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1. INTRODUCTION

The calculation of the dynamics of electron states of
hydrogen-like atoms in a magnetic field in atomic phys-
ics is reduced to a boundary value problem for an ellip-
tic second-order partial differential equation in a two-
dimensional region for fixed values of the magnetic
number and parity [1]. Efficient algorithms for the
numerical solution of this problem (see [2]) are based
on its reduction to a system of ordinary differential
equations by the Kantorovich method [3].It is quite nat-
ural to use the oblate angular spheroidal functions [4] as
the basis for the expansion of the unknown solution. It
was shown in [5, 6] that an efficient application of the
Kantorovich method requires the development of a set
of symbolic–numerical algorithms for computing the
following quantities to a prescribed accuracy:

• oblate angular spheroidal functions on a bounded
interval of the parameter values,

• derivatives with respect to the parameter of the
angular functions and of the matrix elements (integrals
of the eigenfunctions multiplied by their derivatives
with respect to the parameter),

• asymptotics in the radial parameter of the eigen-
functions and of the matrix elements that appear as
variable coefficients in the system of ordinary differen-
tial equations,

• asymptotics of the solutions to the system of ordi-
nary differential equations for small and large values of
the radial variable,

• solutions of the boundary value problem for the
system of second-order ordinary differential equations.

In this paper, we consider the reduction of the two-
dimensional problem to a system of ordinary differen-
tial equations using the Kantorovich method with
respect to the parametric basis consisting of the oblate
angular spheroidal functions.

The eigenvalue problem for an ordinary differential
equation on a finite interval of the variation of the inde-
pendent angular variable is reduced to an algebraic
problem by expanding the unknown solution in terms
of the associated Legendre polynomials with unknown
coefficients depending on the parameter. A symbolic-
numerical algorithm for generating and solving the
eigenvalue problem and for calculating the eigenfunc-
tions, their derivatives with respect to the parameter,
and the corresponding matrix elements to a prescribed
accuracy is described. This algorithm is implemented
in the Maple–Fortran environment. As a part of this
algorithm, a symbolic algorithm for finding the asymp-
totics of the oblate angular spheroidal functions, their
derivatives, and matrix elements is described. The latter
algorithm is implemented in Maple. The eigenvalue
problem for a second-order ordinary differential equa-
tion on a finite interval of the variation of the indepen-
dent variable is reduced to an algebraic problem by
expanding the unknown solution in terms of the gener-
alized Laguerre polynomials. The efficiency of the
algorithm is confirmed by the computation of the
asymptotics of the matrix elements and by the compar-
ison with the corresponding numerical values of the
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matrix elements on a discrete grid of the parameter val-
ues in a finite interval. In addition to the algorithms
mentioned above, a special symbolic algorithm for
finding solutions to the system of ordinary differential
equations in the Kantorovich method for large values of
the radial variable 

 

r

 

 is developed and implemented in
Maple.

The preliminary results of the computations
obtained by the proposed symbolic-numerical method
for the discrete spectrum states of the two-dimensional
problem were announced in [6]. In addition, we con-
struct a special symbolic-numerical algorithm for find-
ing asymptotics of the continuous spectrum solutions
of the two-dimensional boundary value problem sub-
ject to the boundary condition of the third kind and
compare the asymptotic values of the matrix elements
with the corresponding numerical results, which com-
pletes the set of symbolic-numerical algorithms
designed for reducing the singular boundary value
problem for the second-order elliptic partial differential
equation in a two-dimensional region to a regular
boundary value problem for a system of second-order
ordinary differential equations in the Kantorovich
method.

The paper is organized as follows. In Section 2, the
problem is stated and reduced to a system of ordinary
differential equations subject to boundary conditions
on a finite interval by the Kantorovich method. In Sec-
tion 3, an algorithm reducing the parametric eigenvalue
problem to an algebraic problem and an algorithm for
its solution are described. In Section 4, we describe an
algorithm for calculating the derivatives of the basis
functions and of the matrix elements with respect to the
parameter. Section 5 is devoted to the algorithm for cal-
culating the asymptotics of the matrix elements. In Sec-
tions 6 and 7 we present an algorithm for finding
asymptotics of the solutions to the system of ordinary
differential equations in the Kantorovich method for
large 

 

r

 

. In conclusion, we discuss the main results and
further applications of the proposed algorithms.

2. STATEMENT OF THE PROBLEM

The Schrödinger equation (

 

r

 

, 

 

η

 

, 

 

ϕ

 

) =

 

Ψ

 

(

 

r

 

, 

 

η

 

)exp(

 

im

 

ϕ

 

)/  for the wave function of the
hydrogen-like atom with the nucleus charge 

 

Z

 

 in the

axially symmetric magnetic field  = (0, 0, 

 

B

 

) written
in the spherical coordinates (

 

r

 

, 

 

θ

 

, 

 

φ

 

) for a fixed value of
the magnetic quantum number 

 

m

 

 = 0, 

 

±

 

1, … and a fixed

 

z

 

-parity 

 

σ

 

 = 

 

±

 

1 is reduced to the second-order elliptic
partial differential equation

(1)

in the domain 

 

Ω

 

 = {0 < 

 

r

 

 < 

 

∞

 

, –1 < 

 

η

 

 = cos

 

θ

 

 < 1}. Here,

 

�

 

 = 2

 

E

 

 is the doubled energy (in Rydbergs, 1 Ry = (1/2)
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 and 
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,

 = 

 

A

 

(0)

 

 + 

 

γ

 

mr

 

2

 

, the operator 

 

A

 

(0)

 

 

 

≡

 

 

 

A

 

(0)

 

(

 

p

 

) corre-
sponds to the operator of the quasi-angular equation for
the oblate spheroidal functions

(2)

where 

 

f

 

(

 

η

 

) = 1 – 

 

η

 

2

 

, and the term with the parameter 

 

p

 

 =

 

γ

 

r

 

2

 

/2 corresponds to the potential energy of interaction
of the electron with the magnetic field in the infinite
nucleus mass approximation in the atomic system of
units (

 

�

 

 = 

 

m

 

e

 

 = 

 

e

 

 = 1). Here, 

 

γ

 

 = 

 

B

 

/

 

B

 

0

 

 and 

 

B

 

0

 

 

 

≅

 

 2.35 

 

×

 

10

 

9

 

G

 

 is a dimensionless parameter that characterizes
the strength of the magnetic field 

 

B

 

.
In each subspace of the Hilbert space 

 

H

 

m

 

σ

 

, the wave
functions 

 

Ψ

 

(

 

r

 

, 

 

η

 

) 

 

≡

 

 

 

Ψ

 

m

 

σ

 

(

 

r

 

, 

 

η

 

) satisfy the following
boundary conditions on the boundary of 

 

Ω

 

:

(3)

(4)

For large 

 

r

 

 = 

 

r

 

max

 

, the discrete spectrum wave func-

tions 

 

�

 

 

 

≡

 

  satisfy the boundary condition of the
first kind

(5)

which is a consequence of the asymptotic behavior of
the solution. Here, the approximate value of the energy

 

�

 

 

 

≡

 

 

 

�

 

(

 

r

 

max

 

) is the unknown eigenvalue �i ≡ �i(rmax) in
problem (1)–(5) on the finite interval 0 ≤ r ≤ rmax
(rmax � 1), and the normalization condition

(6)

is fulfilled.
For large r = rmax and a fixed value of the energy �,

the continuous spectrum wave functions satisfy the
boundary condition of the third kind

(7)

which is a consequence of the asymptotic behavior of
the solution. It is a well-known fact (see [7]) that there
exists a function µ ≡ µ(rmax, �) such that Eq. (7) is sat-
isfied for any finite r.

Â
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Following the approach proposed by Kantorovich,

we represent the solution (r, η) as the expansion in
terms of the one-dimensional basis functions Φj(η; r) ≡

(η; r) for fixed m and σ:

(8)

For each fixed r, Φj(η; r) are solutions of the one-
dimensional parametric eigenvalue problem

(9)

subject to boundary condition (3), where Ψ(r, η) is
replaced by Φj(η; r). Here, Ej(r) are the unknown
eigenvalues for fixed m and σ and δij is the Kronecker
delta.

Substitute expansion (8) into Eqs. (1)–(7) with
account for (9) to obtain the boundary value problem
for the system of second-order ordinary differential

equations for the unknown vector c(i)(r) = 

(10)

Here, I is an identity matrix, and U(r) and Q(r) are
jmax-by-jmax matrices

(11)

The regular bounded solutions c(i)(r) satisfy the
boundary conditions

(12)

The discrete spectrum solutions � ≡  corre-
sponding to the unknown eigenvalues �i satisfy the
boundary conditions

(13)
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and the orthonormalization conditions

(14)

For the continuous spectrum, fixed values of the
energy � and the radial variable r = rmax, the bounded

solutions c(r) =  (No ≤ jmax) satisfy the
boundary condition of the third kind with the matrix of

unknown parameters L = 

(15)

where No is the number of open channels.
Thus, to solve problem (1)–(7) in the framework of

the Kantorovich method, we must solve the following
problems.

(1) Reduce problem (9) to an algebraic problem and
calculate the eigenvalues and eigenfunctions for the set
of the parameter values in a bounded interval.

(2) Calculate matrix elements (11) that appear in the
system of differential equations (10).

(3) Find the asymptotics of matrix elements (11).
(4) Find the asymptotics of the solution to system

(10) and set up boundary conditions (15).
(5) Find a numerical solution of the boundary value

problems for system (10) subject to the boundary con-
ditions that were set up at step 4 and investigate the
dependence of the convergence rate of expansion (8) on
jmax.

To solve all these problems, we developed a package
of symbolic-numerical computer algebra algorithms.
Note that the algorithms for solving problems 3 and 4
are symbolic; for problem 5 they are numerical; and,
for problems 1 and 2, a combination of symbolic and
numerical procedures is used.

The structure of this package is depicted in the fig-
ure. The numbers in this figure denote the problem
number; the name of the procedure is shown in the
blocks; and the arrows show the functional depen-
dences.

r2 c i( ) r( )( )Tc j( ) r( ) rd

0

rmax

∫ δij.=

c i( ) r( ){ }i 1=
No

δijµi{ }i j, 1=

No

dc r( )

dr
------------ Q r( )c r( )– c r( )L,=

1.

2. 3.

4.

5.

KANTBP

EIGENF

MATRM MATRA

ASYMRS(I)

Figure. 
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3. THE EIGENF ALGORITHM

Eigenfunctions (9) of the operator  = A(0) + γmr2

are also the eigenfunctions of the operator A(0) ≡ A(0)(p)
in (2) because their eigenvalues differ only in the con-
stant shift Ej(r) = λj(p) + γmr2:

(16)

For fixed σ = ±1 and m ≡ |m |, the unknown eigen-
functions—the oblate angular spheroidal functions—
are sought in the form of the expansions

(17)

in the unnormalized Legendre polynomials (η)
[4] and in the normalized Legendre polynomials

(η) [8]:

(18)

(19)

The summation in (17) is performed over even or
odd integer s up to smax = 2(Nmax – 1) + (1 – σ)/2, where
Nmax is the number of terms in the expansion. The
unnormalized polynomials are related to the normal-
ized ones by

(20)

The coefficients in expansions (17) satisfy the equa-
tions

(21)

The algebraic problems

(22)

(23)

Â
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∑

A 0( )c j λ j r( )c j,=

Ã
0( )

c̃ j λ̃ j r( )c̃ j=

for finding the normalized eigenvalues cj =

, the unnormalized eigenvalues  =

, and the corresponding eigenvectors

λj(r) and (r) = λj(r) are determined by the symmetric
three-diagonal matrix A(0)

(24)

and by the asymmetric three-diagonal matrix 

(25)

Here,  = 0 for σ = +1 and  = 0 for σ = –1.
Eigenvalue problems (22) and (23) generated in the
symbolic-numerical algorithm EIGENF were solved
using the built-in function eigenvectors in Maple or
using the built-in function Eigenvectors in Mathemat-
ica. In addition, Mathematica includes the package
SpheroidalS1 for calculating the spheroidal functions
using expansion (17) in terms of the unnormalized Leg-
endre polynomials [9]. For large values of smax ~ 100, to
ensure the prescribed accuracy in the numerical solu-
tion of problem (22) with the symmetric matrix A(0), the
IMTQL2 procedure in the Fortran package EISPACL
[10] was used. The choice of smax for calculating the
desired set of jmax ~ 10 solutions for the values of the
parameter r in the interval [0, rmax] was controlled by
the fulfillment of orthogonality condition (21) up to the
prescribed accuracy.

4. THE MATRM ALGORITHM

The characteristic set of matrix elements that must
be calculated in applications has the form

(26)

csj
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where Ikn; ij ≡ Ikn; ij(r) are the basis integrals of the prod-
ucts of the derivatives (with respect to the parameter r)
of the eigenfunctions:

(27)

Here, the superscript in parentheses denotes the
order of the derivatives:

(28)

Without loss of generality, we consider the deriva-
tives with respect to the parameter r, which is related to
the parameter p by Eq. (2).

For fixed values of the magnetic number m and the

parity σ = ±1, the derivatives (η; r) are represented
as expansions in terms of an orthonormal basis, for
example, in the associated Legendre polynomials:

(29)

Here, the coefficients of the expansion

(30)

are the derivatives with respect to the parameter of the

components  ≡ csj(r) of the eigenvectors  ≡

 of the algebraic eigenvalue problem

in jmax pairs of unknowns {c(0) ≡ ,  ≡ λj(r) }

(31)

(32)

with the symmetric matrix A(0) ≡  (see, e.g.,
(22)). To find the derivatives c(k) and the derivatives

(33)
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λ k( ) λ j
k( )≡

∂kλ j
0( )
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-------------=

of the eigenvalues  ≡ λj(r) of problem (31), we have
the recurrent system of inhomogeneous algebraic equa-
tions

(34)

obtained by differentiating eigenvalue problem (31).
Here,

(35)

is the derivative of the matrix A ≡ A(0).

Since λ(0) is an eigenvalue of problem (31), the sys-
tem has a solution if and only if the right-hand side is
orthogonal to the eigenfunction c(0). Multiply (34) by
(c(0))T and use normalization condition (32) to obtain
the expression

(36)

for λ(k) and the system of linear algebraic inhomoge-
neous equations

(37)

Problem (37) has a solution, but it is not unique.
Normalization condition (32) implies the additions
condition

(38)

that ensures the uniqueness of the solution to (37).
Since λ(0) is an eigenvalue of problem (31), the matrix
K is singular or almost singular in the case of a numer-
ical solution.

The algorithm for solving (37) involves a sequence
of three steps for each value of k.

Step 1. Calculation of the solutions v(k) and w of two
auxiliary systems of linear algebraic inhomogeneous
equations

(39)

λ j
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with the nonsingular matrix  and the right-hand sides

 and d:

(40)

Here, S is the index of the component of the vector

c(0) ≡  with the maximal absolute value: |{cSj(r)}| =
.

Step 2. Calculation of the three auxiliary coeffi-

cients , γ2, and γ(k)

(41)

using normalization condition (38)

(42)

Step 3. Calculation of the vector c(k)

(43)

The set of vectors c(k) produced by this algorithm is
used to calculate the set of basis matrix elements (26)

(44)

Symbolic-numerical algorithm (36)–(44) is imple-
mented as the program MATRM in the environment
Maple–Fortran and in Mathematica (recall that the
oblate angular spheroidal functions are included in the
package SpheroidalS1 in Mathematica [9]). For large
smax ~ 100, to ensure the prescribed accuracy in the
numerical solution of system (39), the F07BEF proce-
dure in the Fortran package NAG Fortran Library Rou-
tine Document [11] was used. The choice of smax for
calculating the desired set of jmax ~ 10 solutions for the
values of the parameter r in the interval [0, rmax] was
controlled by the fulfillment of condition (38) up to the
prescribed accuracy.
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c j
n( ), i j, 1 … jmax., ,= =

5. THE MATRA ALGORITHM

For small r, the values of the matrix elements Ej ,
Hjj ' , and Qjj ' are characterized by the quantum numbers
l = |m | + s = 2j – 2 + |m | for even states (σ = +1) and l =
|m | + s = 2j – 1 + |m | for odd states (σ = –1). They are
represented by asymptotic series in powers of r for
fixed j and j ':

(45)

The regular behavior of the matrix elements is con-
sistent with boundary conditions (12) for the regular
bounded solutions (10). To calculate the matrix ele-
ments, we used a modification of the algorithm
described in the preceding section. In this modification,
system (34) appearing at the kth step is solved analyti-
cally. The eigenvectors and the eigenfunctions are sub-
stituted in the form of the Taylor series

(46)

with the initial conditions

(47)

Using this algorithm, which was implemented in
Maple, we found the expansion coefficients of the
matrix elements up to kmax = 20. Note that these asymp-
totic expansions have a finite radius of convergence
because the parameter p has branch points in the com-
plex plane [6, 12, 13].

To calculate matrix elements (11) for large r in the
form of a series in inverse powers of p without taking
into account the exponentially small terms in the neigh-
borhood η ∈ D1 (D1 = [1 – η1, 1]), η1 = o(p1/2 – �) (0 < �
< 1/2), the solution is sought in the form (see [14])

(48)

where y = 2p(1 – η) and n = j – 1. The auxiliary func-
tion Fn(y) is a solution of the eigenvalue problem

(49)

E j r( ) E j
0( ) E j

2( )r2 r4kE j
4k( ),

k 1=

kmax/4

∑+ +=

H jj ' r( ) r4k 2– H jj '
4k 2–( ),

k 1=

kmax/4

∑=

Q jj ' r( ) r4k 1– Q jj '
4k 1–( ).

k 1=

kmax/4

∑=

c j r( )
c j

k( )rk

k!
------------, λ j r( )

k 0=

kmax

∑ λ j
k( )r k( )

k!
----------------

k 0=

kmax

∑= =

csj
0( ) δsj

0( ), λ j
0( ) m s+( ) m s 1+ +( ).= =

Φ j y; p( ) e p 1 η–( )– 1 η2–( )
m
2

-------

Fn y( ),=

y
d2

dy2
-------- m 1 y–+( ) d

dy
------ βn p( )+ + 

  Fn y( )

=  
1

4 p
------ y2 d2

dy2
-------- 2 m 2 y–+( )+ 

  y
d
dy
------
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for a fixed m with the corresponding spectral parameter

(50)

and with the additional normalization condition

(51)

Since Eq. (49) corresponds to the equation for the
generalized Laguerre polynomials in the limit p  ∞,
its solution is sought in the form of a series in inverse
powers of p for kmax > |m |:

(52)

Here, (y) are the generalized Laguerre polyno-
mials [4]

(53)

The substitution of (52) in (49) yields an algebraic
problem of type (34) and recurrences for finding the

unknown coefficients  and  for k ≥ 1 and s ≠ 0:

(54)

The initial values are

(55)

and  = 0 for |j | > i. The unknown coefficients 
(k ≥ 1) are found from conditions (51) for each order

+ m 1+( ) m y–( )Fn y( )

βn p( ) m 1+
2

----------------–
λn

4 p
------+=

1
2 p
------ Φi y; p( )Φ j y; p( ) yd

0

∞

∫ δij.=

Fn y( ) 2 p
m 1+

2
---------------- 1

4 p
------ 

 
k

cs n,
k( ) Ln s+

m( ) y( ),
s k–=

k

∑
k 0=

kmax

∑=

βn p( ) βn
0( ) 1

4 p
------ 

 
k

βn
k( ).

k 1=

kmax

∑+=

Ln
m( )

nl nr〈 | 〉 yy m e y– Lnl

m( ) y( )Lnr

m( ) y( )d

0

∞

∫≡

=  
nl m+( )!

nl!
------------------------δnlnr

.

cs n,
k( ) βn

k( )

scs n,
k( ) f s n,

k( ) ,=

f s n,
k( ) n s m 1+ + +( ) 2n 2s m 1+ + +( )[=

– n s m+ +( ) m 1+( ) ]cs n,
k 1–( )

– n s m+ +( ) n s+( )cs 1– n,
k 1–( )

– n s m 1+ + +( ) n s 1+ +( )cs 1 n,+
k 1–( )

+ βn
k '( )cs n,

k k '–( ).
k ' 1=

k s–

∑

βn
0( ) n, c0 n,

0( ) n!
n m+( )!

-----------------------,= =

c j n,
i( ) c0 n,

k( )

1/(4p) with the additional integral  for 0 ≤ a ≤
|m |. In terms of (48), the matrix elements are deter-
mined by the integrals

(56)

where

(57)

and their asymptotic expansions in inverse powers
of r without account for the exponentially small terms
have the form

(58)

In these formulas, the asymptotic quantum numbers
nl and nr are related to j and j ' as nl = j – 1 and nr = j ' – 1.

The computations were performed using the
MATRA algorithm described above implemented in
Maple and Mathematica up to kmax = 6. Below, we
present the first several coefficients:

(59)

and matrix elements for n = min(nl , nr):

nl〈 |ya nr| 〉

Q jj ' r( ) 1
2 p
------ yΦ j y; r( )∂Φ j ' y; r( ),d

0

∞

∫–=

H jj ' r( ) 1
2 p
------ y∂Φ j y; r( )∂Φ j ' y; r( ),d

0

∞

∫=

∂Φ j y; r( ) ∂
∂r
-----

2y
r

------ ∂
∂y
-----+ 

  Φ j y; r( ),=

r 2– E j r( ) E j
0( ) r 2k– E j

2k( ),
k 1=

kmax

∑+=

H jj ' r( ) r 2k– H jj '
2k( ),

k 1=

kmax

∑=

Q jj ' r( ) r 2k– 1+ Q jj '
2k 1–( ).

k 1=

kmax

∑=

E j
0( ) γ 2n m m 1+ + +( ),=

E j
2( ) 2n2– 2n m– 2n– m– 1,–=

E j
4( ) 2γ( ) 1– 4n3– 6n2– 4n– 1– 2 m–(=

– m2 6n2 m– 2nm2– 6n m )–

Q jj '
1( ) nr nl–( ) n 1+ n m 1+ + δ nl nr– 1, ,=

Q jj '
3( ) 4γ( ) 1– nr nl–( ) n 1+ n m 1+ +=

× 2n m 2+ +( )δ nl nr– 1,(

+ n 2+ n m 2+ + δ nl nr– 2, ),

H jj '
2( ) 2n2 2n 2 m n m 1+ + + +( )δ nl nr– 0,=

– n 1+ n m 1+ +
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(60)

Tables 1 and 2 illustrate the convergence of the par-
tial sums of asymptotic expansions (58) for the matrix
elements to the corresponding numerical values (26)
obtained using the MATRM algorithm described in
Section 4 for smax = 200. For large r, to achieve the pre-
scribed accuracy in the calculation of matrix elements
(26), the length of the vector smax must be considerably

increased. For this reason, for r ≥ r0 > jmax/ , the
matrix elements were calculated by asymptotic formu-
las in the framework of the unified symbolic-numerical
algorithm consisting of EIGENF, MATRM, and
MATRA.

Remark. The sum of the coefficients  +  =
0; i.e., for r � 1, the diagonal centrifugal potentials ~r–

× n 2+ n m 2+ + δ nl nr– 2, ,

H jj '
4( ) γ 1– 2n m 1+ +( )(=

× 2n2 2n 2 m n m 2+ + + +( )δ nl nr– 0,

+ n 1+ n m 1+ +

× n2 2n m n m 2+ + + +( )δ nl nr– 1,(

– n 2+ n m 2+ +

× 2n m 3+ +( )δ nl nr– 2,[

+ n 3+ n m 3+ + δ nl nr– 3, ] ) ).

γ

E j
2( ) H jj

2( )

2 vanish. To calculate the exponentially small terms in
(58), one can use an additional expansion of the solu-
tion in the region D2 = [0, 1 – η2], η2 < η1, η2 = o(p–1/2 –

 ε) following [14].

6. THE ASYMRS(1) ALGORITHM

Step 1. To solve system of radial equations (10) for
large r ≥ rmax, we change to the new vector function

(r) =  defined by

(61)

where  is the momentum in the channel io ≤ No, ζ is

the characteristic parameter, and  ≡ (ζ) is the

phase shift. The components (r) satisfy the system
of ordinary differential equations

(62)

for rmax ≤ r < ∞.

Step 2. The asymptotics of the functions (r) are
sought as an expansion in inverse powers of r:

(63)

Substituting expansion (63) into (62), we obtain the
following system of recurrences for the unknown coef-

ficients :

φio
φ j io

r( ){ } j 1=

jmax

χ j io
r( )

w r( )( )φ j io
r( )exp

r 2π pio

-----------------------------------------,=

w r( ) i pio
r ιζ 2 pio

r( )ln ιδio
,+ +=

pio

δio
δio

φ j io

d2

dr2
-------– 2ι pio

2ιζ
r

--------+ 
  d

dr
-----–



+ pio

2 H jj r( ) �–
2 pio

ζ 2Z–

r
-------------------------+ +

+
E j r( ) ιζ ζ2+ +

r2
------------------------------------





φ j io
r( )

=  2Q jj ' r( ) d
dr
-----– 2ι pio

Q jj ' r( )–


j ' 1 j ' j≠,=

jmax

∑

– H jj ' r( )
Q jj ' r( )d

dr
------------------–

2ιζQ jj ' r( )
r

------------------------
 φ j 'io

r( )–

φ j io

φ j io
r( ) φ j io

k( )r k– .
k 0=

kmax

∑=

φ j io

k( )

pio

2 2E– E j
0( )+( )φ j io

k( ) f jio

k( ),=

f jio

k( ) 2 pio
ζ 2Z– 2ι pio

k 1–( )+( )φ j io

k 1–( )–=

Table 1.  Values of the partial sums Qjj'(r) = 

depending on kmax for γ = 1, m = 0, Z = 1, and r = 10. The last
row contains the corresponding numerical values (n.v.)

kmax Q12, 10–1 Q23, 10–1 Q34, 10–1

1 1.000000 2.000000 3.000000

2 1.010000 2.040000 3.090000

3 1.010300 2.042550 3.098700

4 1.010310 2.042749 3.099744

5 1.010310 2.042766 3.099882

6 1.010310 2.042767 3.099901

n.v. 1.010310 2.042767 3.099904

kmax Q13, 10–3 Q24, 10–3 Q14, 10–5

1 0 0 0

2 1.000000 3.000000 0

3 1.060000 3.300000 1.500000

4 1.064150 3.334050 1.710000

5 1.064465 3.338235 1.736288

6 1.064490 3.338777 1.739596

n.v. 1.064492 3.338861 1.740089

r 2k– 1+
k 1=

kmax∑ Q jj '
2k 1–( )
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(64)

Here, the indexes jk (k = 0, 1, …, kmax) range over the
integers excluding io and jk + 1; i.e., jk = 1, 2, …, jmax, jk ≠
io, and jk ≠ jk + 1.

Step 3. The first three equations in (64), which con-

tain the functions , , and  on their left-hand
sides, imply the following initial conditions for recur-
rent procedure (64):

(65)

Hence, we have  = argΓ(1 – ιζ).

Step 4. Substituting (65) in (64), we obtain the fol-
lowing recurrent set of algebraic equations for the

unknown coefficients  for k = 1, 2, …, kmax:

(66)

System (66) is solved sequentially for k = 1, 2, …,
kmax:

(67)

The procedure ASYMRS(1) implemented as a
sequence of Steps 1–4 in Maple yields expressions for

the coefficients of the expansion of  up to kmax = 5,
for example, for jmax ≥ io + k and k = 0, 1, 2, we have

(68)

It also yields explicit expressions for these coeffi-
cients when the asymptotics of matrix elements (58)
found by the algorithm MATRA are substituted as the
initial parameters:

– ζ 2ι– ιk+( ) ζ ι– ιk+( )φ j io

k 2–( )

– E j
k '( ) H jj

k '( )+( )φ j io

k k '–( )

k ' 1=

k

∑

+ 2ι pio
Q jj '

k '( )– H jj '
k '( )–(

k ' 1=

k

∑
j ' 1 j ', j≠=

jmax

∑

+ 2k k '– 1– 2ιζ–( )Q jj '
k ' 1–( ) )φ j 'io

k k '–( ).

φioio

0( ) φ joio

0( ) φioio

1( )

φioio

0( ) δ joio
, pio

2E Eio

0( )– , ζ Z
pio

------.= = =

δio

φ j io

k( )

E j
0( ) Eio

0( )–( )φ j io

k( ) f jio

k( ).=

φ j io

k( ) f jio

k( )

E j
0( ) Eio

0( )–
-----------------------, j io,≠=

f ioio

k 1+( ) 0 φioio

k( ) .=

φ j io

k( )

φ joio

1( ) 2ι pio
Q j1io

1( )

Eio

0( ) E j1

0( )–
-----------------------,=

φioio

1( ) ι Z2 ιZ pio
+( )

2 pio

3
------------------------------- Qio j1

1( ) φ j1io

1( ) .
j1 max 1 io 1–,( ),=

j1 io≠

min jmax io 1+,( )

∑–=

(69)

Remark. If the scaled variable  = r , the effec-

tive charge  = Z/ , and the scaled momentum  =

/  are used, we may set γ = 1. Expansion (61)

holds true for  � max( /( ), (2io + |m | –

1)/ ). The choice of a new value of rmax for the con-
structed expansions of the linearly independent solu-

φio 1io–
1( ) ι

pio
io 1– io m 1–+

γ
------------------------------------------------------,=

φioio

1( ) ι Z2

2 pio

3
--------- Z

2 pio

2
---------– ι

pio
2io m 1–+( )

γ
-----------------------------------------,–=

φio 1io+
1( ) ι

pio
io io m+

γ
------------------------------------.=

r̂ γ
Ẑ γ p̂io

pio
γ

r̂ max; Ẑ
2

2 p̂io

2

p̂io

Table 2.  Values of the partial sums Hjj '(r) = 

depending on kmax for γ = 1, m = 0, Z = 1, and r = 10. The last
row contains the corresponding numerical values (n.v.)

kmax H11, 10–2 H22, 10–2 H33, 10–1

1 1.000000 5.000000 1.300000

2 1.020000 5.180000 1.370000

3 1.020800 5.193400 1.377580

4 1.020838 5.194606 1.378565

5 1.020840 5.194726 1.378706

6 1.020840 5.194738 1.378728

n.v. 1.020840 5.194740 1.378732

kmax H21, 10–4 H32, 10–3 H43, 10–3

1 0 0 0

2 2.000000 1.000000 3.000000

3 2.160000 1.124000 3.504000

4 2.173700 1.140390 3.593310

5 2.174956 1.142691 3.610054

6 2.175078 1.143029 3.613336

n.v. 2.175092 1.143090 3.614180

kmax H3, 10–2 H42, 10–2 H41, 10–4

1 –2.000000 –6.000000 0

2 –2.060000 –6.300000 –6.000000

3 –2.063100 –6.326100 –6.600000

4 –2.063280 –6.328740 –6.663300

5 –2.063289 –6.329018 –6.670482

6 –2.063289 –6.329045 –6.671343

n.v. –2.063289 –6.329047 –6.671464

r 2k–
k 1=

kmax∑ H jj '
2k( )
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tions for  > 0 is controlled by the fulfillment of the
condition

(70)

up to the prescribed accuracy. Here, Ioo is the No-by-No

identity matrix, and the Wronskian Wr(•; c*(r), c(r))
is determined by the relation

(71)

The asymptotics thus obtained are used to set up
boundary conditions (15) that must be satisfied by the
bounded solutions to system (10).

7. THE ASYMRS(2) ALGORITHM

Step 1. Using initial conditions (65) obtained at
Step 3 of the algorithm ASYMRS(1), we seek the solu-
tions (r) to system of radial equations (10) for large
rmax ≤ r < ∞ in the form of the expansion

(72)

in the solutions R(r) ≡ R( , r) to the ordinary differ-
ential equation

(73)

where R( , r) = ιF( , r) + G( , r) is the sum com-

posed of the regular F( , r) and the irregular G( , r)
Coulomb functions (see [4]). The substitution of (72) in
Eq. (10) with account for (73) yields the system of two
coupled ordinary differential equations for the pair of
unknown functions (r) and (r):

(74)

pio

Wr Q r( ); c* r( ) c r( ),( ) ι
π
---Ioo=

Wr •; c* c,( ) r2 c*( )T dc
dr
------- •c– 

 =

– dc*
dr

---------- •c*– 
  T

c .

cio

χ j io
r( ) R r( )φ j io

r( ) dR r( )
dr

--------------ψ j io
r( ),+=

pio

d2

dr2
-------

2
r
--- d

dr
----- pio

2 2Z
r

------+ + + 
  R pio

r,( ) 0,=

pio
pio

pio

pio
pio

φ j io
ψ j io

d2

dr2
-------–

2
r
--- d

dr
-----– pio

2 H jj r( )+ +


– �
E j r( )

r2
-------------

 φ j io
r( )+

+ 2 pio

2 4Z
r

------+ 
  d

dr
----- 2Z

r2
------– 

  ψ j io
r( )

=  H jj ' r( ) Q jj ' r( ) d
dr
-----+


j ' 1 j ' j≠,=

jmax

∑–

(75)

Step 2. The asymptotics of the functions (r) and

(r) are sought as expansions in inverse powers of r:

(76)

Substituting expansion (76) into (74) and (75), we
obtain the following system of recurrences for the

unknown coefficients  and :

(77)

+
1

r2
----

dr2Q jj ' r( )
dr

------------------------
 φ j 'io

r( )

+ 2 pio

2 4Z
r

------+ 
  Q jj ' r( )ψ j 'io

r( ),
j ' 1 j ', j≠=

jmax

∑

d2

dr2
-------–

2
r
--- d

dr
----- pio

2 H jj r( ) �–+ + +


+
E j r( ) 2–

r2
---------------------

 ψ j io
r( ) 2

φ j io
r( )d

dr
------------------–

=  H jj ' r( ) Q jj ' r( ) d
dr
-----+


j ' 1 j ', j≠=

jmax

∑–

+
1

r2
----

r2Q jj ' r( )
dr

--------------------
4Q jj ' r( )

r
-------------------

 ψ j 'io
r( )–

– 2 Q jj ' r( )φ j 'io
r( ).

j ' 1 j ', j≠=

jmax

∑
φ j io

ψ j io

φ j io
r( ) φ j io

k( )r k– ,
k 0=

kmax

∑=

ψ j io
r( ) ψ j io

k( )r k– .
k 0=

kmax

∑=

φ j io

k( ) ψ j io

k( )

pio

2 2E E j
0( )+–( )φ j i0

k( ) f jio

k( ),=

f jio

k( ) 2 pio

2 k 1–( )ψ j io

k 1–( ) k 2–( )+=

× k 3–( )φ j io

k 2–( ) 2Z 2k 3–( )ψ j io

k 2–( )+

– E j
k '( ) H jj

k '( )+( )φ j io

k k '–( )

k ' 1=

k

∑

+ 2k k '– 3–( )Q jj '
k ' 1–( ) H jj '

k '( )–( )φ j 'io

k k '–( )[
k ' 1=

k

∑
j ' 1 j ', j≠=

jmax

∑

+ 2 pio

2 Q jj '
k '( ) 4ZQ jj '

k ' 1–( )+( )ψ j 'io

k k '–( ) ],

pio

2 2E– E j
0( )+( )ψ j io

k( ) g jio

k( ),=
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(78)

Here, the indexes jk (k = 0, 1, …, kmax) range over the
integers excluding io and jk + 1; i.e., jk = 1, 2, …, jmax, jk ≠
io, and jk ≠ jk + 1.

Step 3. The first two equations in system (77), (78),

which contain the functions , , and , 

on their left-hand sides, respectively, imply the follow-
ing initial conditions for recurrent procedure (77), (78):

(79)

Step 4. Substituting (79) in (77) and (78), we obtain
the following recurrent set of uncoupled algebraic

equations for the unknown coefficients  and 

for k = 1, 2, …, kmax:

(80)

System (80) is solved sequentially for k = 1, 2, …,
kmax:

(81)

The procedure ASYMRS(2) implemented as a
sequence of Steps 1–4 in Maple yields expressions for

the coefficients of the expansion of  and  up to

kmax = 5; for example, for jmax ≥ io + k and k = 0, 1, 2, we
have

g jio

k( ) 2 k 1–( )φ j io

k 1–( ) k k 1–( )ψ j io

k 2–( )+–=

– E j
k '( ) H jj

k '( )+( )ψ j io

k k '–( )

k ' 1=

jmax

∑

+ 2k k '– 1+( )Q jj '
k ' 1–( )([

k ' 1=

k

∑
j ' 1 j ', j≠=

jmax

∑

– H jj '
k '( ) )ψ j io

k k '–( ) 2Q jj '
k '( )φ j 'io

k k '–( ) ].–

φioio

0( ) φ j0io

0( ) ψioio

0( ) ψ j0io

0( )

φ j0io

0( ) δ j0io
, ψ j0io

0( ) 0, pio

2 2E Eio

0( ).–= = =

φ j io

k( ) ψ j io

k( )

E j
0( ) Eio

0( )–( )φ j io

k( ) f jio

k( ),=

E j
0( ) Eio

0( )–( )ψ j io

k( ) g jio

k( ).=

φ j io

k( ) f jio

k( )

E j
0( ) Eio

0( )–
-----------------------, j io,≠=

f ioio

k 1+( ) 0 φioio

k( ) ,=

ψ j io

k( ) g jio

k( )

E j
0( ) Eio

0( )–
-----------------------, j io,≠=

gioio

k 1+( ) 0 ψioio

k( ) .=

φ j io

k( ) ψ j io

k( )

(82)

It also yields explicit expressions for these coeffi-
cients when the asymptotics of matrix elements (58)
found by the algorithm MATRA are substituted as the
initial parameters:

(83)

Remark. In each kth order, recurrences (77) and
(78) include implicitly only the factor Z/ , and recur-

rences (64) explicitly include the factor (Z/ )2.

Expansion (72) holds for  � max( / , (2io +

|m | – 1)). As a result, for small  or for large values of

the effective charge  (i.e., for large values of the

parameter |ζ | = | / | � 1), expansion (72) can be
used more efficiently than expansion (61) for smaller
values of ; recall that (61) holds when |ζ | is
considerably greater than  (because |ζ | � 1).

8. CONCLUSIONS

A set of functionally connected symbolic-numerical
algorithms EIGENF, MATRM, MATRA, and
ASYMRS(I) (I = 1, 2) is developed that reduce the sin-
gular boundary value problem for a second-order ellip-
tic partial differential equation in a two-dimensional
region to a regular boundary value problem for a system
of ordinary differential equations in the Kantorovich
method.

A comparison of the asymptotic and numerical val-
ues of the matrix elements (integrals of the oblate angu-
lar spheroidal functions and their derivatives with
respect to the parameter) is performed that demon-
strates the scope and the efficiency of the symbolic
algorithm MATRA and of the combined symbolic-
numerical algorithms EIGENF and MATRM. When the
matrix elements are calculated, the number of terms
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Ẑ p̂io

r̂max r̂max

r̂max



116

PROGRAMMING AND COMPUTER SOFTWARE      Vol. 33      No. 2      2007

VINITSKY et al.

smax in expansion (17) increases with r. For this reason,
the continuation of the numerical values of the matrix
elements from the bounded interval of the parameter
variation 0 < r ≤ rmax to the entire plane as rmax  ∞
using the asymptotic algorithm MATRA makes it pos-
sible to considerably save computer resources. The
results coincide with the computations performed using
the finite element method [2] up to 10 significant digits.
The analytical expressions for the matrix elements
obtained by MATRA are also used as the initial param-
eters for the algorithm ASYMRS(I) (I = 1, 2), which
calculates the asymptotics of the solutions to the system
of radial equations required for solving the boundary
value problem subject to the boundary conditions of the
third kind. A description of the algorithm KANTBP for
the numerical solution of the system of second-order
ordinary differential equations (10)–(15) by the finite
volume method will be given in subsequent papers.

The approach developed in this paper provides a
convenient tool not only for the description of the for-
mation and ionization of hydrogen-like atoms in mag-
netic traps [5] and the calculation of the wave function
of hydrogen-like atoms [6] or the quantum point in a
strong magnetic field [15], but also provides means for
the analysis of accuracy and the rate of convergence of
the representation of the solution to be found. For
example, using the algorithm MATRM for calculating
high-order derivatives of the matrix elements with
respect to the parameter up to a prescribed accuracy,
one can construct efficient operator approximations for
the system of radial equations. Such approximations
enable one to analyze the convergence of the sum rules
over the spectrum of the parametric problem and obtain
upper and lower bounds on the solution to be found
[16]. In combination with the algorithm for the unitary
decomposition of the evolution operator [17], this
approach seems to be promising for computer simula-
tion of Zeeman states in variable electric fields [18–20]
and for the simulation of the behavior of ions in trapped
models of quantum computers [21].

ACKNOWLEDGEMENTS

This work was supported by the Russian Foundation
for Basic Research, project nos. 03–02-16263 and 04-
01-00784, by the Bulgarian State Agency for Atomic
Energy (2004), and by the Bulgarian Research Founda-
tion, project no. 1-1402/2004.

REFERENCES

1. Friedrich, H., Theoretical Atomic Physics, New York:
Springer, 1991.

2. Dimova, M.G., Kaschiev, M.S., and Vinitsky, S.I., The
Kantorovich Method for High-Accuracy Calculations of
a Hydrogen Atom in a Strong Magnetic Field: Low-
Lying Excited States, J. Phys., B: At. Mol. Phys., 2005,
vol. 38, pp. 2337-2352.

3. Kantorovich, L.V. and Krylov, V.I. Priblizhennye metody
vysshego analiza (Approximate Methods in Higher
Analysis), Moscow: Gostekhizdat, 1952.

4. Abramowitz, M. and Stegun, I.A., Handbook of Mathe-
matical Functions, New York: Dover, 1965. Translated
under the title Spravochnik po spetsiak’nym funktsiyam
s formulami, grafikami i matemeticheskimi tablitsami,
Moscow: Nauka, 1979.

5. Chuluunbaatar, O., et al., On an Effective Approximation
of the Kantorovich Method for Calculations of a Hydro-
gen Atom in a Strong Magnetic Field, Proc. SPIE, 2006,
vol. 6165, pp. 66–82.

6. Gusev, A.A., et al. A Symbolic-Numerical Algorithm for
Solving the Eigenvalue Problem for a Hydrogen Atom in
a Magnetic Field, Proc. of the 9th Workshop on Com-
puter Algebra in Scientific Computing, CASC-2006, Chi-
sinau, Moldova, 2006.

7. Courant, R. and Hilbert, D., Methoden der matematis-
chen Physik, 2 vols., Berlin: Springer, 1931–1937.
Translated under the title Metody matematicheskoi fiziki,
Moscow: GIITL, 1951, vol. 1.

8. Hodge, D.B., Eigenvalues and Eigenfunctions of the
Spheroidal Wave Equation, J. Math. Phys., 1970, vol. 11,
pp. 2308–2312.

9. http://mathworld.wolfram.com/SpheroidalWaveFunction.
html.

10. http://www.netlib.org/eispack/.
11. http://www.nag.co.uk/numeric/numerical.libraries.asp.
12. Oguchi, T., Eigenvalues of Spheroidal Wave Functions

and Their Branch Points for Complex Values of Propaga-
tion Constants, Radio Sci., 1970, vol. 5, pp. 1207–1214.

13. Skorokhodov, S.L. and Khristoforov D.V., Calculation
of the Branch Points of the Eigenvalues Corresponding
to Wave Spheroidal Functions, Zh. Vychisl. Mat. Mat.
Phys., 2006, vol.46, no. 7, pp. 1195–1210.

14. Dumburg, R.J. and Propin, R.Kh., On Asymptotic
Expansions of Electronic Terms of the Molecular Ion

, J. Phys., B: At. Mol. Phys., 1968, vol. 1, pp. 681–
691.

15. Sarkisyan, H.A., Electronic States in a Cylindrical
Quantum Dot in the Presence of Parallel Electrical and
Magnetic Fields, J. Mod. Phys. Lett., B., 2002, vol. 16,
pp. 835–841.

16. Chuluunbaatar, O., et al., Benchmark Kantorovich Cal-
culations for Three Particles on a Line, J. Phys., B: At.
Mol. Phys., 2006, vol. 39, pp. 243–269.

17. Vinitsky, S.I., Gerdt, V.P., Gusev, A.A., Kaschiev, M.S.,
Rostovtsev, V.A., Tyupikova, T.V., and Uwano, Y., A
Symbolic Algorithm for the Factorization of the Evolu-
tion Operator for the Time-Dependent Schrödinger
Equation, Programmirovanie, 2006, no. 2, pp. 58–70.

18. Chuluunbaatar, O., et al., On the Kantorovich Approach
for Calculations of the Hydrogen Atom States Affected
by a Train of Short Pulses, Proc. SPIE, 2006, vol. 6165,
pp. 83–98.

19. Gusev, A.A., Samoilov, V.N., Rostovtsev, V.A., and Vin-
itsky, S.I., Algebraic Perturbation Theory for Hydrogen
Atom in Weak Electric Fields, Programmirovanie, 2001,
no. 1, pp. 27–31.

20. Gusev, A.A., Chekanov, N.A., Rostovtsev, V. A., Vinitsky,
S.I., and Y. Uwano, A Comparison of Algorithms for the
Normalization and Quantization of Polynomial Hamilto-
nians, Programmirovanie, 2004, no. 2, pp. 27–35.

21. The Physics of Quantum Information, Bouwmeester, D.,
Ekert, A., and Zeilinger, A., Eds., Berlin: Springer, 2000.

H2
+

SPELL: 1. unnormalized, 2. nonsingular


