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Reformulation of the strong-field approximation for light-matter interactions
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We consider the interaction of hydrogenlike atoms with a strong laser field and show that the strong-field
approximation and all its variants may be grouped into a set of families of approximation schemes. This is done
by introducing an Ansatz describing the electron wave packet as the sum of the initial-state wave function times
a phase factor and a function which is the perturbative solution in the Coulomb potential of an inhomogeneous
time-dependent Schrödinger equation. It is the phase factor that characterizes a given family. In each of these
families, the velocity and length gauge version of the approximation scheme lead to the same results at each order
in the Coulomb potential. By contrast, irrespective of the gauge, approximation schemes belonging to different
families give different results. Furthermore, this formulation of the strong-field approximations allows us to gain
deeper insight into the validity of the strong-field approximation schemes. In particular, we address two important
questions: the role of the Coulomb potential in the output channel and the convergence of the perturbative series
in the Coulomb potential. In all the physical situations we consider here, our results are compared to those
obtained by solving numerically the time-dependent Schrödinger equation.

DOI: 10.1103/PhysRevA.93.023422

I. INTRODUCTION

The solution of the time-dependent Schrödinger equation
(TDSE) that describes the interaction of an intense elec-
tromagnetic pulse with an atom or a molecule is a very
challenging problem from the numerical point of view. This
is particularly true in the long-wavelength limit where the
numerical calculations become rapidly intractable even for
one-active electron systems. In this situation, one has to rely
on analytical or semianalytical models that, in addition, offer
the advantage of providing valuable insight into the physical
mechanisms that underly the interaction processes.

The first model that laid the foundation of our understanding
of laser-atom interactions has been developed by Keldysh.
In 1965, he published a seminal paper [1] on the nonlinear
ionization of atoms and dielectrics by strong electromagnetic
waves. This model describes, in the length gauge, the transition
of an atom, from an initially unperturbed bound state to a
dressed continuum state. This dressed continuum is a Volkov
state [2]. It takes into account the electron-field interaction at
all orders while neglecting completely the Coulomb potential.
Keldysh introduced the adiabaticity parameter γ = ω

√
2Ip/E

where, in atomic units, ω is the photon energy, Ip is the
ionization potential, and E is the electric-field amplitude. He
showed that tunneling and multiphoton ionization are actually
two limiting cases of nonlinear ionization: tunneling is the
dominant process for γ � 1 while for γ � 1, ionization
proceeds by the absorption of many photons.

*alexander.galstyan@uclouvain.be

Soon after Keldysh’s contribution, Perelomov, Popov, and
Terent’ev (PPT) published a series of papers [3–5]. Their
model is based on the approximate solution, in the length
gauge, of a time-dependent Lippmann-Schwinger-like equa-
tion. It involves a Green’s function which is expressed in terms
of the classical action and it is assumed that the initial state
is hardly depleted. For electrons bound by short-range forces,
the PPT approach reproduces the Keldysh theory. In the limit
where the Coulomb field is much smaller than the external field
so that it can be regarded as a small perturbation, effects due
to the long range of the Coulomb potential are accounted for
in the classical action [5]. In addition, and contrary to Keldysh
theory, the ionization rate, averaged over the laser period, tends
to the correct value in the adiabatic (quasistatic) limit.

Later, when the first experimental data on the above-
threshold ionization spectra became available, Reiss [6] and
Faisal [7] developed an approach based on the S-matrix
theory in the velocity gauge. It is after these papers that
the terminology “strong-field approximation” (SFA) appeared.
In fact, what is understood as the SFA is the first term of
the perturbative series in the Coulomb potential associated
to the S-matrix. High-order terms of SFA describe multiple
rescattering of the electron by the ionic core [8] as this electron
undergoes a quiver motion driven by the external electric field.
It is important to note that the S-matrix treatment can also be
developed in the length gauge by using the �E · �r form of the
interaction Hamiltonian. In that case one obtains the Keldysh
result at the first order.

SFA has been widely used to describe the mechanism
for many strong-field phenomena such as high-order har-
monic generation [9], high-energy electron spectra, and even
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processes involving more than one electron like nonsequential
double photoionization [10]. However, SFA has a serious
flaw: the length and velocity gauge versions of SFA give
results that may differ significantly [11]. This problem is
still unsolved. Within this context, it is interesting to mention
here three commonly accepted viewpoints which are nicely
summarized in [12]: (i) the problem of the gauge invariance
is misunderstood and a proper treatment of the full “atom +
field” Hamiltonian should make the velocity and the length
gauge versions of the SFA amplitude equivalent; (ii) there is
a preferable gauge (depending on the physical process under
consideration) which should be used in the calculations; (iii)
in the present stage, the theory is essentially noninvariant and
should be modified to restore the gauge invariance property.

In this contribution, we consider the interaction of atomic
hydrogen with a strong pulsed oscillating field and we develop
a rather transparent approach that shows that the different
SFA schemes can be grouped into different families. We
focus on two families such that in each family the length
and the velocity SFA schemes give the same results at all
orders in the Coulomb potential. However, irrespective of
the gauge, two SFA schemes belonging to different families
give different results. Faisal [13,14] similarly reformulated
his S-matrix based approach and obtained a gauge invariant
SFA. The two gauge invariant SFA schemes obtained by Faisal
correspond in one case [14] to the old velocity-gauge SFA or
the first family in our Ansatz based approach and to the old
length gauge SFA or our second family in the second case
[13]. The main idea of the present method is to introduce
an Ansatz that describes the electron wave packet as the
sum of the initial wave function times a phase factor and a
function which is the solution of an inhomogeneous TDSE
that can be solved iteratively to generate a perturbative series
in the Coulomb potential. It is essentially the phase factor that
defines a given family. Furthermore, this simple reformulation
of the SFA allows us to address the two following important
questions regarding the validity of the SFA schemes. The first
one concerns the final state on which the SFA wave packet
should be projected on to get the electron energy spectrum. In
principle, this final state must be a Coulomb wave. However, in
order to avoid enormous difficulties from the analytical point
of view, Coulomb waves are usually replaced by plane waves.
We show that this further approximation is questionable in
the case of very low-energy electrons. The second important
question concerns the convergence of the perturbative series
in the Coulomb potential. We address this question by solving
numerically and iteratively the inhomogeneous TDSE and
show in one particular case how the electron energy spectrum
changes after the inclusion of increasing order terms. In all
cases, the SFA results are compared to those obtained by
solving numerically the TDSE.

This paper is organized as follows. Section II is devoted to
the theory. We first transform the TDSE into a time-dependent
Lippmann-Schwinger-like equation. It is this equation that
is the starting point of the PPT approach. The problems
inherent to that equation are discussed in detail and justify the
introduction of the particular Ansatz we use to generate various
families of SFA schemes. We focus on two particular families
and establish their connection to existing SFA schemes. The
third section is devoted to the numerical treatment of the

TDSE within the SFA schemes. Finally, before concluding,
we compare two schemes based on an Ansatz belonging to
different families. This is done by calculating in a realistic
situation the electron energy distribution along the polarization
axis and by comparing the SFA results to those obtained by
solving the TDSE.

Atomic units (� = e = me = 1) combined with the Gaus-
sian system for the electromagnetic field are used throughout
unless otherwise specified.

II. THEORY

A. Useful definitions

In this contribution, we consider fields linearly polarized
along the z axis and assume that the dipole approximation
is valid. At this stage, we define the vector potential and the
electric field for a given time t as follows:

1

c
�A(t) = −b′(t)�e, (1)

�E(t) = b′′(t)�e, (2)

where b(t), the expression of which will be specified later,
vanishes for t � 0 and t � T , with T being the total pulse
duration. �e is a unit vector along the z axis. It is also convenient
to define the following quantity:

ζ (t) = 1

2

∫ t

0
dξ [b′(ξ )]2, (3)

and to write the momentum �P (t) and the action S( �p,t) in terms
of b(t):

�P (t) = �p − b′(t)�e, (4)

S( �p,t) = 1

2

∫ t

0
P 2(ξ )dξ, (5)

where �p is the electron momentum. In the following, we use
a tilde accent for quantities defined in the configuration space
and no accent if the same quantity is defined in momentum
space.

B. Time-dependent perturbative treatment of the
Schrödinger equation

The TDSE describing the interaction of a pulsed electric
field with a hydrogenic system of nuclear charge Z and initially
in its ground state ϕ̃0(�r), is in the velocity (V ) gauge,[

i
∂

∂t
+ 1

2
�r + Z

r
− ib′(t)(�e · �∇r ) − ζ ′(t)

]
�̃V (�r,t) = 0,

�̃V (�r,0) = ϕ̃0(�r),

(6)

and in the length (L) gauge,[
i

∂

∂t
+ 1

2
�r + Z

r
− b′′(t)(�e · �r)

]
�̃L(�r,t) = 0,

�̃L(�r,0) = ϕ̃0(�r). (7)
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It is important to note that in the V -gauge version of the
TDSE, the interaction Hamiltonian includes the term ζ ′(t)
that is proportional to the square of the vector potential. In
principle, and within the dipole approximation, this term can be
eliminated by a simple unitary transformation of the solution
�̃V (�r,t). However, this is only true for the exact solution. In
the case of the SFA for instance, neglecting this term may lead
to wrong results [15]. Because of the gauge invariance, these
two TDSEs are equivalent. Their solutions are related by the
well-known Göppert-Mayer gauge transformation:

�̃L(�r,t) = e−ib′(t)(�e·�r)�̃V (�r,t). (8)

In the case of weak fields, we could treat the dipole interaction
Hamiltonian as a perturbation. Instead, we assume that the
electric field is very strong compared to the Coulomb field
and consider the Coulomb potential as a perturbation. In the
following, we first consider the V gauge and rewrite Eq. (6) as
follows:[

i
∂

∂t
+1

2
�r−ib′(t)(�e · �∇r )−ζ ′(t)

]
�̃V (�r,t) = −Z

r
�̃V (�r,t).

(9)
If the right-hand side of this equation is set equal to zero, the
solution of the remaining equation is a Volkov wave function
given by

χ̃V (�r, �p,t) = ei �p·�r−ip2t/2+ib(t)(�e· �p)−iζ (t) = ei �p·�r−iS( �p,t). (10)

In terms of these Volkov wave functions, the corresponding
time-dependent Green’s function is

G̃V (�r,t ; �r ′,t ′) = −iθ (t − t ′)
∫

d3p

(2π )3
χ̃V (�r, �p,t)χ̃∗

V (�r ′, �p,t ′).

(11)
Note that the factor (2π )−3 comes from the way we define the
Fourrier transform. This way will be used throughout the paper.
The general solution of Eq. (9) may be written as follows:

�̃V (�r,t) = i

∫
d3r ′G̃V (�r,t ; �r ′,0)ϕ̃0(�r ′)

−Z

∫ t

0
dt ′

∫
d3r ′

r ′ G̃V (�r,t ; �r ′,t ′)�̃V (�r ′,t ′) (12)

= I
(0)
V + IV . (13)

Substituting G̃V (�r,t ; �r ′,0) in (12) by the expression (11), we
obtain

I
(0)
V = θ (t)

∫
d3p

(2π )3
χ̃V (�r, �p,t)ϕ0( �p), (14)

IV = iZ

∫
d3p

(2π )3
χ̃V (�r, �p,t)

∫ t

0
dt ′

×
∫

d3r ′

r ′ χ̃∗
V (�r ′, �p,t ′)�̃V (�r ′,t ′). (15)

Equation (12) is an integral equation of Lippmann-Schwinger
type. It can be solved by iteration, starting with I

(0)
V as the

zeroth-order term to generate a perturbative (Born) series in
the Coulomb potential. It is important to note, at this stage, that
each term, denoted by I

(n)
V , of this perturbative series is gauge

invariant. In order to show it, we could start from Eq. (7) which

is the L-gauge version of Eq. (6) and proceed as we did above.
Instead, we can replace the Volkov wave function χ̃V (�r, �p,t)
in Eqs. (11)–(15) by its L-gauge version χ̃L(�r, �p,t). Since the
V -gauge and L-gauge expressions of a Volkov wave function
can be obtained one from the other by the usual Göppert-Mayer
gauge transformation,

χ̃L(�r, �p,t) = e−ib′(t)(�e·�r)χ̃V (�r, �p,t) = ei �P (t)·�r−iS( �p,t), (16)

and that

χ̃∗
L(�r ′, �p,t ′)χ̃L(�r ′, �p ′,t ′) = χ̃∗

V (�r ′, �p,t ′)χ̃V (�r ′, �p ′,t ′), (17)

one can easily see from Eq. (15) that any Born term I
(n)
L in the

L gauge is related to a corresponding term I
(n)
V in the V gauge

by the usual gauge transformation,

I
(n)
L = e−ib′(t)(�e·�r)I

(n)
V . (18)

Let us now discuss in more detail the pertinence of the integral
equation (12) and its perturbative (Born) series. A closer look
at the first term I

(0)
V in the integral equation (12) shows that

it undergoes a rapid dispersion due to the presence of the
e−ip2t/2 term in the expression (10) of the Volkov wave function
χ̃V (�r, �p,t). In addition, since this exponential term e−ip2t/2

does not depend on the external field, it means that this rapid
dispersion occurs even in the absence of the external field. In
fact, in the absence of the field, we can rewrite the integral
equation (12) in momentum space as follows:

�V ( �p,t) = e−ip2t/2

[
ϕ0( �p) + 4πiZ

∫ t

0
dξ eip2ξ/2

×
∫

d3p′

(2π )3

�V ( �p ′,ξ )

| �p − �p ′|2
]
. (19)

If we solve iteratively this equation, we clearly see that each
term of the perturbation expansion of �V ( �p,t) is affected by
a rapid dispersion. This may be justified when ϕ0( �p) is an
arbitrary wave packet. In our case however, the atom is and
must stay in a stationary state in the absence of an external
field. One can prove that �V ( �p,t) = ϕ0( �p)e−iε0t satisfies
Eq. (19) and this result can not be obtained iteratively.

There are at least two ways of circumventing this difficulty.
The first one is to follow the PPT approach. The starting point
of this approach is the L-gauge version of the integral equation
(12). Since the first term is affected by a rapid dispersion,
it does not contribute to the current and can be neglected.
Furthermore, the exact wave packet that enters in the second
term is replaced by the initial state wave function under the
assumption that the mean time of ionization is much larger
than the atomic times. The second way consists of introducing
an Ansatz to describe the exact wave packet as the sum of the
initial stationary state times a phase factor and a function that
is the solution of an inhomogeneous TDSE.

C. Ansatz-based approach

Let us first consider the V gauge. The Ansatz we introduce
consists in separating the initial bound state component from
the other components of the electron wave packet �̃V (�r,t). We
write

�̃V (�r,t) = e−iε0t ϕ̃0(�r) + F̃V (�r,t), (20)
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where ε0 = −Z2/2 is the ground-state energy. After substitution in Eq. (6), we obtain the following inhomogeneous TDSE for
F̃V (�r,t): [

i
∂

∂t
+ 1

2
�r − ib′(t)(�e · �∇r ) − ζ ′(t)

]
F̃V (�r,t) = −Z

r
F̃V (�r,t) + [ib′(t)(�e · �∇r ) + ζ ′(t)]e−iε0t ϕ̃0(�r), (21)

with the initial condition F̃V (�r,0) = 0. We can rewrite this inhomogeneous TDSE as an integral equation that takes the initial
condition into account:

F̃V (�r,t) = F̃
(1)
V (�r,t) + iZ

∫
d3p

(2π )3
χ̃V (�r, �p,t)

∫ t

0
dt ′

∫
d3r ′

r ′ χ̃∗
V (�r ′, �p,t ′)F̃V (�r ′,t ′), (22)

with

F̃
(1)
V (�r,t) =

∫
d3p

(2π )3
χ̃V (�r, �p,t)

∫ t

0
dt ′

∫
d3r ′χ̃∗

V (�r ′, �p,t ′)[b′(t ′)e−iε0t
′
(�e · �∇r ′)ϕ̃0(�r ′) − iζ ′(t ′)]. (23)

We now consider the L gauge and use the same Ansatz:

�̃L(�r,t) = e−iε0t ϕ̃0(�r) + F̃L(�r,t). (24)

Similar manipulations with Eq. (7) lead to the following integral equation for F̃L(�r,t):

F̃L(�r,t) = F̃
(1)
L (�r,t) + iZ

∫
d3p

(2π )3
χ̃L(�r, �p,t)

∫ t

0
dt ′

∫
d3r ′

r ′ χ̃∗
L(�r ′, �p,t ′)F̃L(�r ′,t ′), (25)

with

F̃
(1)
L (�r,t) = −i

∫
d3p

(2π )3
χ̃L(�r, �p,t)

∫ t

0
dt ′b′′(t ′)e−iε0t

′
∫

d3r ′χ̃∗
L(�r ′, �p,t ′)(�e · �r ′)ϕ̃0(�r ′). (26)

We easily see that even the free terms (23) and (26) are different. This implies that the perturbative (Born) terms generated
from Eqs. (22) and (25) are not gauge invariant because our Ansätze Eqs. (20) and (24) do not satisfy the Göppert-Mayer
transformation. In order to satisfy the gauge invariance, we have to change one of the Ansätze. In the L gauge, taking into account
the Göppert-Mayer gauge transformation (8), we rewrite our Ansatz as follows:

�̃L(�r,t) = e−iε0t−ib′(t)(�e·�r)ϕ̃0(�r) + ˜̄FL(�r,t). (27)

The previous discussion shows that we have some freedom in the definition of the Ansatz through the phase factor. Hereafter,
we define two families of Ansätze in such a way that within a given family, both the L-gauge and the V -gauge versions of the
Ansatz lead to the same results. In other words, �̃V and �̃L as well as each term of the perturbation expansion of F̃V and F̃L

satisfy relation (8).
In the first family, the V -gauge and L-gauge Ansätze are defined as above. The V -gauge Ansatz is

�̃V (�r,t) = e−iε0t ϕ̃0(�r) + F̃1,V (�r,t), (28)

where F̃1,V (�r,t) satisfies the inhomogeneous TDSE Eq. (21) (reproduced here for clarity):[
i

∂

∂t
+ 1

2
�r − ib′(t)(�e · �∇r ) + Z

r
− ζ ′(t)

]
F̃1,V (�r,t) = [ib′(t)(�e · �∇r ) + ζ ′(t)]e−iε0t ϕ̃0(�r), (29)

while the L-gauge Ansatz is given by

�̃L(�r,t) = e−ib′(t)(�e·�r)−iε0t ϕ̃0(r) + F̃1,L(�r,t), (30)

where F̃1,L(�r,t) satisfies the following inhomogeneous TDSE:[
i

∂

∂t
+ 1

2
�r − b′′(t)(�e · �r) + Z

r

]
F̃1,L(�r,t) = e−ib′(t)(�e·�r)[ib′(t)(�e · �∇r ) + ζ ′(t)]e−iε0t ϕ̃0(�r). (31)

In the second family, we define the L-gauge Ansatz as follows:

�̃L(�r,t) = e−iε0t ϕ̃0(�r) + F̃2,L(�r,t), (32)

where F̃2,L(�r,t) satisfies the following inhomogeneous TDSE:[
i

∂

∂t
+ 1

2
�r − b′′(t)(�e · �r) + Z

r

]
F̃2,L(�r,t) = b′′(t)e−iε0t (�e · �r)ϕ̃0(�r). (33)

In this case, the V -gauge Ansatz is

�̃V (�r,t) = eib′(t)(�e·�r)−iε0t ϕ̃0(�r) + F̃2,V (�r,t), (34)
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where F̃2,V (�r,t) satisfies the following inhomogeneous TDSE:[
i

∂

∂t
+ 1

2
�r − ib′(t)(�e · �∇r ) + Z

r
− ζ ′(t)

]
F̃2,V (�r,t) = b′′(t)eib′(t)(�e·�r)−iε0t (�e · �r)ϕ̃0(�r). (35)

Within a given family, it is easy to show that the gauge
invariance is satisfied. Not only are the Ansätze gauge invariant
but also each term of the perturbation expansion of the full
wave packet. However, if we compare, say the V -gauge
Ansätze of the two families, the terms of the perturbation
expansion of the full wave packet are different at each order,
but the total sum of all these terms should remain the same. It is
important to note that if we solve exactly the inhomogeneous
TDSE associated to the Ansätze we have introduced, they must
give the same result. The situation is different if we consider
an approximate scheme such as the SFA. Usually, the SFA
consists of keeping only the first term of the perturbation
expansion (in the Coulomb potential) of the inhomogeneous
TDSE. If more terms are taken into account, we get what we
call a high-order SFA which describes the multiple rescattering
of the electron by the Coulomb potential of the ionic core.
Within the present approach, we have therefore defined two
SFA schemes that correspond to our two families of Ansätze.

It is now important to establish the connection between our
two SFA schemes and the well-known SFA schemes. It is easy
to see that the V -gauge SFA as defined in [16] corresponds

to our V -gauge Ansatz of the first family while the L-gauge
Ansatz of the second family leads to PPT. Let us emphasize
that two wave functions in the same gauge but belonging to
different families, e.g., given by Eqs. (28) and (34), are equal.
The sum of the two terms is the same independently of the
Ansätze, but what is different is the contribution of each term.

III. NUMERICAL TREATMENT OF THE TDSE
WITHIN SFA

A. Semianalytical formulas

1. First-order SFA

Within the SFA, it is often possible to derive semianalytical
expressions or more precisely, integral representations of the
full wave packet as illustrated below. We first consider our
V -gauge Ansatz of the first family. In order to obtain simple
expressions for the full wave packet in this case, it is more
convenient to work in the momentum space. By means of
Eqs. (20) and (23), we obtain after some manipulations

�SFA
1,V ( �p,t) = e−iε0tϕ0( �p) + F

(1)
1,V ( �p,t)

= e−iε0tϕ0( �p) + iϕ0( �p)e−iS( �p,t)
∫ t

0
eiS( �p,ξ )−iε0ξ [b′(ξ )(�e · �p) − iζ ′(ξ )] dξ

= e−iS( �p,t)

[
ϕ0( �p) + i(p2/2 − ε0)ϕ0( �p)

∫ t

0
eiS( �p,ξ )−iε0ξ dξ

]
. (36)

We use this approximation of the full wave packet to calculate the electron energy spectrum along the polarization axis and the
probability to stay in the 1s state at a time T corresponding to the end of the pulse. The electron energy spectrum is usually
obtained by projecting the above wave packet on plane waves of wave vector �k, having taken care to subtract from the wave
packet the contribution of the ground state which is not orthogonal to a plane wave. The transition matrix element is

〈�ke−ik2t/2|�SFA
1,V (t) − e−iε0tϕ0〉 = 〈�ke−ik2t/2

∣∣F (1)
1,V (t)

〉
= eib(t)(�e·�k)−iζ (t)ϕ0(�k)[1 + i(k2/2 − ε0)

∫ t

0
dξeiS(�k,ξ )−iε0ξ ] − ei(k2/2−ε0)tϕ0(�k). (37)

Within an irrelevant phase factor, this expression of the transition matrix element coincides with the expression given, in the V

gauge, by Bauer et al. in [16]. However it is important to stress that the procedure of subtracting the ground state from the wave
packet is only valid if the ground-state component of the function F

(1)
1,V can be neglected. In other words, we have to assume that

the ground state is not depleted. This can be seen easily by projecting the full wave packet on modified plane waves, denoted by
ϕ⊥(�k), that are orthogonalized to the ground state. Using Dirac notation, we have

〈ϕ⊥| = 〈�k| − 〈�k|ϕ0〉〈ϕ0|. (38)

In this case, the transition matrix element becomes

〈ϕ⊥e−ik2t/2|�SFA
1,V (t)〉 = 〈�ke−ik2t/2|F (1)

1,V (t)〉 + ei(k2/2−ε0)tϕ0(�k)
[
1 − 〈ϕ0e

−iε0t |�SFA
1,V (t)〉]. (39)

We clearly see that this last transition matrix element reduces to the expression (37) if 〈ϕ0e
−iε0t |�SFA

1,V (t)〉, which represents the
amplitude to stay in the ground state at the end of the pulse, tends to 1 or equivalently if the ground state is not depleted. Let
us mention that a more rigorous calculation of the electron energy spectrum requires the projection of the full wave packet on
Coulomb waves with incoming wave asymptotic behavior. This calculation is tremendously difficult and we address this problem
in the second part of this section where we develop a fully numerical approach. Finally, we want to point out that the full wave
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packet should be normalized before calculating the spectrum. Our reformulation of the SFA that leads to the solution of an
inhomogeneous TDSE clearly shows that the norm of the full wave packet is not conserved. On the other hand, in all studies
where the validity of the SFA is assessed, the SFA results for the electron energy spectrum are normalized by forcing the latter
to coincide with the TDSE results at a given energy. In other words, it may appear that the normalization factor is irrelevant.
However, if we want to compare SFA results using an Ansatz from different families or simply evaluate the probability to stay in
the ground state at the end of the pulse, the normalization factor may become important. This factor is given by

〈
�SFA

1,V

∣∣�SFA
1,V

〉 = 1 + 4i

π2

∫
d3p

(p2 + 1)3

∫ t

0
ei[S( �p,ξ )−ε0ξ ]dξ + c.c. + 2

π2

∫
d3p

(p2 + 1)2

∫ t

0
e−i[S( �p,ξ1)−ε0ξ1]dξ1

∫ t

0
ei[S( �p,ξ2)−ε0ξ2]dξ2,

(40)

where c.c. stands for complex conjugate of the second term. Let us note that in the limit where the ground state is not depleted,
this norm goes to 1. If, on the contrary, the ground state is partially depleted, the probability amplitude to stay in the ground state
is calculated by projecting the full wave packet on the ground state,

〈
ϕ0e

−iε0t
∣∣�SFA

1,V

〉 = 8

π2

∫
d3p

(p2 + 1)4
e−i[S( �p,t)−ε0t] + 4i

π2

∫
d3p

(p2 + 1)3

∫ t

0
e−i[S( �p,t)−S( �p,ξ )]+iε0(t−ξ )dξ, (41)

and by dividing the result by the square root of the norm (40).
Let us now consider the expression of the full wave packet �̃2,L(�r,t) that corresponds to our L-gauge Ansatz of the second

family. Starting from Eqs. (32) and (33), we obtain

�̃SFA
2,L (�r,t) = e−iε0t ϕ̃0(�r) − i

∫
d3p

(2π )3
χ̃L(�r, �p,t)

∫ t

0
dξ b′′(ξ )e−iε0ξ

∫
d3r ′χ̃∗

L(�r ′, �p,ξ )(�e · �r ′)ϕ̃0(�r ′)

= e−ib′(t)(�e·�r)
∫

d3p

(2π )3
ei �p·�r�SFA

2,V ( �p,t), (42)

where

�SFA
2,V ( �p,t) = e−iS( �p,t)

[
ϕ0( �p) + i

∫ t

0
dξ [P 2(ξ )/2 − ε0]ϕ0[ �P (ξ )]eiS( �p,ξ )−iε0ξ

]
. (43)

This last expression follows from Eqs. (34) and (35). Note that expression (42) for the full wave packet leads to PPT’s result. In
addition, projecting �̃SFA

L on plane (Volkov) waves gives a Keldysh transition matrix element within a phase factor. The electron
energy spectra as well as the probability to stay in the ground state at the end of the pulse can be calculated in the same way as
before.

2. First- and second-order SFA

In the tunneling regime, the numerical calculation of the
above semianalytical expressions that involves multiple inte-
grations of highly oscillating functions is extremely difficult
thereby requiring special techniques such as the stationary
phase method. Needless to say that high-order terms in the
Coulomb potential that describe multiple rescattering of the
electrons by the ionic core are even more complicated to
calculate. In addition to multiple integrations, the Coulomb
potential introduces singularities that have to be treated with
care. The forward rescattering of slow returning electrons by
the ionic core has been invoked by several groups [17–19] to
explain the existence of the famous low- and very-low-energy
structures in the energy distribution of the emitted electrons
along the polarization axis [20–22]. They calculated the
second-order term, namely the so-called rescattering term
within the SFA, while treating the singularity (related to
the divergence of the Rutherford scattering in the forward
direction) in a rather heuristic way. Very recently however,
Titi and Drake [23] presented an accurate treatment of this
singularity by introducing a regularization scheme in the case
of an electric field of constant intensity.

For the sake of illustration and in order to get more insight
into the role of the Coulomb potential, we calculate here the
first two terms of the expansion of the SFA amplitude in power

of the Coulomb potential in the case of the interaction of atomic
hydrogen with a laser pulse, the vector potential of which has
the following form:

b′(t) = 1

ω0

√
I

I0
sin2

(
π

t

T

)
sin(ω0t + φ). (44)

Here, ω0 = 0.057 a.u. is the field frequency and T = 2πN/ω0

is the total pulse duration with N = 6, the total number of
optical cycles. I = 8.7 × 1013 W/cm2 is the peak intensity,
I0 = 3.5 × 1016 W/cm2 being the atomic unit of intensity. φ is
the carrier phase which is set equal to zero in the following. Our
calculations rely on several approximations that are discussed
in the following. We start from the L-gauge Ansatz (32) of
the second family and write the solution F̃2,L(�r,t) of the
inhomogeneous TDSE as an expansion in terms of plane
waves:

F̃2,L(�r,t) =
∫

d3k

(2π )3
M(�k,t)〈�r|�k〉. (45)

Using this condition and if we assume that there is no depletion
of the ground state which means that the norm of the total
wave packet is equal to 1, the present formulation is very
close to the so-called Lewenstein model [8]. Note however
that in Lewenstein’s model, F̃2,L(�r,t) is actually expanded on
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the eigenstates of the field-free Hamiltonian, i.e., in Coulomb
waves. After substituting Ansatz (32) into the TDSE and taking
into account expansion (45) we obtain the following equation
for the amplitude M(�k,t):

∂

∂t
M(�k,t) = −i

(
k2

2
−ε0

)
M(�k,t) − ib′′(t)dz(�k) + b′′(t)

× ∂M(�k,t)

∂kz

+
∫

d3u

(2π )3
M(�u,t)〈�k|V |�u〉, (46)

where dz(�k) = 〈�k|z|ϕ̃0〉 is the dipole coupling between the
ground state and a continuum wave function (here the plane
wave |�k〉). V , for the time being, is the Coulomb potential.
Using the expansion in terms of field-free Hamiltonian
eigenstates leads to Eq. (10) of Ref. [8]. Equation (46) has
the great advantage of decoupling the contribution of the
potential V in the wave-packet dynamics while in [8], the
Coulomb effect is introduced by using Coulomb waves for
the field-free Hamiltonian eigenstates. In proceeding in this
way, the orthogonality of the Coulomb waves to the ground
state ϕ0 is preserved. The difficulty of Lewenstein’s formalism
lies therefore in a proper description of the dipole transitions
between Coulomb waves. In [8], this dipole element is approx-
imated as i∇kz

δ(�k − �u) + g(�k,�u). One recognizes in the first
term the contribution of the plane-wave asymptotic behavior
of the Coulomb wave, while the g term includes the scattering
amplitude. Neglecting the effect of V in Eq. (46) and setting
g = 0 in Eq. (10) of Ref. [8] gives the same following result:

M (1)( �p,T ) ≡ F
(1)
2,L( �p,T )

= −ie−iS( �p,T )
∫ T

0
dξ b′′(ξ )dz[ �P (ξ )]ei[S( �p,ξ )−ε0ξ ], (47)

which is the lowest-order perturbation as described in the
previous sections. The photoelectron spectrum is given by
p|M( �p)|2. As mentioned in the previous sections, we should,
in principle, project the wave function onto exact eigenstates of
the field-free Hamiltonian. But for the sake of simplicity, plane
waves will be used in this semianalytical approximation. The
next order can also be calculated analytically and the solution is

M (2)( �p,T ) ≡ F
(2)
2,L( �p,T )

= −e−iS( �p,T )
∫ T

0
dξ eiS( �p,ξ )

∫ ξ

0
dη b′′(η)e−iε0η

×
∫

d3u

(2π )3
〈 �p|V |�u〉e−iS(�u,ξ )+iS(�u,η)dz[ �U (ξ )],

(48)

where �U (ξ ) is related to �u by relation (4). Note the presence of
the coupling term 〈 �p|V |�u〉 = − 4π

| �p−�u|2 for the atomic hydrogen

case. The M (1) and M (2) terms have also been introduced in
[24] using the S-matrix formalism and the completeness of
the Volkov basis. There is a phase difference between our
results and those from [24], which appears to be the same for
M (1) and M (2) and thus plays no role. A singularity is present
in the integrand of expression (48). This singularity is usually
overcome by replacing the Coulomb potential by a Yukawa
potential [V (r) = e−αr

r
].

In Fig. 1 we plot the result obtained for the energy
distributions |M (1)|2, |M (2)|2 along the polarization axis for an
ejection angle of θ = 0◦. The integration over the intermediate
momentum is performed by using the saddle-point method.
The contribution of the lowest-order amplitude M (1), which
describes direct electrons, is dominant for electron energies
below 2Up where Up is the ponderomotive potential given by
I/4ω2

0 in atomic units. On the contrary, the second-order term
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FIG. 1. Energy distribution of the electrons emitted in the forward direction along the polarization axis and resulting from the interaction
of atomic hydrogen with a six-cycle pulse of frequency ω0 = 0.057 a.u. and peak intensity I = 8.7 × 1013 W/cm2. The results are obtained
within the SFA approximation by using the L-gauge Ansatz of the second family. The final wave packet is projected on plane waves and the
Coulomb potential replaced by a Yukawa potential of parameter α. The blue curve corresponds to the modulus square of the first term of the
expansion of the SFA amplitude in power of the Yukawa potential while the red curve corresponds to the second term of the expansion. Two
values of α are considered: (a) α = 1 a.u. and (b) α = 0.5 a.u.
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dominates in the range 2Up–10Up where elastic recollision
occurs [8,25]. When the Yukawa potential parameter α is
reduced from 1 to 0.5 a.u., |M (2)|2 becomes of the same
magnitude as |M (1)|2. For energies below 2Up, |M (2)|2 actually
starts to behave like |M (1)|2 while it is barely affected in the
2Up–10Up energy range. When α is even smaller, it starts
to diverge below 2Up due to the saddle-point approximation
and the divergence present in the integral. The integrand is
diverging but it is an integrable divergence. In conclusion, the
term |M (2)| is larger than the |M (1)| and exhibits the same
behavior in energy below 2Up and the Coulomb asymptotic
behavior manifests itself for low-energy electrons as expected.
Moreover, in Eq. (47), this problem already arises when using
the proper definition of dz if the wave function is expanded
on eigenstates of the field-free Hamiltonian, i.e., on Coulomb
waves as expressed in [8]. The dipole is then written as follows:

〈ϕ̃−(�k)|z|ϕ̃0〉 = −8
√

(2)

π
i

kz

(1 + k2)3
(1 + iγ )�(1 + iγ )

×
(

1 + kγ

2

)
e2φγ e−πγ/2, (49)

with γ = −Z
k

and φ = arctan(k). ϕ̃−(�k,�r) is a Coulomb
wave with an asymptotic incoming wave behavior. Taking
the limit of |〈ϕ̃−(�k)|z|ϕ̃0〉| as k → 0 using the expression in
Eq. (49), after a little algebra, one can show that in this limit
|〈ϕ̃−(�k)|z|ϕ̃0〉| ∝ 1/

√
k. So when integrating over t in Eq. (47)

there are times for which �p ≈ b′(t)�e and, due to the k → 0
behavior, M (1) can no longer be calculated with the formulation
given in [8]. Note that this condition is sensitive to the angle of
ejection also. Along the polarization axis, the latter condition
is not anymore satisfied for energies above 2Up so that the
calculation of the integral in Eq. (47) can be performed.

B. Fully numerical treatment

As stressed in the previous subsection, the calculation of
the electron energy spectra as well as the probability to stay in
the ground state at the end of the pulse by means of the above
semianalytical formulas is rather cumbersome and requires
several approximations. By contrast, our reformulation of SFA
offers the possibility of a fully numerical treatment allowing
one to address unsolved questions such as the convergence
of the perturbation expansion in the Coulomb potential of the
full wave packet. In the following, we consider the calculation
of the full wave packet from the V -gauge Ansatz of the first
family. We recall that this wave packet is

�̃V (�r,t) = e−iε0t ϕ̃0(�r) + F̃1,V (�r,t), (50)

where the function F̃1,V (�r,t) is the solution of the following
inhomogeneous TDSE:[

i
∂

∂t
+1

2
�r−ib′(t)(�e · �∇r ) − ζ ′(t)

]
F̃1,V (�r,t) + Z

r
F̃1,V (�r,t)

= [ib′(t)(�e · �∇r ) + ζ ′(t)]e−iε0t ϕ̃0(�r). (51)

The right-hand-side term of this equation is a source term
that leads to a transfer of population from the ground state
to both bound and continuum s and p states. We solve this
inhomogeneous equation by means of a spectral method which

consists of expanding the solution in a basis of Coulomb
Sturmian functions [26]. Note that all the time propagation
methods such as the split operator method and the Crank-
Nicolson method that are based on the well-known expression
of the time evolution operator in terms of the exponential of
the Hamiltonian cannot be used directly. In the present case,
we use a diagonally implicit Runge-Kutta method of order
2 [27]. We have checked that if we solve Eq. (51) without
approximation and substitute the solution in the Ansatz (50) to
get the full wave packet, this latter one, properly normalized,
coincides with the exact solution of the corresponding TDSE.
Let us now solve the inhomogeneous equation (51) iteratively
to generate a perturbation expansion (Born series) of F̃1,V (�r,t)
in powers of the Coulomb potential. We write

F̃1,V (�r,t) =
∑
n=1

F̃
(n)
1,V (�r,t), (52)

where F̃
(1)
1,V (�r,t) satisfies the following equation:[
i

∂

∂t
+ 1

2
�r − ib′(t)(�e · �∇r ) − ζ ′(t)

]
F̃

(1)
1,V (�r,t)

= [ib′(t)(�e · �∇r ) + ζ ′(t)]e−iε0t ϕ̃0(�r), (53)

and F̃
(n)
1,V (�r,t) for n > 1, the equation[

i
∂

∂t
+ 1

2
�r − ib′(t)(�e · �∇r ) − ζ ′(t)

]
F̃

(n)
1,V (�r,t)

= −Z

r
F̃

(n−1)
1,V (�r,t). (54)

We note that at the end of the propagation, we normalize the
wave function by dividing by the factor

N =
√

〈ϕ̃0(t) + F̃1,V (t)|ϕ̃0(t) + F̃1,V (t)〉 (55)

with F̃1,V (t) given by Eq. (52). The (usual) SFA consists
in keeping only the first term F̃

(1)
1,V (�r,t) in the perturbation

expansion (52) while SFA of order n with n > 1 is obtained
by keeping the first n terms of this expansion (52).

In order to show the pertinence of this fully numerical
treatment and to study more in depth the validity of the SFA, let
us consider a particularly simple case. As before, we assume
that the vector potential is given by the formula (44). In all
the results presented in this section, we choose ω0 = 0.7 a.u.,
N = 4 cycles, I = 1014 W/cm2, and the carrier phase φ equal
to zero. In Fig. 2, we show the energy distribution of the
emitted electrons along the polarization axis. The red curve
corresponds to the results obtained by solving the TDSE. We
compare these TDSE results to those we obtain within SFA
by using the V -gauge Ansatz of the first family. The green
curve and the blue dots correspond to a semianalytical and
a fully numerical calculation respectively. The semianalytical
calculations are based on formula (37) divided by the norm
(55). Note that, in the present case, the norm is very close to 1
thereby justifying our way of removing the 1s state from the
total wave packet. The fully numerical treatment consists of
solving numerically Eq. (53). It is then necessary to normalize
the full wave packet (50) and to remove from it the 1s state
component before projecting on plane waves. We see in Fig. 2
that the agreement between the two SFA calculations is perfect.

023422-8



REFORMULATION OF THE STRONG-FIELD . . . PHYSICAL REVIEW A 93, 023422 (2016)

FIG. 2. Energy distribution of the electrons emitted along the
polarization axis, resulting from the interaction of atomic hydrogen
with a four-cycle pulse of frequency ω0 = 0.7 a.u. and peak intensity
I = 1014 W/cm2. The red curve corresponds to the TDSE results
projected on the Coulomb wave. They are compared to SFA results
(in first order) obtained by means of the V -gauge Ansatz of the first
family. The blue dots correspond to a semianalytical calculation based
on Eq. (37) and the green curve corresponds to the fully numerical
treatment.

However, it is important to note that, within SFA and contrary
to what is usually believed, the population of the bound p states
is rather significant at the end of the interaction. Since the
plane waves are not orthogonal to these p states, they should
be removed from the final SFA wave packet before projecting
on the plane waves. The removal of these p states affects very
significantly the electron energy distribution for the whole
range of energies considered here and destroys the rather good
agreement we observe between SFA and TDSE results.

Let us now compare TDSE with SFA results for the energy
distribution obtained by projecting the final wave packet on
Coulomb and plane waves. As shown in Fig. 3, the most
significant differences manifest in the low-energy region of the
energy distribution, i.e., in the main peak in the present case.
The SFA peak is shifted towards the right, simply because the
energy is not conserved when the full wave packet at the end
of the pulse is projected on plane waves. In addition, due to
the normalization factor of the plane waves, the SFA energy
distribution is zero at zero electron energy. These conclusions
are confirmed in Fig. 3 where we compare TDSE and SFA
results obtained by projecting the final wave packet on plane
waves and Coulomb waves with an incoming wave character
asymptotically. It is important to note that when the SFA wave
packet is projected on Coulomb waves, the main peak is now
shifted towards the left, i.e., towards the low energies. Further-
more, we also observe a decrease of the amplitude of this peak.
This last feature is also true in the case of the TDSE results.

Our reformulation of the SFA allows one to calculate
high-order terms in the Coulomb potential and therefore to
address the unsolved question of the convergence of the
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FIG. 3. Energy distribution of the electrons emitted along the
polarization axis, resulting from the interaction of atomic hydrogen
with a four-cycle pulse of frequency ω0 = 0.7 a.u. and peak intensity
I = 1014 W/cm2. The red curves correspond to the TDSE results
obtained by projecting the final wave packet on Coulomb waves
(full line labeled TDSE-CW) and plane waves (dashed line labeled
TDSE-PW). The dark blue curves correspond to SFA results (in first
order) obtained by projecting the final wave packet on Coulomb waves
(full line labeled SFA-CW) and on plane waves (dashed line labeled
SFA-PW).

perturbation expansion (52) [28]. As mentioned earlier, the
second-order term, usually called the re-scattering term, has
been calculated (without normalization of the full wave packet)
by several groups [8,24,29–33] in the low-frequency regime.
These calculations show that backscattering of the electrons by
the ionic core is responsible for a plateau extending from about
2Up to 10Up in the energy spectrum. In addition, it has been
proposed that the second-order term plays an important role in
explaining the existence of the famous low-energy structures
[20] as the result of a forward scattering of the returning
electron by the ionic core [17,18,23]. In the present case and
instead of using semianalytical formulas which turn out to
be tremendously difficult to evaluate, we calculate high-order
terms by solving Eq. (51) iteratively. Once this is done, we
normalize the full SFA wave packet before projecting it on
plane waves to get the electron energy distribution along the
polarization axis. In Fig. 4, we compare our TDSE results
to SFA results that include up to third-order corrections. It
turns out that the second-order SFA result that requires the
calculation of F̃

(2)
1,V (�r,t), is about ten times higher than the

first-order SFA result that corresponds to the regular SFA.
The third-order term is still about twice the second-order
term. It is worth mentioning that we noticed that the SFA
of the second order can be obtained from the first order
simply by multiplying by a constant factor within a broad
range of energies. Obviously, this raises the question of the
convergence of the perturbation expansion of the full SFA
wave packet. In order to try to answer to this question in this
case, we show in Fig. 5 the total ionization probability as a
function of the order n of the perturbation expansion of the
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FIG. 4. Energy distribution of the electrons emitted along the
polarization axis, resulting from the interaction of atomic hydrogen
with a four-cycle pulse of frequency ω0 = 0.7 a.u. and peak intensity
I = 1014 W/cm2. The red full curve corresponds to the TDSE results.
The dashed curves correspond to the SFA results: the first, second,
and third orders are shown.

full SFA wave packet. We first perform the calculations for
the Coulomb potential and then replace the Coulomb potential
by the Yukawa potential −Z exp(−r/10)/r in Eq. (54). In the
case of the Coulomb potential we see that the total ionization
probability goes to 1 for perturbation orders higher than 13.
This actually results from the divergence of the perturbation
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FIG. 5. Total probability of ionization of atomic hydrogen in-
teracting with a four-cycle pulse of frequency ω0 = 0.7 a.u. and
peak intensity I = 1014 W/cm2 as a function of the order n of the
perturbation expansion of the full SFA wave packet. The results have
been obtained for a pure Coulomb potential (red dots) and a Yukawa
potential (blue dots). The parameter of the Yukawa potential is equal
to 0.1 a.u.

expansion. It is legitimate, in these conditions, to analyze
whether this divergence results from the Coulomb singularity
at the nucleus or from the infinite range of the potential.
The Yukawa potential may be viewed as a screened Coulomb
potential with a finite range which, in the present case, is equal
to about 10 a.u. The results presented in Fig. 5 show that the
perturbation expansion diverges also in the case of the Yukawa
potential. This seems to indicate that it is most likely the
Coulomb singularity which is responsible for this divergence.
Of course, this is not a rigorous mathematical proof of the
existence and the origin of this divergence. It is important to
study the behavior of this perturbation expansion for a broad
range of frequencies and in particular in the low-frequency
regime. This latter problem which is much more demanding
from the computational point of view will be addressed in a
forthcoming publication.

IV. RESULTS AND DISCUSSION

In this last section, we consider the interaction of atomic
hydrogen with a two-cycle pulse given by Eq. (44). The
frequency is equal to 0.057 a.u. that corresponds to a wave-
length of 800 nm (Ti-sapphire laser) and the peak intensity
is 1014 W/cm2. As before, the carrier phase φ is set equal to
zero. We calculate the electron energy distribution along the
polarization axis both in the forward and backward direction
and focus on the low-energy part of this distribution. Our
first objective is to compare TDSE and SFA results obtained
by means of two Ansätze belonging to different families. The
SFA calculations are performed by means of the semianalytical
formulas given in the previous section. Note that in these
calculations, we explicitly calculate the norm of the SFA wave
packet at the end of the interaction with the pulse. The second
objective is to calculate the first- and second-order SFA wave
packet fully numerically by using the V -gauge Ansatz of the
first family in the same physical situation. In this case also,
the SFA results are fully normalized and the final SFA wave
packets are projected on plane waves and Coulomb waves.

In Fig. 6, we show the TDSE results both in the backward
and forward directions and the SFA results obtained by
using Ansatz (28). TDSE results show a striking dissymmetry
between forward and backward directions. The main signal
is observed in the backward direction because, as shown in
[34], the major part of the emitted electronic wave packet
undergoes a rescattering by the ionic core in the backward
direction. By contrast, the SFA calculations that do not take
the rescattering into account give identical results in both
directions. It is interesting to note that the SFA results are
in good qualitative agreement with the TDSE results although
three orders of magnitude lower. In Fig. 7, the V -gauge SFA
result (first family) is compared to the L-gauge SFA result
(second family). The overall behavior is qualitatively the same
except that the L gauge is one order of magnitude higher than
the V -gauge result. The fact that both L- and V -gauge (first
order) SFA results are identical in the forward and backward
directions may be explained from the semianalytical formula
provided that the SFA wave packet is projected on plane waves.
In the following and before calculating the second-order SFA
amplitude, we examine whether this result is still valid if we
project the (first order) SFA wave packet on Coulomb waves. In
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pulse duration = 2 optical cycles

TDSE (backward direction)

TDSE (forward direction)

SFA x 1000 (first family ansatz,
backward and forward direction)

peak intensity = 1014 W/cm2

FIG. 6. Energy distribution of the electrons emitted along the
polarization axis, resulting from the interaction of atomic hydrogen
with a two-cycle pulse of frequency ω0 = 0.057 a.u. and peak
intensity I = 1014 W/cm2. The carrier phase is equal to 0 which
means that the electric field exhibits a strong minimum at the middle
of the pulse. The red curves correspond to the TDSE results in
backward direction (full red line) and in the forward direction (red
dashed line). The blue full line corresponds to the SFA results
(multiplied by a factor 1000) and obtained by using the Ansatz (28)
of the first family.
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FIG. 7. Energy distribution of the electrons emitted along the
polarization axis, resulting from the interaction of atomic hydrogen
with a two-cycle pulse of frequency ω0 = 0.057 a.u. and peak
intensity I = 1014 W/cm2. The carrier phase is equal to 0. Both curves
have been obtained within the SFA by using Ansatz (28) of the first
family (dark blue line) and Ansatz (32) of the second family (magenta
line).
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FIG. 8. Energy distribution of the electrons emitted along the
polarization axis, resulting from the interaction of atomic hydrogen
with a two-cycle pulse of frequency ω0 = 0.057 a.u. and peak
intensity I = 1014 W/cm2. The carrier phase is equal to 0. The
full blue line corresponds to the SFA results obtained by using the
V -gauge Ansatz of the first family and by projecting the final wave
packet on plane waves. These SFA results are the same in the forward
and backward directions. The red curves correspond to SFA results
in which the final wave packet is projected on Coulomb waves. The
red dashed curve refers to the forward direction and the full red curve
to the backward direction.

Fig. 8, we show the SFA results of a fully numerical calculation
based on the V -gauge Ansatz of the first family. When the SFA
amplitude is projected on plane waves at the end of the pulse,
we reproduce exactly the results of the calculation based on the
semianalytical formulas. In that case the energy distributions
are the same in both directions. However, if we project the
final SFA wave packet on Coulomb waves, we recover the
strong dissymmetry observed in the TDSE results: electron
emission in the backward direction is strongly favored with
respect to the forward direction. However, the shape of the
energy distribution in the backward direction is rather different
from the corresponding TDSE result. It shows a sharp rise for
electron energies going to 0.

In Fig. 9, we compare the TDSE results in both directions to
second-order SFA results that take into account the rescattering
of the electrons by the ionic core. These second-order SFA
results are obtained fully numerically by using the V -gauge
Ansatz of the first family. They are properly normalized and
the final wave packet is projected on plane waves and Coulomb
waves. A first finding is that in the energy range considered
here (below 2Up), including the second-order contribution in
the SFA amplitude is equivalent to multiplying the first-order
term by a constant factor, the value of which is very high.
In the forward and backward directions, this factor is equal
to about 500 and 100 respectively. In addition, this feature
does not depend on the continuum wave function (plane wave
or Coulomb wave) the final wave packet is projected on. This
result confirms what we found in the previous section where we
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FIG. 9. Energy distribution of the electrons emitted along the polarization axis in the forward (a) and in the backward (b) directions and
resulting from the interaction of atomic hydrogen with a two-cycle pulse of frequency ω0 = 0.057 a.u. and peak intensity I = 1014 W/cm2.
The carrier phase is equal to 0. The full red curves refer to the TDSE results. The blue curves correspond to the second-order SFA results
obtained by using the V -gauge Ansatz of the first family. The blue dashed and full curves refer to these second-order SFA results obtained by
projecting the final wave packet on plane waves and Coulomb waves respectively.

treated second-order effects for 800 nm (ω0 = 0.057 a.u.) with
an approximate calculation based on semianalytical formulas
(see Fig. 1) and at 65 nm (ω0 = 0.7 a.u.) with a fully numerical
calculation (see Fig. 4). In this context, it is important to note
that the first-order term and the second-order term satisfy the
inhomogeneous TDSE (53) and (54) respectively. Those two
equations are the same except for the source terms. Beside this
general remark, we also observe that in the forward direction,
projecting the final wave packet on Coulomb waves instead
of plane waves leads for energies below 5 eV to a shift of the
energy distribution towards lower energies. By contrast, in the
backward direction, projecting on Coulomb waves drastically
changes the shape of the energy distribution.

Comparing our results for high frequency ω0 = 0.7 a.u.,
with those at low frequency ω0 = 0.057 a.u., we note that first-
order SFA reproduces quite well the shape and overall size of
the energy distribution for ω0 = 0.7 a.u. and the shape but not
the size for ω0 = 0.057 a.u. This can be understood from the
fact that for ω0 = 0.7 a.u. the energy distribution is dominated
by single-photon absorption and it has been shown in [12]
that the SFA amplitude reduces to the first-order perturbation
theory in limiting cases. For ω0 = 0.057 a.u., on the other hand,
many real or virtual photons need to be absorbed for ionization
and it is well known that the first-order SFA ionization rate is
too low due to the neglect of the Coulomb field in the final
state. When we include the Coulomb field perturbatively by
including second- and higher-order effects in SFA the shape
remains largely the same but the size of the energy distribution
increases dramatically indicating the relevance of the Coulomb
field for the ionization rate. However, we find that the energy
distribution appears to diverge for higher-order SFA whereas
nonperturbative semiclassical approaches to treat the Coulomb
field have led to good agreement with TDSE results [12,35].

Projecting the SFA wave packet on the correct Coulomb
final state as opposed to plane waves results in two effects at all

frequencies. One is a shift in the peak of the energy distribution
to lower energies which arises due to energy conservation.
The second is a dramatic change in the behavior of the energy
distribution at low energies near the ionization threshold (see
for example Fig. 8). For plane waves the energy distribution
vanishes at threshold but for Coulomb waves it is finite. This
calls into question the use of first- and second-order SFA
with plane waves in calculating low-energy structures [20].
For higher electron energies there is, as expected, very little
difference between projecting on plane waves and Coulomb
waves (see Fig. 8).

V. CONCLUSION AND PERSPECTIVE

In this contribution, we showed that the various treatments
based on the strong-field approximation may be grouped into
a set of families of approximation schemes. We introduced
different Ansätze that describe the electron wave packet as the
sum of the initial state wave function multiplied by a phase
factor and a function which is the perturbative solution in the
Coulomb potential of an inhomogeneous TDSE. It is the phase
factor that determines which family of approximation schemes
the SFA treatment belongs to. We considered two families.
In each of them, the velocity and the length gauge versions
of the approximation scheme give, by construction, identical
results at each order in the Coulomb potential. By contrast, and
irrespective of the gauge, approximation schemes belonging
to different families lead to different results. We showed how
to construct and solve numerically the SFA wave packet to
arbitrary order using an iterated inhomogeneous TDSE. This
also allowed us to project the solution onto either Coulomb or
plane-wave final states.

This reformulation clarifies the long-standing problem of
the gauge in the context of the SFA. It also allowed us to
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address two important issues. The first one concerns the role
of the Coulomb potential in the output channel. In other words,
if we project the SFA wave packet at the end of the interaction
with the external field on Coulomb waves instead of plane
waves as it should be, how will this affect the low-energy
part of the electron energy distribution? The second issue is
the convergence of the perturbative series in the Coulomb
potential. In order to study the role of the Coulomb potential
in the output channel, we used the V -gauge Ansatz of the first
family. In that case, the inhomogeneous TDSE can be solved
numerically by means of a spectral method. At high frequency,
all the low-energy structures are shifted towards lower energies
as expected. At low frequency however, drastic changes of
the shape of the energy distribution occur. To address the
problem of the convergence of the perturbative series, we first
studied the second-order SFA for a wavelength of 800 nm with
two different methods. The first one is based on approximate
semianalytical formulas associated to the L-gauge Ansatz of
the second family. The second method is based on the fully
numerical solution of the inhomogeneous TDSE associated to
the V -gauge Ansatz of the first family. Both methods show
that for electron energies below 2Up, the second-order SFA
amplitude is actually the first-order one multiplied by a large
factor. By using the second method in a much simpler case,
namely a frequency of 0.7 a.u., we were able to calculate many
high-order terms. Our results indicate that in this particular
situation, the perturbative series actually diverges. Of course,
this does not represent a rigorous proof of the divergence of
this series. This point which deserves a deeper analysis will be
treated elsewhere.
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