�

+ �2r2/8 + r�f1�t�cos���

+ f2�t�sin�����	��r,�,t� , �16�

where
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 f1�t�
f2�t� � = 
− cos��t/2� sin��t/2�

− sin��t/2� − cos��t/2� �
E1�t�

E2�t� � . �17�

Using the Galerkin projection of the solutions by means of
the angular basis functions �Bj���	 j=1

N ,

��r,�,t� = �
j=1

N

Bj���
 j�r,t� ,

B1��� =
1

�2�
, B2j��� =

sin�j��
��

, B2j+1��� =
cos�j��

��
,

�18�

we arrive at the matrix Eq. �8� with Vij�r , t�= �Bi����
− 1

2 �1 /r2���2 /��2�+F�r ,� , t��Bj����� and Qij�r�
0 for un-
known coefficients �
 j�r , t�	 j=1

N . The initial functions 
 j�r , t�
at t=0 are chosen in the form


 j�r,0� = �� exp�− ��/4�r2�� j1, �19�

which corresponds to the ground-state wave packet of the
free oscillator,

�0�x,y� = ��/2� exp�− ��/4��x2 + y2�� . �20�

Note that for the particular choice of the field E j�t�
=aj sin�� jt� the initial problem �14� and �20� has an analyti-
cal solution �ext�x ,y , t� that provides a good example to test
the efficiency of numerical algorithms and the rate of con-
vergence of the projection with the number N of radial equa-
tions and with the time t. This closed-form solution is

�ext�x,y,t� = ��/2� exp�− ��/4��x2 + y2� + 2Y1�t�x + 2Y2�t�y

− Z1�t� − Z2�t�� , �21�

where the functions Y j�t� and Zj�t� satisfy the Cauchy prob-
lem

i�d/dt�Y j�t� = ��/2�Y j�t� + f j�t�/2, Y j�0� = 0,

i�d/dt�Zj�t� = − �/4 + 2Y j
2�t�, Zj�0� = 0. �22�

We choose �=4� , �1=3� , �2=5� , a1=24, a2=9. For
these parameters the absolute value ��x ,y , t� should be peri-
odic in time with the period T=2.

To approximate the solution 
 j�r , t� as a function of r, we

used the finite-element grid �̂r�rmin,rmax�= �rmin=0, �120� ,
1.5, �60� ,rmax=4	, where the numerals in parentheses denote
the number of finite elements in the subinterval. Between
each two nodes we apply Lagrange interpolation polynomi-
als up to the order p=8. The applicability, stability, and ef-
ficiency of the FEM and Lagrange interpolation with nonuni-
form steps in the spatial variable r were demonstrated for
solving the SSE with a long-range potentials �18� and the
TDSE with a long-range potential using masking functions
�6�.

To analyze the convergence of a sequence of three time
grids with the initial time step �=0.0125 and each next time
step being half of the previous one, we introduce the auxil-
iary time-dependent discrepancy functions E�t , j�, j=1,2 ,3,
and the Runge coefficient ��t�,

E2�t, j� = �
�=1

N �
0

rmax

�
��r,t� − 
�
�j�r,t��2r dr ,

��t� = log2��E�t,1� − E�t,2��/�E�t,2� − E�t,3��� , �23�

where 
�
�j�r , t� are the numerical solutions with the time step

� j =� /2 j−1. For the function 
��r , t� one can use a numerical
solution with the time step �4=� /8.

Figure 1 displays the behavior of the discrepancy func-
tions E�t , j�, j=1,2 ,3, for approximations of the order 2M
=2,4 ,6 and N=30. For each triplet of curves, the average
value of the convergence rates ��t�
�M�t� over all values of
�M�tk��2M on the grid ���0,2� is depicted. As a result,
theoretical estimates for the order convergence of the pro-
posed scheme �12� of the second, fourth, and sixth order of
accuracy, O��2M�, respectively, are confirmed. Figure 2 dis-
plays the absolute value of the difference �ext�x ,y , t=2�
−��x ,y , t=2� for the approximation of the order 2M =6 with
the time step �4=0.001 562 5 and N=20 �Fig. 2�a�� and 30
�Fig. 2�b��.

Figure 2 illustrates the possibility of solving the key prob-
lem, namely, the necessary number N of angular basis func-
tions should be controlled not only by solving the SSE �11�
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dashed, and solid curves�, for approximations of the order 2M
=2,4 ,6, respectively, with the time step �=0.0125 and N=30.
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−��x ,y , t=2� for the approximation of the order 2M =6 with the
time step �4=0.001 562 5 and N=20 �a� and 30 �b�.
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but also by solving the exact solvable TDSE. Such bench-
mark calculations allow one to trace the moving spatial re-
gions in which the time-dependent wave packet, expanded
over the angular basis, is essentially nonzero.

If the initial state of a free harmonic oscillator is taken to
be a Gaussian wave packet, differing in width from the
ground eigenstate, then the evolution consists in periodic os-
cillations of the packet width, i.e., repeated focusing and
defocusing in the coordinate and momentum space. Similar
behavior is observed in Gaussian light beams in parabolic
gradient waveguides �see, e.g., �20� and references therein�.
Recently this oscillator property was discussed as a key point
in relation to the important problem of channeling and super-
focusing of light nuclear beams in thin doped films �21�.

We calculated the time dependence of the wave packet
shape in the model of a two-dimensional oscillator driven by
an external field. Figure 3 shows the temporal dynamics of a
closed loop in the x ,y plane, within which the probability
density ���x ,y , t��2 is not less than one-half of its maximal
value at given t. For calculations we took the frequencies to
be the same as above and considered two cases: a1=a2=0
�Fig. 3�a�� and a1=24, a2=9 �Fig. 3�b��. In both cases the
wave function at the initial moment of time was �0�x ,y�
=�� / �20��exp�−��x2+y2� /40�. Periodic restoration of the
initial wave packet shape �20� is seen to occur, wherever the
packet center is at rest �Fig. 3�a�� or rotating �Fig. 3�b��.

To summarize, we have presented a computational ap-
proach to solve the TDSE, in which the partial �unitary�
splitting of the evolution operator and the FEM are effi-
ciently combined. In particular, to implement our approach
in the explicit form �3� and �4� using the factorization of the

additional operator exp��iS̃k
�M�� at the end points of the sub-

intervals, we derived the second-, fourth-, and sixth-order
approximations with respect to the time step. These factor-
izations are one of the key points of the proposed approach.
The advantage of the FEM over the usual finite-difference
technique consists in the explicit symmetry of the scheme �3�
in matrix form �12� without additional calculation of the first

spatial derivative of the matrix Q�r��0 �7�. The schemes
developed provide a useful tool for calculations of threshold
phenomena in the formation and ionization of �anti�hydro-
genlike atoms and ions in magnetic traps �12�, quantum dots
in a magnetic field �19�, channeling processes �21,22�, poten-
tial scattering with confinement potentials �5�, and control
problems for finite-dimensional quantum systems �1�.
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FIG. 3. Temporal dynamics of the loop in the x ,y plane within
which the probability density ���x ,y , t��2 is greater than one-half of
its maximal value, i.e., ���x ,y , t��2�maxx,y���x ,y , t��2 /2.
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