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Single ionization of helium by fast proton impact in different kinematical regimes
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We present ultrahigh-resolution data on fully differential cross sections for single ionization of helium induced
by 1 MeV proton impact. In the present work we explore a different regime of kinematic conditions in terms of
momentum transfer and electron energies than previously published data. These data are compared with different
theoretical calculations. Reasonable agreement between the first Born approximation and experiment is obtained
in the kinematic regime close to the Bethe ridge. Far from this region the calculated binary peak is shifted with
respect to experiment. In order to resolve this problem, we analyze several theoretical mechanisms beyond the
customary first Born approximation theory. These mechanisms include the 3C model (three Coulomb functions),
effective charges, off-shell pair T matrices instead of pair potentials, and semiclassical postcollision interaction.
We find that a combination of the 3C model with a semiclassical postcollision interaction effect may explain the
observed discrepancy.
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I. INTRODUCTION

The study of atomic ionization by fast ions is of funda-
mental importance for atomic collision physics and for the
physics of penetration of swift ions through matter, including
applications in radiation material science [1] and ion ther-
apy [2,3]. One of the most powerful tools in this field of
research is the cold target recoil ion momentum spectroscopy
(COLTRIMS) [4–9]. This technique is capable of determin-
ing the three-dimensional angular distribution of electrons
emitted at given values of energy and momentum transfer
with unprecedented precision [10,11]. This is achieved by
the coincident measurement of electron and ion momentum
vectors. Such fully differential cross sections (FDCSs) pro-
vide very detailed information about the ionization process
and thus greatly stimulate the development of the relevant
theoretical methods and approaches, ranging from the cus-
tomary perturbation treatments, such as the first and second
Born approximations, to the well-known continuum distorted-
wave–eikonal initial-state (CDW-EIS) model [12,13] and the
time-dependent and convergent close-coupling calculations
(TDCCs [14] and CCCs [15], respectively).

In our previous study [16], we reported high-resolution
data for the emission of electrons with energy Ee = 6.5 ±
3.5 eV in 1-MeV proton-helium collisions at momentum
transfer q = 0.75 ± 0.25 a.u. For comparison with theory, we
employed both the usual first Born approximation (FBA) with
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respect to the proton-helium interaction, where the incident
and scattered proton states are treated as plane waves, and
the eikonal wave Born approximation that accounts for the
eikonal distortion effects in the final channel. The data exhib-
ited a well-pronounced nodal structure, which is in agreement
with FBA predictions. At the same time, some discrepancy
between FBA and experiment was found in the scattering
plane: the binary and recoil peaks appear to be shifted towards
smaller emission angles compared to the FBA calculations.
In the recent work [17] we already used the second Born
approximation (SBA) and the 3C (or BBK) model [18],
which takes into account interactions between all three final
fragments. The theoretical calculations have been compared
with experiment in coplanar geometry. In order to explain the
ratio of recoil- to binary-peak intensity, it has been shown that
it is also necessary accounting for the strong effect of electron-
electron correlations in the ground state of the He atom [17].
The 3C model reasonably agrees with experiment in the recoil
peak, but a discrepancy of a few degrees with experiment still
remains in the case of the binary peak. This means that further
investigation of the origin of the disagreement between theory
and experiment is necessary.

There are two main, seemingly different approaches usu-
ally employed in the theoretical treatment of reactions in-
volving fast protons. In the one approach, the time-dependent
Schrödinger equation (TDSE) is considered, where the inci-
dent proton acts as a classical particle, i.e., a moving point
source of the electric field. In the other approach, using
the time-independent Schrödinger equation (TISE), all three
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particles are treated quantum mechanically. In both cases one
often uses the CDW-EIS model (see, for instance, the useful
review articles [19,20]). It is worth mentioning that the 3C
function can also be considered within the CDW approxi-
mation. Another frequently employed method for calculating
the final state of three charged particles is the CCC theory.
There are a great number of publications devoted to this
method, so we limit ourselves to mentioning only the basic
work [21]. In the framework of the CCC theory, the final-state
wave function is approximated by a superposition of basis
wave functions of a discrete spectrum with positive energies
constructed in a certain way. Since this approximation is not
used in this study, we will not dwell on it in detail.

Let us discuss those works in which, to our knowledge, the
shift of a binary peak was inspected. In addition to protons, we
also discuss antiproton projectiles. In the usual version of FBA
(i.e., where both the incident and scattered projectile states are
described with plane waves), the binary and recoil peaks are
back-to-back and rotationally symmetric around the direction
of the momentum transfer �q = �pi − �ps, where �pi(s) is the inci-
dent (scattered) projectile momentum. In other words, in this
version the momentum-transfer vector is the only “external”
vector that defines the symmetry axis for the distribution of the
ejected-electron momentum �ke. When going beyond the FBA
theory, for example, when using distorted waves, the proton
velocity vector �vp also comes into play, and the peaks can
shift. In the case of protons, one might expect the peaks to
be shifted towards the z axis (the incoming proton velocity
vector), since the electron is attracted to the proton. In the
case of an antiproton, the shift should occur in the opposite
direction. This is indeed the case, regardless of the theories
used: here are just a few works from the long list [17,22–25].

However, close inspection shows interesting features. In
Ref. [17], the contributions from the final-state proton-
electron (pe) and proton-nucleus (pN) interactions in the 3C
model were studied separately. It was found that the pN
interaction shifts the binary peak of the electron distribution to
smaller angles between the projectile proton and the electron,
whereas the pe interaction, on the contrary, shifts the peak
away from the proton. Their joint action “attracts” the electron
to the proton (a similar effect was observed in Ref. [26]). At
the same time, in the work [25], where the scattering of an
antiproton on atomic hydrogen was investigated in the frame-
work of the TDCC theory, the p−N interaction was found to
have practically no effect on the position of the binary peak.
We note that this interaction is introduced into the theory by a
standard, but ad hoc, method, and the energy of the antiproton
was relatively small there. Thus, the problem of the shift of the
peak and the magnitude of this shift at various kinematic pa-
rameters and, depending on the approximation used, remains
a very interesting issue both for theory and for experiment.

In the present case of single ionization of helium, one may
assume that the incident energy of 1 MeV and higher should
be enough for the first-order theories to be valid. Most of
the calculations have been done for the kinematic regime of
small momentum transfer (0.75 a.u.) and low ejected-electron
energy (6 eV). Even for such kinematics the calculations
within two distinct approaches of, respectively, Refs. [17] and
[22] give practically the same shift of the binary peak with
respect to the FBA position. This shift turns out to be too

small for explaining the experiment. In this connection it is
worth mentioning the recent work [27], where the classical
trajectory Monte Carlo (CTMC) method has been employed
for calculations of FDCS. The scattered proton and emitted
electron in this approach move along classical trajectories, and
as compared to other aforementioned approaches, the CTMC
method yields smaller disagreement between the calculations
and experiment in terms of the binary-peak position. This
provides a hint on how to cope with a problem clearly seen
from previous works that the 3C function, having formally the
proper radial asymptotics, apparently is unable to reproduce
all the details of three-body final motion at large distances.
Namely we can combine the 3C model with simple ideas
of the quasiclassical postcollision interaction (PCI) approach
[28]. We discuss this issue below in Sec. IV E.

Another important aspect to be pointed out with respect to
the present study is that one can investigate various types of
differential cross sections in the analysis of the COLTRIMS
data. In particular, the following form of the fully differential
cross section (FDCS) has been studied in Ref. [17]:

FDCS = d5σ

dEed�ed�p
= kem2

p

(2π )5
|Tf i|2, (1)

where �e and �p specify the solid angles of the emitted elec-
tron and scattered proton, and Tf i is the scattering amplitude.
In contrast, the work [16] plotted instead

FDCS = d5σ

dEedθedφedqdφq
= | sin θe| keq

(2π )5v2
p

|Tf i|2, (2)

where θe and φe are the polar and azimuthal angles of the emit-
ted electron relative to the beam axis, and φq is the azimuthal
angle of the momentum transfer. Both FDCS forms, (1) and
(2), carry a physically equivalent information about the ioniz-
ing collision. However, case (1) is customary for studying the
binary and recoil peaks in the electron angular distribution and
their shifts with respect to the FBA predictions. Case (2) is less
convenient for such purposes, particularly when employing a
logarithmic scale for the data representation, but appears to be
informative about the effects which are hardly accessible for
measurement and which we call “kinks.” The latter features,
which are also discussed in this work, owe to the asymmetry
of the FDCS in the angular regions around the forward and
backward directions determined by the proton velocity �vp.

In our previous work we presented experimental data for
the FDCS in the form (2). The experimental data from [16]
and this work were obtained by definition together. However
in this study we investigate a different kinematic regime.
The wide spread of momentum transfer and electron energies
presented herein provides further stringent tests for the theory.
We also present a theoretical analysis in which we mainly
address two issues. First, we examine the position of the
experimental binary peak in comparison with FBA and 3C
theories, particularly away from the Bethe ridge, which is
specified by the energy- and momentum-transfer values equiv-
alent to the projectile scattering on a free electron. Second,
we examine the possible origin of disagreement between
the 3C theory and experiment both in terms of collision
dynamics in the internal and intermediate regions and in
terms of asymptotic motion of final fragments in the outside
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FIG. 1. Sketch of the beamline with its insertion devices. Bold printed numbers correspond to distances, while italic to slit opening (x × y).
Details are described in the text.

region. The paper is structured as follows. Section II describes
details of experimental apparatus. In Sec. III, we formulate
theoretical models and approximations for the considered
process, which are involved in the present analysis. Then,
in Sec. IV, we compare experimental and theoretical results.
The conclusions are drawn in Sec. V. Atomic units (a.u.) in
which h̄ = e = me = 1 are used throughout unless otherwise
stated.

II. EXPERIMENT

The experiment was carried out at the Institut für
Kernphysik at the University of Frankfurt using the 2.5-MeV
Van de Graaf accelerator. The momentum vectors of the
reaction fragments were measured using the well-established
COLTRIMS technique [5]. A sketch of the beamline is shown
in Fig. 1. The projectile beam of 1-MeV protons was first m/q
and energy analyzed using a magnet (M1) at a deflection angle
of 90◦. About 2 m downstream a second magnet (M2) directs
the beam in the corresponding experimental section (15◦).
2 m downstream this second magnet, a first set of adjustable
slits (A) with a rather large opening 3 × 3 mm2 (x × y), is
placed. Another 1.5 m downstream another aperture (B) is
placed, with an opening of 0.5 × 1 mm2 (x × y). Continuing,
3.8 m downstream, a third set of adjustable slits (C), with
an opening of 0.5 × 1.5 mm2, was placed, with the second
and third defining the final beam geometry. To chop the
beam and derive time-of-flight information, an oscillating
electric field (≈150 V/cm) is applied on a 30-cm-long pair
of deflector plates 1 m behind the first aperture (see [29]). The
projectile buckets had a length of 1 ns (measured detecting
charge exchange projectile ions) at a repetition rate of 2 MHz.
Another fourth set of adjustable slits (D) is installed halfway
between the third slit and the target and used to remove
scattered projectiles, while not manipulating the main beam,
so its opening was rather large compared to the third slit.

At a right angle, the projectile beam (along the z di-
rection) is intersected with a precooled (40 K) supersonic
helium gas jet (expanding in the y direction). With a driving
pressure of 2 bars through a 30-μm nozzle, we estimated
a speed ratio of >100, corresponding to an ion momentum
resolution in this direction of �Ky < 0.1 a.u. This geometry
of the gas jet is defined by a set of skimmer and aperture,
resulting in a jet diameter of 1.5 mm, a target density of
2 × 1011 atoms/cm2, and a momentum resolution of <0.1 a.u.

in the perpendicular directions (�Kx and �Kz). Electrons and
ions, created in the intersection volume, are projected with a
weak electric field of E = 6.8 V/cm towards two time- and
position-sensitive detectors with hexagonal delay line anodes
[30], with a diameter of 40 mm for the ion and 120 mm
for the electron detection. Both the electron and ion arm of
the spectrometer were built in a time-focusing geometry [31]
to increase the momentum resolution along the time-of-flight
axis (x). To further improve the momentum resolution for the
ions, we additionally employed space focusing by adding an
electrostatic lens in the acceleration region of the spectrometer
(for details see Refs. [32–37]. In order to catch electrons up
to 25 eV with a 4π solid angle, a weak magnetic field of
7.5 G was superimposed parallel to the electric field [38].
The momentum vectors of electron and He+ ion are derived
from the impact position on the corresponding detector, the
particle’s time of flight, the spectrometer geometry, and the
strengths of electric and magnetic fields. As the projectile mo-
mentum is very difficult to measure directly, it was calculated
with much higher total resolution from the measured electron
and ion momenta by employing momentum conservation. As
discussed in the Supplemental Material of [16], prior and
after the experiment, calibration measurements for the ion arm
of the spectrometer were performed, proofing a momentum
resolution along the beam direction of �Kz = 0.1 a.u. Based
on the spectrometer and jet geometry, we estimated similar
resolutions also for the x and y direction. For a detailed
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discussion on how the analysis was performed, we refer to
the Supplemental Material of [16].

III. THEORY

We begin with considering kinematical aspects of the dis-
cussed ionization reaction. From the momentum conservation
law,

�q = �ke + �Kion, (3)

it follows that for the involved momentum-transfer and
electron-energy values the velocity of the residual ion
Kion/(mN + 1) is practically negligible (the mass of the He
atom is mN ≈ 4mp = 7344.6 a.u.). This allows us to assume
the ion to be at rest and choose the He nucleus as a cen-
ter of the laboratory coordinate system. This assumption is
valid for relatively small momentum-transfer values (q �
few a.u.).

The energy conservation law reads

p2
i

2mp
+ εHe

0 = ( �pi − �q)2

2mp
+ εHe+

0 + k2
e

2
+ K2

ion

2(mN + 1)
. (4)

The terms q2/2mp and K2
ion/2(mN + 1) can be neglected in

Eq. (4), and thus it reduces to the following equation:

vpqz = −εHe
0 + εHe+

0 + Ee (5)

(as indicated above, the z axis is directed along the initial
proton momentum �pi). The transverse component is q⊥ ≈
mpvpθp, with the proton scattering angle θp. For a given
vp value, the values of q and Ee are not arbitrary, being
restricted by

0.9 + Ee

qvp
� 1. (6)

Taking into account that qdq = −pi psd cos θp ≈
m2

pv
2
p sin θpdθp and dφp = dφq, one obtains from Eq. (1)

the FDCS in the form (2), which is studied in this work.
Let us turn to the issues related to evaluation of the scatter-

ing amplitude Tf i. The details of the FBA and 3C approaches
were presented elsewhere [17]. Here we only give a diagram-
matic representation of the amplitude using the 3C model.
Figure 2 shows the basic diagrams for the 3C matrix element
calculated in Ref. [17] (the rules for calculating the matrix
elements on the basis of nonrelativistic diagrams are given,
in particular, in Refs. [39–41]). The same as in Ref. [17],
three initial trial helium wave functions 	i are employed in
the present calculations: (i) a weakly correlated Roothaan-
Hartree-Fock (RHF) [42] function, εHe

0 = −2.8617 a.u., (ii) a
simple Silverman-Platas-Matsen (SPM) function [43] of the
configuration interaction family, εHe

0 = −2.8952 a.u., and a
strongly correlated function (CF) [44] which explicitly de-
pends on the r12 distance between electrons in helium, εHe

0 =
−2.9037 a.u. The latter function yields the He energy which is
very close to the experimental value, εHe

0 = −2.903 724 a.u.

In our analysis we also examine off-shell effects replacing
the potentials Vep and VpN in diagrams shown in Fig. 2 by
respectively the off-shell pair T matrices tep and tpN . In
such a way we distort the intermediate plane waves because
V G = tG0, where G and G0 are full and free three-body

FIG. 2. Diagrammatic representation of the contributions A1, A2,
and A3 (from top to bottom) to the scattering amplitude calculated in
Ref. [17] using the 3C model. The helium electrons are labeled with
1 and 2, and Vep and VpN are the electron-proton and proton-nucleus
potentials, respectively.

Green’s functions respectively. For the sake of simplicity, we
analyze the indicated effect in the case of atomic hydrogen
instead of the He atom. This also allows us to avoid the
theoretical uncertainty associated with the He ground-state
wave function. The corresponding diagrams are presented in
Fig. 3.

FIG. 3. Diagrammatic representation of the Tep (top) and Tpp

(bottom) components of the scattering amplitude for the ionization
reaction p + H → p + p + e when the pair potentials are replaced
with the pair T matrices.
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For the scattering amplitude we have the following mathematical expression:

Tf i = Tep + Tpp =
∫

d3g

(2π )3
ϕ0(�g) tep

(
�vp − �g, �vp − �g − �q;

v2
p

2
+ ε0 − �vp · �g

)
ϕ−∗(�g + �q, �ke)

+
∫

d3g

(2π )3
ϕ0(�g) tpp

(
1

2
( �pi − �g),

1

2
( �pi − �g) − �q;

p2
i

4m
+ ε0 − 1

2
�vp · �g − g2

2

)
ϕ−∗(�g, �ke), (7)

where

ϕ0(�g) = 8
√

π

(1 + g2)2
, ε0 = −0.5,

and the Coulomb continuum function in momentum space is given by

ϕ−∗( �p, �k) = lim
λ→+0

(
− ∂

∂λ

) ∫
d3r

r
e−λr φ̃−∗(�r, �k)ei �p·�r

= lim
λ→+0

4π e−πζ/2�(1 + iζ )

(
− ∂

∂λ

)
[p2 − (k + iλ)2]iζ

[( �p − �k)2 + λ2](1+iζ )
, (8)

with the Sommerfeld parameter ζ = −1/k. The Coulomb off-shell pair amplitudes tep and tpp have the analytical representation
(see, for example, Ref. [45])

tαβ ( �p, �k; E ) = lim
λ→+0

4πZαZβ

q2

[
1 − 4iηαβ

∫ 1

0
dy

yiηαβ

4y − δ(1 − y)2 + iλ

]

= 4πZαZβ

q2

{
1 + 4iηαβ

δ(1 + iηαβ )( f+ − f−)
[x+ 2F1(1, 1; 2 + iηαβ ; x+) − x− 2F1(1, 1; 2 + iηαβ ; x−)]

}
, (9)

where q2 = ( �p − �k)2,

ηαβ = ZαZβμαβ√
2μαβE + i0

, μαβ = mαmβ

mα + mβ

,

x± = 1

1 − f±
,

δ = 2μαβ

(E − p2/2μαβ + i0)(E − k2/2μαβ + i0)

q2(E + i0)
,

f± = 1 + 2

δ
[1 ± √

1 + δ].

For the ep pair one has ZeZp = −1, μep ≈ 1, and

iηep(�g) = − i√
v2

p + 2εH
0 − 2�vp · �g

,

2E = (
v2

p + 2εH
0 − 2�vp · �g

)
> 0, (10)

iηep(�g) = − 1√∣∣v2
p + 2εH

0 − 2�vp · �g
∣∣ ,

2E = (
v2

p + 2εH
0 − 2�vp · �g

)
< 0. (11)

For the pp pair: ZpZp = 1, μpp = mp/2, and ηpp = 1/vp.

It should be noted that the FBA scattering amplitude is
given by

T FBA
f i ( �q, �ke) = −4π

q2

∫
d3g

(2π )3
ϕ0(�g) ϕ−∗(�g + �q, �ke)

= − (4π )2

√
π q2

e−πζe/2�(1 + iζe)

(
− ∂

∂λ

)
λ=1

× [q2 − (ke + iλ)2]iζe

[( �q − �ke)2 + λ2]1+iζe
. (12)

In the limit of large vp values one obtains

Tpp ≈ lim
λ→+0

4π

q2
|�(1 + i/vp)|2 e−(2i/vp) ln(vpq)

∫
d3g

(2π )3
ϕ0(�g)

×
[(

−ε0 + 1

2
g2

)(
1

2
k2

e − 1

2
g2 + iλ

)]i/vp

ϕ−∗(�g, �ke),

(13)

Tep ≈ − lim
λ→+0

4π

q2
|�(1 + i/vp)|2 e(2i/vp) ln(vpq)

∫
d3g

(2π )3
ϕ0(�g)

×
[(

−ε0 + 1

2
g2

)(
1

2
k2

e − 1

2
(�g + �q)2 + iλ

)]−i/vp

×ϕ−∗(�g + �q, �ke). (14)

If in the integrand of Eq. (13) one sets [. . .]i/vp = 1, then Tpp =
0. Note that we neglect the exchange proton-proton amplitude
due to a very large difference between the proton velocities.
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FIG. 4. Ionization events as a function of momentum transfer q
and electron’s kinetic energy Ee. The red box marks the kinematic
conditions, chosen by Schulz et al. [46].

IV. RESULTS AND DISCUSSION

In this section we present the experimental data and numer-
ical calculations for the FDCS in the form (2) at momentum-
transfer values q = 0.5, 1.0, and 1.75 a.u. and (for each
momentum-transfer value) the ejected-electron energies Ee =
2.5, 5, 10, and 20 eV. To give an overview, the amount of
events found in a certain kinematic region of momentum
transfer q and electron energy Ee are shown in Fig. 4. Note
that for Ee > 25 eV the solid angle decreases (first due to
nodes caused by the gyration in the magnetic field and above
40 eV due to the limited overall size), as well as for q > 2 a.u.

The red box marks the kinematic conditions originally chosen
by Schulz et al. [46] and also used for the comparison with
our calculations. However this box, respectively the events
therein, does not coincide with the maximum of the ionization
probability, which is exponentially decaying for Ee from 0 eV
and having a maximum in the momentum transfer at q =
0.22 a.u. Below we present results of numerical calculations
for FDCS as a function of the electron scattering angle θe

in the coplanar geometry, which were obtained using the
theoretical approaches outlined in the previous section, and
compare them with the experimental results.

A. Electron angular distribution: Experiment vs FBA

The FDCS measured in the scattering plane are shown
in Figs. 5–8 along with the FBA calculations using the
RHF model of the He ground state. In the calculations, the
final state of the He atomic target (i.e., the He+ + e sys-
tem) is orthogonalized to the RHF function. Moreover, we
averaged the calculations within the experimental Ee and q
gates: Ee = 1.5–3.5 eV (named Ee = 2.5 eV); Ee = 3–7 eV
(named Ee = 5 eV); Ee = 7.5–12.5 eV (named Ee = 10 eV);
Ee = 15–25 eV (named Ee = 20 eV); q = 0.35–0.65 (named
q = 0.5); q = 0.75–1.25 (named q = 1.0); q = 1.35–2.15

FIG. 5. Experimental angular distribution in the scattering plane
for Ee = 2.5 ± 1 eV kinetic energy. The black squares correspond
to a momentum transfer q = 0.5 ± 0.15 a.u., the red circles to q =
1.0 ± 0.25 a.u., and the blue triangles to q = 1.75 ± 0.4 a.u. The
lines correspond to the model FBA + RHF (see details in the text)
when q = 0.5 ± 0.15 a.u. (solid black), q = 1.0 ± 0.25 a.u. (dashed
red), and q = 1.75 ± 0.4 a.u. (dotted blue).

(named q = 1.75). The experiment is normalized to the the-
ory as follows: We selected the window Ee < 25 eV and
q < 2 a.u., where we definitely have an electron solid-angle
acceptance of 4π . The total number of counts within the
selected window is 934 802, and the FBA integral cross sec-
tion for this window is σ (Ee < 25 eV, q < 2 a.u.) = 1.22 ×
10−17 cm2. This gives a normalization factor of 13.06 ×
10−24 cm2/count. It should be noted that the value of the FBA
total cross section, 2.21 × 10−17 cm2, agrees well with the
accepted value, 2.18 × 10−17 cm2, from Ref. [47].

Some important comments should be made with regard to
the results presented in Figs. 5–8. The origin of the kinks
in the vicinity of θe = 0◦, 180◦ lies in the FDCS definition
(2), in which one has nodes at 0 and 180◦, and the fact that
the nodes of the physical electron angular distribution do

FIG. 6. The same as in Fig. 5, but for Ee = 5 ± 2 eV.
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FIG. 7. The same as in Fig. 5, but for Ee = 10 ± 2.5 eV.

not coincide with 0 and 180◦. Further, in the angular region
of the binary peak, the effects of convolution are practically
not manifested. In particular, the shifts of the position of the
theoretical binary peak due to the convolution are small. Let
us note that a shift of the binary peak with respect to the FBA
calculations was already observed and discussed in Ref. [16]
(see also Refs. [22,27,48]). Therefore, we briefly outline the
influence of convolution of theoretical values with experimen-
tal resolution and the integration over acceptance angles. In
Ref. [16], the experimental data were integrated over a certain
range of the perpendicular angles (−10◦ < φe < +10◦), elec-
tron energies (3.0 < Ee < 10 eV), and momentum transfers
(0.5 < q < 1.0 a.u.), while the calculations were integrated
only over φe. In Fig. 9 the electron angular distribution in
the scattering plane is shown for the nonintegrated (red) and
the integrated (black) calculation, according to the intervals
chosen in the experiment. As can be seen from Figs. 5–8 the
different electron energies (even in the integrated case) cause a
systematic shift of the binary peak and an even stronger shift
originates from different momentum transfers q. One might
be misled to expect that symmetrically chosen experimental

FIG. 8. The same as in Fig. 5, but for Ee = 20 ± 5 eV.

FIG. 9. The lines correspond to calculations in the FBA for a
fixed momentum transfer q = 0.75 ± 0.25 a.u. and electron energy
Ee = 6.5 ± 3.5 eV, as chosen in Ref. [16]. The dashed red curve
shows the electron angular distribution for the nonintegrated data,
i.e., fixed values, while the solid black curve takes the experimental
boundary conditions properly into account, by integration over Ee

and q within the indicated boundaries.

conditions would cancel out after integration over all electron
energies and momentum transfers. Due to the fact that lower
electron energies and momentum transfers contribute more to
the total cross section than the larger values, a shift of ≈2◦
remains compared to the fixed values, as it is shown in Fig. 9.

The FBA theory is generally believed to be applicable
if |Zp|/vp 	 1 a.u., where Zp and vp are the charge and
velocity of a fast ionic projectile. A very useful concept in the
description of ionizing ion-atom collisions within the FBA is
the Bethe surface, which represents the density of generalized
oscillator strengths of an atomic target as a function of energy
and momentum transfers (see, for instance, Ref. [49] and
references therein). A marked feature of the Bethe surface
common to all atomic systems is the Bethe ridge, which
peaks when the energy and momentum transfers correspond to
the kinematic regime of a free ion-electron collision and can
be clearly identified at large momentum-transfer values. The
Bethe ridge thus determines the phase-space region where the
FBA mechanism gives largest contributions to the ionization
yield, while far from this region one might expect other, more
delicate mechanisms to come into play. In this context, it is
interesting to point out that in terms of the peaks’ positions the
better agreement between theory and experiment in Figs. 5–8
is observed when the kinematic regime is closer to the Bethe
ridge [49],

q2

2
= −εHe

0 + εHe+
0 + Ee, (15)

or, in accordance with Eq. (5), q2/2 = vpqz. Note that the
largest departure from the Bethe-ridge condition (15) is in the
case of q = 0.5 a.u. and Ee = 20 eV. Therefore, in what fol-
lows, we focus on the shift of the binary peak in the indicated
kinematic regime and on possible mechanisms underlying this
shift.
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FIG. 10. FDCS in the scattering plane for Ee = 20 eV, q =
0.5 a.u. The black squares represent the experiment, and the dashed
red and solid blue lines represent respectively the 3C and FBA
calculations using the RHF (top), SPM (middle), and CF (bottom)
functions of He.

B. 3C model

In Fig. 10 the experimental data for q = 0.5 a.u. and
Ee = 20 eV is compared to the unconvoluted FBA and 3C
calculations using different functions of He. All differences,

including the use of orthogonalization of the initial and fi-
nal functions of helium, manifest themselves mainly in the
vicinity of θe = 0◦, 180◦, where the intensity is two orders of
magnitude smaller than the peak intensity. Thus, the region of
kinks appears to be most sensitive not only to the choice of a
theoretical model, but also to the convolution of theory with
experimental uncertainties (cf. Fig. 8, where convoluted FBA
calculations are presented).

An analysis of the binary peak positions in the dis-
cussed kinematic regime shows that θFBA

bp ≈ 65◦–66◦, θ3C
bp ≈

62◦–64◦, and θ
Exp
bp ≈ 57◦. It should be noted that, first, the

position of the FBA binary peak in the case of the cross section
(2) does not coincide with the direction of the momentum
transfer �q; second, the binary-peak positions for different
initial correlated functions of the He atom are very close to
each other, and the shift mainly owes to the final 3C function.
It is also worth noting that the discrepancy between the 3C
theory and experiment in terms of the binary-peak position
is about 5◦–7◦. From the viewpoint of the theory with a
correlated final state, there are three ways to obtain a notable
shift of the peak at high proton energy. Below we examine
them separately.

C. Effective charges

In the calculations of the matrix elements diagrammatically
shown in Fig. 2, the 3C function includes asymptotic values
of charges of final fragments, i.e., Ze = −1, Zp = +1, ZHe+ =
+1. In our previous study [17] we investigated the cases of
switching off different pair interactions in the 3C function
(see Fig. 5 of Ref. [17]). When we turned off the pe inter-
action, the binary peak shifted toward the proton direction,
which was also observed by other authors. However, when
we turned off the pN interaction, contrary to expectations,
the binary peak shifted away from the proton direction. This
effect seems to be counterintuitive and may indicate that the
3C function misses particular dynamical mechanisms in the
asymptotic region, while describing more or less properly
some intermediate reaction region outside the region of the
direct knock-out collision inside the atom. In this intermediate
region, apparently, the outgoing particle currents are formed,
which in the outside, asymptotic region can be described
within the PCI framework. In such a case, one can “play” with
the Sommerfeld parameters of the 3C function by varying
the involved particle charges. We find that if, for example, the
contribution of the pN interaction is increased due to increas-
ing the effective charge of the He+ ion, while the contribution
of the pe interaction is decreased, then in the kinematic
regime under consideration, Ee = 20 eV and q = 0.5 a.u., one
can shift the binary peak as much as almost to agree with
experiment, but at the same time the values of the effective
charges appear to be manifestly unrealistic. Clearly, such an
approach is rather mechanistic and lacks physical justification.

D. Effects of pair T matrices

Figure 11 shows the numerical results for the p +
H → p + p + e process in the following kinematic regime:
Ep = 1 MeV, Ee = 20 eV, and q = 0.5 a.u. The results are
obtained on the basis of Eqs. (7)–(14), and the details of
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FIG. 11. FDCS in the scattering plane for the p + H → p + p +
e reaction at Ep = 1 MeV, Ee = 20 eV, and q = 0.5 a.u. Top: results
of calculations based on Eqs. (13) and (14). Bottom: results of
calculations based on Eqs. (9) and (10) for tep in Eq. (7) and Eq. (13)
for Tpp.

a numerical scheme employed for calculating the involved
integrals can be found in Ref. [50]. As pointed out in Sec. III,
using in the analysis the atomic hydrogen target instead of
helium not only simplifies the calculations but also helps to
avoid the theoretical uncertainty related to the ground-state
He wave function. In the top panel of Fig. 11, one can see
well-pronounced kinks, as well as almost complete agreement
with FBA in the peak region, which is expected at high proton
energies. There is no shift of the binary peak in comparison
with FBA. In the bottom panel of Fig. 11 there are no kinks,
and there is a significant difference compared to FBA. This
owes to the contribution from large values of intermediate
electron momenta g to the integral Tep in Eq. (7). However,
there is still no shift of the binary peak. We also note that the
calculations showed insignificance of the contribution from
the bound-state energy region (11) to the Tep amplitude. Thus,
the replacement of the pair potentials by the pair T matrices

FIG. 12. The numerical estimate of the shift of the binary peak
in accordance with Eq. (16).

can hardly stand behind the mechanism responsible for the
shifting of a binary peak in the He case.

E. PCI effects

In Ref. [28], a general formula was obtained for the de-
flection of charged particles, which after being emitted from
the quantum three-particle interaction region restricted by a
finite radius r0 continue to move along classical trajectories
before hitting the detectors. Obviously, these trajectories for
charged particles are not straight lines, and if on the boundary
of the region the cross section could be represented in the
form FDCS(θp, θe), then the measured cross section will be
FDCS(θp + �θp, θe + �θe). The formula was obtained for
the case when both the scattered projectile and the ejected
electron are relatively fast, but for estimations it can also be
applied to an ionized electron with an energy of as low as
20 eV (see below). From Ref. [28] it follows that

�θα = ZpZe

Eαr0

× vα cos(χ0/2)[|�vp − �ve| + 2vβ sin(χ0/2)]

4|�vp−�ve| sin(χ0/2)[|�vp−�ve|+(vp+ve) sin(χ0/2)]
,

χ0 = θe + θp. (16)

Due to the huge energy of the final proton (α = p, β = e),
its deflection can be neglected. At the same time, by varying
the r0 value, one can get the required shift of the binary peak
from clear physical principles. It should be kept in mind that
the cross section FDCS(θp, θe) is formed within the 3C model
inside the region bounded by the radius r0, which in turn
can depend on q and Ee. Figure 12 shows the dependence
of the angular shift �θe of the binary peak (θCF

max ≈ 63◦) on
the parameter r0 for the kinematic regime q = 0.5 a.u. and
Ee = 20 eV. It turns out that the semiclassical PCI model can
more or less explain the shift of the binary peak. However,
we should consider the 3C function as having the effect in the
intermediate region which separates the region of the direct
pe collision from that of the asymptotic motion of outgoing
particles.
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V. SUMMARY AND CONCLUSIONS

We have studied experimental fully differential cross sec-
tions for single ionization of the He atom by a fast proton with
an energy of 1 MeV in comparison with various theoretical ap-
proaches. The results of the FBA model have been integrated
over experimental acceptance intervals. The change in the
agreement between theory and experiment with varying the
energy of the ejected electron Ee and the momentum transfer q
has been shown. We have observed worse agreement between
the FBA theories and experiment for Ee and q values away
from the Bethe ridge. We have investigated into the phys-
ical mechanism which could explain the large discrepancy
between the positions of the theoretical and experimental
binary peaks when Ee = 20 eV and q = 0.5 a.u., i.e., when
the kinematic departure from the Bethe ridge is maximal.
The convolution of the theory with experimental uncertainties
has been found to be insufficient for explaining the indicated
discrepancy. Taking into account the electron correlations in
the ground He state and employing the 3C model for the final
scattering state are also not sufficient. Finally, various other
customary approaches beyond the FBA and 3C models have
been considered. The method of effective charges has been
found not to shift the binary peak within realistic physical

assumptions. Replacing potentials by pair T matrices, when
one takes into account the off-shell effects, also has been
found to be insufficient. Only the semiclassical PCI effect
can in principle yield agreement with experiment provided
this effect is combined with the 3C model. However, in this
particular case we have to suppose that the 3C function does
not describe properly all the asymptotic effects for the three-
particle motion in the final state. Thus, our analysis clearly
shows the limitations of the FBA-like theories even at impact
energies as high as 1 MeV when one is far from the Bethe-
ridge regime.
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