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Potential roots of the deep subbarrier heavy-ion fusion hindrance phenomenon
within the sudden approximation approach
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We analyze the origin of the unexpected deep subbarrier heavy-ion fusion hindrance in 64Ni + 100Mo,
64Ni + 64Ni, and 28Si + 64Ni reactions. Our analysis is based on the improved coupled-channels description,
implemented by means of the finite element method. With the aid of the Woods-Saxon potential the experi-
mental cross sections and the S factors of these reactions are remarkably well reproduced within the sudden
approximation approach. We found that accounting for the nondiagonal matrix elements of the coupling matrix,
traditionally neglected in the conventional coupled-channels approaches in setting the left boundary conditions
inside the potential pocket, and its minimal value are crucially important for the interpretation of experimental
data. We found as well a good agreement with the general trend of the experimental data for the S factor of the
fusion reaction 12C + 12C, which has no pronounced maximum for this system.
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I. INTRODUCTION

Various stages of astrophysical nucleogenesis, the syn-
thesis of superheavy nuclei, and, consequently, effective
mechanisms of nucleus-nucleus interaction [1–6] require a
deep understanding of the near-barrier heavy-ion fusion re-
action. Since 2002 precise measurements have been available
to probe the effects of the interaction potential at deep subbar-
rier energies [7]. However, at these energies the fusion cross
sections fall off much steeper than the conventional coupled-
channels (CC) calculations predict. This fusion hindrance
phenomenon is generally accompanied by the maximum of
the astrophysical S factor. Due to its notable influence on the
astrophysical nuclear reaction processes for fusion reactions
like 12C + 12C [8–13], this problem has been a subject of
extensive studies in the past years [7,14–16].

Since the discovery of the fusion hindrance phenomenon,
the consensus is that the conventional CC calculations based
on a Woods-Saxon (WS) potential are insufficient to repro-
duce the experimental data [1,2,17]. As a result, numerous
theoretical attempts have been developed to tackle this
problem. Among them are the hybrid of different nuclear
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potentials [18,19], the extending of the CC framework to the
adiabatic states [20], the quantum diffusion approach [21],
and the density-constrained frozen Hartree-Fock method [22],
to name just a few.

In fact, within the conventional CC approach we can distin-
guish between two directions of the theoretical explanations
for the hindrance mechanisms. The first one is based on
the sudden approximation for a hybrid of different poten-
tials. In particular, a gentle overlap of the reacting nuclei is
considered due to the saturation properties of nuclear mat-
ter [18,23,24]. One attempt to explain the steep falloff of
fusion cross sections is by using the double-folding potential
with Michigan three-range Yukawa (M3Y) forces supple-
mented by a repulsive core. Another approach analyzes the
hindrance phenomenon by fitting the fusion excitation func-
tion with two separate WS potentials [19]. On different sides
of the threshold energy where the maximum of the S-factor
is located, the model includes the potentials that produce a
different logarithmic slope of the excitation functions.

The second direction is based on the adiabatic approxima-
tion [20,25]. On top of the conventional CC method, an extra
one-dimensional adiabatic potential barrier is assumed after
the reacting nuclei contact each other, which is considered
the formation of the composite system. Thus, the mecha-
nism of the deep subbarrier hindrance is still debatable. In
spite of numerous attempts it remains a real challenge for
nuclear reaction theory. The main goal of the present paper
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is to explain the unexpected deep subbarrier heavy-ion fusion
hindrance, providing the principle of bounding solutions for
the scattering problem of two colliding nuclei, developed in
Refs. [26,27].

II. THEORETICAL FRAMEWORK

We consider the collision between two nuclei, whose rel-
ative motion is coupled to nuclear intrinsic motion. The
potential between the projectile and the target contains the
Coulomb potential and nuclear potential, chosen in the WS
form V (0)

N (r) = −V0/(1 + exp[(r − R0)/a0]). Here, the pa-
rameters V0, R0, and a0 are the potential depth, potential
radius, and diffuseness, respectively; r is the distance between
the mass centers of the two interacting nuclei.

Following Refs. [28,29], in our approach the nuclear cou-
pling Hamiltonian is generated by changing the target radius
in the potential to the dynamical operator R0 + Ô, which
is related to collective vibrations. The solution of the CC
equations between values rmax and rmin is found under the
incoming wave boundary conditions (IWBCs); i.e., a strong
absorption inside the potential pocket is assumed. The right
boundary point rmax is usually set at a large enough distance
where the interaction is weak, and the off-diagonal elements
of the coupling matrix tend to be zero. The rmin is determined
at the minimum of the potential pocket VP.

At the left boundary r = rmin, the open left exit channel
wave functions are usually taken as the plane wave ψ (�)

nno
(r) =

exp (−ikn(rmin)r)T (�)
nno

, where T (�)
nno

is the tunneling ampli-

tude. The definition of kn(rmin) =
√

2μ

h̄2 E − W (�)
nn (rmin) > 0

involves only diagonal elements of the coupling matrix,
assuming that the off-diagonal matrix elements tend to
be zero (e.g., Refs. [28,29]). We recall that W (�)

nm (r) =

2μ

h̄2 [V (�)(r)δnm + Vnm(r)] at r > rmin, and the constant val-
ued matrix Wnm = W (�)

nm (rmin) at r � rmin. Here, V (�)(r) =
ZPZT e2

r + V (0)
N (r) + h̄2�(�+1)

2μr2 + εn is the potential energy with-
out the coupling. Furthermore, Vnm(r) are elements of the
coupling matrix, μ is the reduced mass, ZP and ZT are the
Coulomb charges of projectile and target ions, � is the orbital
angular momentum, and εn is the excitation energy of the nth
entrance channel or the entrance threshold energy E = εn at
n = 1, . . . , N .

It is important to stress that at rmin, the distance between
two nuclei becomes so small that the off-diagonal matrix
elements W (�)

nn′ (rmin) are usually not zero. As addressed in
Refs. [30,31], there can be sudden noncontinuous changes
at the left boundary conditions, and this will distort the total
wave function inside the barrier.

To treat properly this problem, at the left boundary we
adopt the linear transformation method [26,27]. Namely, at
r � rmin, when the off-diagonal matrix elements have been
taken into account, the modified solutions of the CC equations
ψ̃ (�)

nno
(r) consist of the linear independent solutions φ(�)

nm (r),

i.e., ψ̃ (�)
nno

(r) = ∑Mo
m=1 φ(�)

nm (r)T̃ (�)
mno

. In this case the linear inde-
pendent matrix solution can be obtained by considering the
transformation φnm(r) = Anmym(r), where ym(r) are solutions
of the uncoupled equations

y′′
m(r) + K2

mym(r) = 0, K2
m = (2μ/h̄2)E − W̃mm. (1)

Here, A and W̃ are the matrix of eigenvectors and the
diagonal matrix of eigenvalues of the eigenvalue problem,
respectively. In short, we diagonalize the coupling matrix
A−1WA = W̃. For the open channels with K2

m > 0, ym(r) =
exp(−iKmr)/

√
Km at m = 1, . . . , Mo � N . The partial fusion

probability P(�)
no

= ∑Mo
m=1 |T̃ (�)

mno
|2 �= ∑M ′

o
m=1 |T (�)

mno
|2 is given by

FIG. 1. The fusion cross sections σ (E ) and the astrophysical S(E ) factor for 64Ni + 100Mo, 64Ni + 64Ni, and 28Si + 64Ni reaction systems.
Different curves denote the CC calculations with different sets of collective vibrations, indicated by the legends; the SC means a single-channel
calculation (without coupling). The experimental data (solid circles) are taken from Refs. [14], [17], and [16], respectively. The black arrows
indicate the potential pocket minimum VP.
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summing over all open exit channels at r � rmin. We stress
that the number of open channels after and before the di-
agonalization of the coupling matrix will be different. At
r � rmax the asymptotic solutions are given in terms of the
normalized Coulomb functions with the wave number kn =√

2μ

h̄2 (E − εn) > 0 in the entrance no and the right exit n open
channels no, n = 1, . . . , No � N and the reflection amplitudes
R̃(�)

nno
[27].

III. RESULTS AND DISCUSSION

To illuminate all the cons and pros of our approach we
reexamine 64Ni + 100Mo, 64Ni + 64Ni, and 28Si + 64Ni reac-
tions. To this aim we analyze the fusion cross sections
σ = σfus(E ) = ∑�max

�=0 σ�(E ) = π
k2

no

∑�max
�=0(2� + 1)P(�)

no
(E ) and

the astrophysical S factor (see Fig. 1), while σ (E ) =
2

∑�max
�=even σ�(E ) for the fusion of two identical nuclei 64Ni.

Our results have been obtained with the aid of the KANTBP

code, developed by means of the finite element method (see
for details Refs. [32–36]) for the set N = 1 + Ncoupl of CC
equations with the improved IWBC from the correspond-
ing ground states |no − 1 = 0〉. The number of all channels,
Ncoupl, depends on the chosen reaction. It is noteworthy that,
using the program KANTBP, the sum of tunneling and reflec-
tion probabilities

∑Mo
m=1 |T̃ (�)

mno
|2 + ∑No

n=1 |R̃(�)
nno

|2 − 1 � 10−10.
Therefore, it is the stringiest test of the validity of our calcu-
lations.

The coupling radius parameter for the collective vibra-
tions is set to be 1.2 fm for all the cases in this study [26].
Note that the value of �max is restricted by the constraint on
the incident energy values E in the entrance channel: E =
V (�)(rmin), where V (�)(rmin) is the potential minimum, and � =
0, . . . , �max. The values of η0 used for scaling the astrophys-
ical factor S(E ) = Eσfus(E ) exp(2π (η − η0)) for the above
three reactions are 105.74, 75.23, and 41.25, respectively; η is
the Sommerfeld parameter. The adopted structure properties
(including excitation energies, and deformation parameters
for the collective states) are taken from Refs. [37,38]. For
64Ni and 100Mo, the structure inputs are the same as those
listed in Table I of Ref. [26]. For 28Si the static deformation
β2 = −0.407 and the rotational state E2+ = 1.780 MeV are
adopted, while for 12C, the rotational coupling with deforma-
tion β2 = 0.57 [24] and the excitation E2+ = 4.439 MeV are
adopted. The potential parameters in this study are obtained
by fitting the experimental fusion data at the whole energy

TABLE I. Woods-Saxon potential parameters V0 (MeV), a0 (fm),
and R0 (fm) for 64Ni + 100Mo, 64Ni + 64Ni, and 28Si + 64Ni reaction
systems. The potential barrier VB and the minimum of the potential
pocket VP are also listed.

64Ni + 100Mo 64Ni + 64Ni 28Si + 64Ni

V0 (MeV) 79.938 65.829 53.529
a0 (fm) 0.686 0.801 0.944
R0 (fm) 10.190 9.239 7.790
VB (MeV) 136.993 96.389 51.946
VP (MeV) 119.344 85.699 43.298

region with the CC calculations and the simple WS potential
(see Table I). For the reactions 64Ni + 64Ni and 28Si + 64Ni,
the large diffuseness parameters a0 are obtained (see also
Ref. [39]), while for the reaction 64Ni + 100Mo the value of
the parameter a0 is normal. It should be noted, however, that
the fitted parameters are sensitive to the considered couplings.
For example, various couplings (e.g., the transfer or the deco-
herence effect that are not considered) may affect the values
of the diffuseness parameter in the considered cases.

There is a remarkable agreement between our calculations
and available experimental data for the fusion cross sections
and S factors (see Fig. 1). Note that all S factors of these
reactions have maxima. To explore the general reason for
the hindrance and the maximum of the S factor, we consider
also the results for different combinations of the collective
vibrations for 64Ni + 100Mo (see Fig. 1). All calculations for
various numbers of coupled channels demonstrate as well the
maximum for the S factor, including the single-channel (SC)
case when all Vnm(r) ≡ 0 (i.e., without couplings). We observe
that the energies, where the hindrance and the maximum of the
S factor take place, are close to the potential pocket minimum
VP for different couplings.

FIG. 2. The astrophysical S(E ) factor and the mean orbital mo-
mentum 〈�〉 for the reaction 64Ni + 100Mo. (a) The results of the CC
calculations with the diagonalization (solid line) and without the di-
agonalization (dashed line) are compared with the experimental data
(solid circles) (see text for details). (b) The mean orbital momentum
〈l〉 for the single channel (without coupling, dotted line) and for the
full coupling (solid line) with the diagonalization procedure. The
arrows indicate the position of the potential barrier VB and the pocket
minimum energy VP.
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FIG. 3. The potential V (r) (dotted line), diagonal matrix el-
ements of the coupled matrix h̄2Wnn(rmin )/2μ (thin solid lines),
and eigenvalues h̄2W̃nn(rmin )/2μ (thick solid lines) for the case of
64Ni + 100Mo. See text for details.

Although the importance of the potential pocket min-
imum in the CC calculations was already noticed in
Refs. [18,23,40,41], agreement between experimental data
and the results of calculations was not reached. In most of
these studies the repulsive core inside the shallow potential
pocket was suggested as one of the reasons for the hindrance
phenomenon. To find out why the hindrance and the maximum
of the S factor happen always near VP, we compare the CC
results without and with the diagonalization for 64Ni + 100Mo
[see Fig. 2(a)]. It appears that the correct treatment of the left
boundary is one of the decisive factors that allows a good
agreement to be reached with the experiment, using the simple
WS potential.

To gain further insight into the details of the hindrance
phenomenon, we compare the mean angular momentum 〈�〉 =∑�max

�=0 �σ�(E )/σ (E ) (see also Ref. [42]) for the complete cal-
culations and without coupling [see Fig. 2(b)]. Note that when
E → VP, the 〈�〉 decreases to zero quickly if there is the con-
straint on the energy for both cases. In this case, the energy is
too small, and only the s-wave partial contribution determines
the cross section. It seems that, to obtain a good agreement
with the experimental data, the constraint is important as well
[compare Figs. 2(a) and 2(b)]. At E > VP there are many cou-
pled channels in the complete calculations, and, consequently,
the barrier has a certain kind of distribution, which obscures
the barrier position.

To elucidate further the basic mechanism of the hindrance
factor in our calculations, we compare the potential energy
V (r) (without coupling), the diagonal elements h̄2Wnn/2μ of
the coupled matrix, and the threshold energies h̄2W̃nn/2μ at
the left boundary (see Fig. 3). As it is seen, the threshold
energies h̄2W̃nn/2μ spread much wider than the diagonal
elements h̄2Wnn/2μ of the coupled matrix. In particular, the
minimum threshold energy of h̄2W̃11/2μ is obviously much
lower than VP. In other words, in contrast to the conventional

FIG. 4. (a) Similar to Fig. 3 for the case of 12C + 12C. (b) The
results for the fusion cross sections σ (E ) with the diagonalization
(solid line) and without the diagonalization (dashed line). (c) The
results for the S�(E ) factor with the diagonalization (solid line)
and without the diagonalization (dashed line). The experimental
data labeled as Jiang2018, Tan2020, and Fruet2020 are taken from
Refs. [8], [10], [11], respectively. All results are obtained with the
indicated collective vibrations.

CC calculations, in our approach the distribution of open
channels is wider.

It appears that the experimental fusion cross section can
be reproduced well only under certain physical couplings. For
these reactions, the entanglement between the states at the left
boundary is changed through the diagonalization procedure.
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On the other hand, in the CC calculations, when the incident
energy E < VP = V (�=0)(rmin), the tunneling is absent. It is
due the fact that the ingoing flux will be zero [23,28,40]. Thus,
when the incident energy gradually approaches the bottom of
the potential pocket minimum, the fusion hindrance occurs
naturally.

Let us turn to the most important fusion reaction 12C + 12C
in nuclear astrophysics within our approach. We recall that
the carbon fusion plays a significant role in the burning of
massive stars, ignition of the type Ia supernova explosion,
and superbursts of binary systems or neutron stars [2]. It
remains an open problem whether the fusion hindrance does,
indeed, occur in this reaction, which is closely related to the
astrophysical reaction rate [8,13].

As above, we fit the experimental fusion cross section [8]
with the aid of the WS potential: V0 = 30.334 MeV, R0 =
4.113 fm, and a0 = 0.883 fm. In addition, we consider the
quadrupole excitations. In this case the fusion cross sec-
tion is defined as σ (E ) = 2

∑�max
�=even σ�(E ). For the carbon

fusion, we adopt the commonly used definition S�(E ) =
σ (E )E exp(87.21/

√
E + 0.46E ) [10,12]. The results of cal-

culations with and without the diagonalization demonstrate a
good agreement with the general trend of experimental fusion
data [8,10]. In contrast to the results shown in Fig. 1, where
the S(E ) factor drops at the low energy tail region evidently,
the S�(E ) factor evolves smoothly with the decreasing energy.
It should be noted that the trend of the S�(E ) factor over the
energy E is different from that for the S(E ) factor. At the low
energy region, S�(E ) is lower than that of S(E ). And for the
S�(E ) factor, the calculations indicate that there are no clear
decrease and maximum for this system at low energies. Note
that our results are similar to those of the CC theory with the
M3Y+repulsive core potential in Ref. [24].

In our calculations, based on the WS potential, the rea-
son for the steady trend can be traced from Fig. 4(a). The
threshold energies after the diagonalization change modestly
in comparison with those without the diagonalization. The
bottom of the potential pocket is about −7 MeV, which is far
from the incident energy region of interest (about 1.5–3 MeV).
Therefore, the hindrance feature is not so obvious as that seen
in Fig. 1. In the former case the S� factor changes slowly
below the potential barrier.

Surprisingly, we find that our results are supported by
the empirical trends, discussed for the hindrance factor in
Ref. [43]. Indeed, our results for the medium nuclei mani-
fest the hindrance factor for a system with Z1Z2

√
μ � 2000.

However, for the lightest system with Z1Z2
√

μ � 200 the
logarithmic slopes of the S�(E ) factor exhibit resistance to
the increasing tendency with the energy. In our approach
the variation of the coupling strength of the left exit chan-
nels is the basic mechanism responsible for the observed
phenomenon. In other words, the degree of the strength

controls the number of open channels, contributing to the
reaction.

IV. SUMMARY

The deep subbarrier heavy-ion fusion hindrance phe-
nomenon and the behavior of the astrophysical S factor for
64Ni + 100Mo, 64Ni + 64Ni, and 28Si + 64Ni reactions are ana-
lyzed by solving the CC equations with the improved IWBC.
This approach was developed in Refs. [26,27] based on the
finite element method KANTBP code [32–36]. The obtained
results reproduce remarkably well the experimental data with
the aid of the simple WS potential. It is found that the cal-
culated S factors with different kinds of collective excitations
have maxima for the considered reactions. The knowledge of
the potential minimum energy VP and the improved IWBC are
crucially important for the correct interpretation of the fusion
cross section in the conventional CC calculations based on
the sudden approximation. The general trend of the directly
measured fusion data for the reaction 12C + 12C [8,10] is de-
scribed as well. It is found that the S� factor drops gently at
energies under the Coulomb barrier, and the results have not
shown pronounced maximum of the S� factor for this system.
We hope that further experiments at even lower energies could
finally reveal the “mystery of the hindrance phenomenon”
as a function of the mass number. From our point of view
it is determined by the number of coupled channels at the
correct treatment of the left boundary conditions for different
combinations of the colliding nuclei.
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